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To the memory of 

GERRYANDHEATHERRATCLIFF 

Streams at some seasons 
Wind their way through country lanes of beauty 
And are dry. 

Butterflies still hover 
Down the rocky bed 
And weeds grow strong and 
Guard the pebbled way. 
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Preface 

A vast body of literature dealing with bubbles, drops, and solid particles has 
grown up in engineering, physics, chemistry, geophysics, and applied mathe- 
matics. The principal objective of this book is to give a comprehensive critical 
review of this literature as it applies to the fluid dynamics, heat transfer, and 
mass transfer of single bubbles, drops, and particles. We have tried primarily to 
provide a reference text for research workers concerned with multiphase phe- 
nomena and a source of information, reference, and background material for 
engineers, students, and teachers who must deal with these phenomena in their 
work. In many senses, bubbles and drops are the chemical engineer's elemen- 
tary particles. Inevitably the book has a bias toward the concerns of chemical 
engineers since each of the authors is a chemical engineer. However, we have 
attempted to keep our scope sufficiently broad to be of interest to readers from 
other disciplines. It became clear to us while preparing this book that workers 
in one area are commonly oblivious to advances in other fields. If this book 
does no more than bring literature from other fields to the attention of research 
workers, it will have accomplished part of our purpose. 

A related objective of this book is to unify the treatment of solid particles, 
liquid drops, and gas bubbles. There are important similarities, as well as sig- 
nificant differences, that have often been overlooked among these three types of 
particle. Workers concerned with liquid drops, for example, sometimes fail to 
recognize the relevance of parallel work on bubbles or solid particles. Confu- 
sion has been created by differing-sometimes conflicting-nomenclature. To a 
large extent, we have written the book because we wished it had already 
existed. 

An important limitation of this book is that we treat only phenomena in 
which particle-particle interactions are of negligible importance. Hence, direct 
application of the book is limited to single-particle systems or dilute suspensions. 
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Understanding the behavior of single particles is, however, a solid foundation 
upon which to build knowledge of multiple-particle systems. In addition, the 
literature on single particles is already so extensive that it warrants a book of 
its own. 

Other limitations of our treatment should also be mentioned. Generally, we 
are concerned with bubbles, drops, and solid particles moving freely under the 
action of body forces (primarily gravity) in Newtonian fluids, but some work 
on stationary rigid bodies in flowing fluids is also applicable. We make little 
reference to direct applications or devices which use the phenomena under con- 
sideration, concentrating instead on the fundamentals of the phenomena. We 
make no mention of flexible and porous solid particles, and little mention of 
electrical and magnetic fields affecting particle motion and transfer processes. 
Coverage of static drops and bubbles, acoustical fields, phenomena involving 
change of phase, and noncontinuum effects is relatively scant, but reference is 
made in each of these cases to other works. 

The fundamental principles and equations governing the behavior of bubbles, 
drops, and solid particles in Newtonian fluids are summarized in Chapter 1. 
Some readers may find the treatment too cursory here and in later chapters, so 
we provide extensive references where more detailed discussion may be found. 
Chapter 2 contains a summary of parameters used to characterize the shape of 
rigid particles, and of the factors which determine the shape of bubbles and 
drops. In Chapters 3-8 we treat the behavior of solid and fluid particles under 
steady incompressible flow in an external phase of very large extent. Since the 
sphere is of special importance in studies of bubbles, drops, and particles, two 
chapters are devoted to spherical particles. Bubbles and drops assume spherical 
shapes if either interfacial tension forces or continuous phase viscous forces are 
considerably larger than inertial effects. These conditions are obeyed in practice 
by small fluid particles. In addition, many solid particles may be approximated 
as spherical. An understanding of the behavior of spheres is therefore vital to 
the consideration of deformed fluid and solid particles. Chapter 3 deals with 
slow viscous flow past spherical particles, while Chapter 5 deals with flow at 
higher Reynolds numbers. Chapters 4 and 6 are devoted to nonspherical rigid 
particles at low and high Reynolds numbers, respectively. Nonspherical fluid 
particles are treated in Chapters 7 and 8.  

The remaining chapters, 9-12, are devoted to effects which complicate the 
relatively simple case of a particle moving steadily through an unbounded fluid. 
Chapter 9 deals with the effects of rigid walls bounding the external fluid, with 
emphasis on ducts of circular cross section. Chapter 10 treats a series of factors 
which can influence motion or transfer rates, including turbulence, natural con- 
vection, surface roughness, and noncontinuum effects. However, effects of 
electrical charging at the interface are not included since they assume major 
significance only for particleparticle interactions. Chapters 11 and 12 relate to 
unsteady flows, the former to cases in which the particle volume is constant 
and the latter to processes whereby bubbles and drops grow, shrink, or divide. 
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Chapter 1 

Basic Principles 

I. INTRODUCTION AND TERMINOLOGY 

Bubbles. drops, and particles are ubiquitous. They are of fundamental im- 
portance in many natural physical processes and in a host of industrial and 
man-related activities. Rainfall, air pollution, boiling, flotation, fermentation, 
liquid-liquid extraction, and spray drying are only a few of the phenomena 
and operations in which particles play a primary role. Meteorologists and 
geophysicists study the behavior of raindrops and hailstones, and of solid 
particles transported by rivers. Applied mathematicians and applied physicists 
have long been concerned with fundamental aspects of fluid-particle inter- 
actions. Chemical and metallurgical engineers rely on bubbles and drops for 
such operations as distillation, absorption. flotation. and spray drying. while 
using solid particles as catalysts or chemical reactants. Mechanical engineers 
have studied droplet behavior in connection with combustion operations, and 
bubbles in electromachining and boiling. In all these phenomena and processes. 
there is relative motion between bubbles, drops, or particles on the one hand. 
and surrounding fluid on the other. In many cases, transfer of mass and/or 
heat is also of importance. Interactions between particles and fluids form the 
subject of this book. 

Before turning to the principles involved. the reader should be aware of 
certain terminology which is basic to understanding the material presented in 
later chapters. Science is full of words which have very different connotations 
in the jargon of different disciplines. The present book is about particles and 
the term particle needs to be defined carefully within our context, to distinguish 
it from the way in which the nuclear physicist. for example. might use the word. 
For our purposes a "particle" is a self-contained body with maximum dimension 
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between about 0.5 pm and 10 cm. separated from the surrounding medium by 
a recognizable interface. The material forming the particle will be termed the 
"dispersed phase." We refer to particles whose dispersed phases are composed 
of solid matter as "solid particles." If the dispersed phase is in the liquid state, 
the particle is called a "drop." The term "droplet" is often used to refer to small 
drops. The dispersed phase liquid is taken to be Newtonian. If the dispersed 
phase is a gas. the particle is referred to as a bubble. Together. drops and bubbles 
comprise "fluid particles." Following common usage, we use "continuous phase" 
to refer to the medium surrounding the particles. In this book we consider 
only cases in which the continuous phase is a Newtonian fluid (liquid or gas). 
In subsequent chapters we distinguish properties of the dispersed (or particle) 
phase by a subscript p from properties of the continuous phase which are 
unsubscripted. Occasionally tlie dispersed and continuous phases are referred 
to as the "inner" and "outer" phases. respectivelq. 

Another distinction we use throughout the book is between rigid. non- 
circulating, and circulating particles. "Rigid particles." comprising most solid 
particles, can withstand large normal and shearing stresses without appreciable 
deformation or flow. "Noncirculating fluid particles" are those in which there 
is no internal motion relative to a coordinate system fixed to the particle. 
"Circulating particles" contain fluid which has motion of its own relative to 
any fixed coordinate system. We consider only cases in which the dispersed 
phase is continuous. Hence the scale of the particle must be large compared 
to the scale of molecular processes in the dispersed phase. 

In this book we consider as particles only those bodies which are biologically 
inert and which are not self-propelling. To give some specific examples, rain- 
drops, hailstones, river-borne gravel, and pockets of gas formed by cavitation 
or electrolysis are all considered to be particles. However. insects and micro- 
organisms are excluded by their life, weather balloons and neutrons by their 
size. homogeneous portices by the lack of a clearly defined interface, and rockets 
and airplanes by their self-propelling nature and size. Our attention is con- 
centrated on particles which are free to move through the continuous phase 
under the action of some body force such as gravity. Thus heat exchanger tubes, 
for example. are not considered-not only because of their size but also because 
they are fixed in position. Some elements of our definitions are of necessity 
arbitrary. For example, a golf ball satisfies our definition of a particle while a 
football does not. In most cases, there is little ambiguity, however, so long as 
these general guidelines regarding terminology are borne in mind. 

Other terms which can be defined quantitatively are introduced in the 
following sections. Some other terms. such as "turbulence," "viscosity," and 
"diffusivity" are used without definition. For a full explanation of these terms, 
we refer the reader to standard texts in fluid mechanics, heat transfer. and 
mass transfer. 
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11. THEORETICAL BASIS 

The fundamental physical laws governing motion of and transfer to particles 
immersed in fluids are Newton's second law, the principle of conservation of 
mass. and the first law of thermodynamics. Application of these laws to an 
infinitesimal element of material or to an infinitesimal control volume leads 
to the Navier-Stokes. continuity. and energy equations. Exact analytical solu- 
tions to these equations have been derived only under restricted conditions. 
More usually, it is necessary to solve the equations numerically or to resort 
to approximate techniques where certain terms are omitted or modified in 
favor of those which are known to be more important. In other cases, the 
governing equations can do no more than suggest relevant dimensionless groups 
with which to correlate experimental data. Boundary conditions must also be 
specified carefully to solve the equations and these conditions are discussed 
below together with the equations themselves. 

1 .  The Naz-ie1.-Stokes Equation 

Application of Newton's second law of motion to an infinitesimal element 
of an incompressible Newtonian fluid of density p and constant viscosity p, 
acted upon by gravity as the only body force. leads to the Navier-Stokes 
equation of motion : 

The term on the left-hand side, arising from the product ofmass and acceleration. 
can be expanded using the expression for the substantial derivative operator 

where the first term. called the local derivative, represents changes at a fixed 
point in the fluid and the second term, the convective term, accounts for changes 
following the motion of the fluid. The pg term above is the gravity force acting 
on unit volume of the fluid. The final two terms in Eq. (1-1) represent the surface 
force on the element of fluid. If the fluid were compressible, additional terms 
would appear and the definition of p would require careful attention. For 
discussions of these matters, see Schlichting (Sl), Bird et al. (B3), or standard 
texts on fluid dynamics. Equation (1-1) is written in scalar form in the most 
common coordinate systems in many texts [e.g. (B3)]. 

In the simplest incompressible flow problems under constant property con- 
ditions. the velocity and pressure fields (u and p) are the unknowns. In principle, 
Eq. (1-1) and the overall continuity equation, Eq. (1-9) below, are sufficient for 
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solution of the problem with appropriate boundary conditions. In practice, 
solution is complicated by the nonlinearity of the Navier-Stokes equation, 
arising in the convective acceleration term u . Vu. 

In dimensionless form. Eq. (1-1) may be rewritten as 

Du' 1 
-- = - V'p,' + - (V')2u': 
Dt' Re 

where the primes denote dimensionless quantities or operators formed using 
dimensionless variables. Reference quantities L. C', and p, are used together 
with the fluid properties to form the dimensionless quantities as follows: 

x,' = x, L:  J ,' = J 1 L :  z , '  = L1 L: t' = tc, L (1-5) 

~ r n '  = (P - P O  - p g h \ ) l ~ c o ~  (1 -6) 

where 12, is a coordinate directed vertically upwards. The Reynolds number. 
Re, is of enormous importance in fluid mechanics. From Eq. (1-3) it can be 
interpreted as an indication of the ratio of inertia to viscous forces. For con- 
venience we have defined a dimensionless modified pressure. p,'. which gives 
the pressure field due to the flow (i.e., discounting hydrostatic pressure varia- 
tions). Batchelor (Bl) gives a good discussion of the modified pressure. It is 
useful in a wide range of problems where gravity effects can be isolated from the 
boundary conditions. 

2. Ocerall Continuit) Equation 

Application of the principle of conservation of mass to a compressible fluid 
yields 

which for an incompressible fluid reduces to 

v . u = o .  
In dimensionless form. Eq. (1-9) becomes simply 

3. Velocity Boundary Coilditions 

In order to solve the Navier-Stokes equations for the dispersed and con- 
tinuous phases, relationships are required between the velocities on either side 
of an interface between the two phases. The existence of an interface assures 
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that the normal velocity in each phase is equal at the interface, i.e.: 

u, = (u,), (everywhere on interface). (1-11) 

where the subscript n refers to motion normal to the interface. For a particle 
of constant shape and size the normal velocity is zero relative to axes fixed to 
the particle. 

The condition on the tangential velocity at the interface is not as obvious 
as that on the normal velocity. There is now ample experimental evidence that 
the fluid velocity at the surface of a rigid or noncirculating particle is zero 
relative to the particle. provided that the fluid can be considered a continuum. 
This leads to the so-called "no-slip" condition. which for a fluid particle takes 
the form 

u, = (u,), (everywhere on interface), (1-12) 

where the subscript t refers to motion tangential to the surface. 
Additional velocity boundary conditions are provided by the velocity field 

in the continuous phase remote from the particle and the existence of points, 
lines. and/or planes of symmetry. These conditions are set out in subsequent 
chapters for specific situations. 

4. Stress Boundarj Conditions 

For solid particles a sufficient set of boundary conditions is provided by the 
no slip condition, the requirement of no flow across the particle surface, and 
the flow field remote from the particle. For fluid particles. additional boundary 
conditions are required since Eqs. (1-1) and (1-9) apply simultaneously to both 
phases. Two additional boundary conditions are provided by Newton's third 
law which requires that normal and shearing stresses be balanced at the interface 
separating the two fluids. 

The interface between two fluids is in reality a thin layer, typically a few 
molecular dimensions thick. The thickness is not well defined since physical 
properties vary continuously from the values of one bulk phase to that of the 
other. In practice, however. the interface is generally treated as if it were 
infinitesimally thin. i.e., as if there were a sharp discontinuity between two bulk 
phases (Ll). Of special importance is the surface or interfacial tension. a, which 
is best viewed as the surface free energy per unit area at constant temperature. 
Many workers have used other properties, such as surface viscosity (see Chapter 
3) to describe the interface. 

A complete treatment of interfacial boundary conditions in tensor notation 
is given by Scriven (S2). If surface viscosities are ignored. the normal stress 
condition reduces to 

Pp + b n n I p  - P - rnn = ~ [ ( ~ J R I )  f (l/R,)], (1-13) 

where R, and R, are the principal radii of curvature of the surface and the 
z,, are the deviatoric normal stresses (Bl, Sl). Under static conditions Eq. (1-13) 
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reduces to the Laplace equation. The tangential stress condition corresponding 
to Eq. (1-13) is 

where the T,, refer to the shearing stresses and V, is the surface gradient (S2). 
For a spherical fluid particle with both bulk phases Newtonian and an in- 
compressible axisymmetric flow field, Eqs. (1-13) and (1-14) become 

and 

The final term in Eq. (1-16) is especially important for cases in which o varies 
around the surface of a fluid particle due to concentration or temperature 
gradients (see Chapters 3, 5, and 7). 

5 .  Stream Functions. Streamlines, and Vorticity 

From the definition of a particle used in this book, it follows that the motion 
of the surrounding continuous phase is inherently three-dimensional. An im- 
portant class of particle flows possesses axial symmetry. For axisymmetric flows 
of incompressible fluids, we define a stream function, $, called Stokes's stream 
function. The value of 2?c$ at any point is the volumetric flow rate of fluid 
crossing any continuous surface whose outer boundary is a circle centered on 
the axis of symmetry and passing through the point in question. Clearly I,!I = 0 
on the axis of symmetry. Stream surfaces are surfaces of constant $ and are 
parallel to the velocity vector, u. at every point. The intersection of a stream 
surface with a plane containing the axis of symmetry may be referred to as a 
streamline. The velocity components, u, and u,, are related to $ in spherical- 
polar coordinates by 

1 Z$. u,=-- - 1  ?$ 
21, = -- -. 

r2 sin 8 iO ' r sin O 2r 

The vorticity is defined as 

It can be shown that 4 is twice the angular rotation of a fluid element. When 
5 = 0 throughout a region of a fluid, the flow in that region is said to be irrota- 
tional. Flows which are initially irrotational remain irrotational if all the forces 
acting are conservative. Since gravity and pressure forces are conservative, vor- 
ticity generation in flow fields which are initially irrotational, such as around 
a particle accelerating in a stagnant fluid, arises from nonconservative viscous 
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forces. For axisymmetric flows. vorticity can be treated as a scalar function. 
It is then often convenient to define surfaces of constant vorticity or lines of 
constant vorticity in a plane containing the axis of symmetry. Examples of 
streamlines and lines of constant vorticity are given in later chapters (for 
example, in Figs. 5.1 and 5.2). 

It is often convenient to work in terms of a dimensionless stream function 
and vorticity defined. respectively, as 

and 

6. Irzciscid Flow and Potential Flow Past a Sphere 

In practice all real fluids have nonzero viscosity so that the concept of an 
inviscid fluid is an idealization. However. the development of hydrodynamics 
proceeded for centuries neglecting the effects of viscosity. Moreover, many 
features (but by no means all) of certain high Reynolds number flows can be 
treated in a satisfactory manner ignoring viscous effects. 

For ,u = 0 or Re + x. Eq. (1-1) may be rewritten 

which is the well-known Euler equation. Integration of Eq. (1-21) along either 
a streamline or parallel to 5 for steady incompressible flows leads to Bernoulli's 
equation, i.e.. 

( p  pg) + (luI2 2y) + h, = constant. (1 -22) 

From Kelvin's theorem. inviscid motions in a gravity (conservative) field 
which are initially irrotational remain so. We may. therefore, write 

Hence u may be written as the gradient of some scalar function, i.e., 

u = VQ. (1 -24) 

where Q is conventionally termed a "velocity potential." From this designation. 
irrotational motions derive the name "potential flow." For incompressible 
potential flows it can be shown that Bernoulli's equation. Eq. (1-22). applies 
throughout the flow field and that satisfies Laplace's equation: 

If the flow is axisymmetric, $ can be shown to obey the following equation in 
spherical polar coordinates (B 1) : 

r2  (2'1) ?la2) + i2 i 02  - cot 0 (i$ iO) = 0 (1 -26) 
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Since t,b by definition satisfies Eq. (1-9), potential flow solutions can be found 
by solving Eq. (1-26) for $ subject to the required boundary conditions. The 
pressure field can then be found using Eq. (1-22). 

Consider the case of a stationary sphere of radius a centered at the origin 
in a uniform stream of velocity - C. Equation (1-26) is second order and hence 
we require two boundar) conditions. Remote from the sphere, the velocity 
must everywhere be - C ,  i.e., 

$ = ( - l i r 2 2 ) s i n 2 0  as r + x .  (1 -27) 

No fluid crosses the sphere boundary. Hence the surface is a stream surface 
and since this boundary also cuts the axis of symmetry 

$ = 0  at r = a .  

Equations (1-26) to (1-28) are satisfied by 

Application of Eq. (1-17) gives 

Since the pressure field depends only on the magnitude of the velocity (see 
Eq. (1-22)) and since the flow field has fore-and-aft symmetry. the modified 
pressure field forward from the equator of the sphere is the mirror image of 
that to the rear. This leads to d'Alembert's paradox: that the net force acting 
on the sphere is predicted to be zero. This paradox can only be resolved. and 
nonzero drag obtained, by accounting for the viscosity of the fluid. For inviscid 
flow. the surface velocity and pressure follow as 

(ug), =, = $ C: sin 0 (1-31) 

These results are useful reference conditions for real flows past spherical 
particles. For example. comparisons are made in Chapter 5 between potential 
flow and results for flow past a sphere at finite Re. Other potential flow solutions 
exist for closed bodies. but none has the same importance as that outlined here 
for the motion of solid and fluid particles. 

7. Creeping Flow 

Whereas inviscid flow is a useful reference point for high Reynolds number 
flows. a different simplification known as the "creeping flow" approximation 
applies at very low Re. From Eq. (1-3). the terms on the right-hand side dominate 
as Re -+ 0, so that the convective derivative may be neglected. In dimensional 
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form, the resulting equation of motion is 

where p ,  is the modified pressure introduced in dimensionless form in Eq. (1-6): 
1.e.. 

Comparison with the full Navier-Stokes equation, Eq. (1-I), shows that fluid 
inertia is completely neglected in Eq. (1-33). Problems arising from the non- 
linearity of the convective acceleration term are thereby avoided. However. 
the order of the equation and hence the number of boundary conditions required 
are unchanged. 

With this simplification, the equations governing incompressible fluid motion 
are Eq. (1-33) and the continuity equation, Eq. (1-9). Several important conse- 
quences follow from inspection of these equations. The fluid density does not 
appear in either equation. Both equations are "reversible" in the sense that they 
are still satisfied if u is replaced by -u, whereas the nonlinearity of the Navier- 
Stokes equations prevents such 'keversibility." If we take the divergence of 
Eq. (1-33) and apply Eq. (1-9), we obtain 

so that the modified pressure is a harmonic function. For axisymmetric flows, 
we may write Eq. (1-33) in terms of the Stokes stream function as 

where E2 in spherical polar coordinates is 

The creeping flow approximation has found wide application in problems 
such as lubrication, injection molding, and flow through porous media. Its 
application to rigid and fluid particles is discussed in Chapters 3 and 4. However, 
a fundamental difficulty. first recognized by Oseen, arises in applying Eq. (1-33) 
or (1-36) to particles in unbounded media. This difficulty, and Oseen's attempt 
to overcome it, are discussed in Chapter 3. 

8. Boundary Layer Tlzeorj~ 

As discussed above. no fluids are inviscid in practice. At high Reynolds 
number, viscous effects may be insignificant throughout large regions of the 
flow field and these regions may be treated as if the fluid were inviscid. However, 
the effect of viscosity must in general be taken into account in thin layers 
adjacent to boundaries in the flow. The essence of boundary layer theory in 
fluid mechanics, applicable only at high Re, is that viscous effects are considered 
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to be restricted to thin layers called boundary layers and that certain simpli- 
fications can be made in the boundary layer because of its thinness. Usually 
deri~atives with respect to the streamuise coordinate are neglected relathe 
to those in the transberse direction. An analogous approach may be applied to 
heat and mass transfer at high Peclet numbers (see below) where we refer to 
temperature and concentration boundary layers. There are a number ofexcellent 
books on boundary layer theory [e.g. (Sl)] to which the reader is referred. 

1. The  Species Continuity Eq~lution 

Application of the principle of conservation of mass to a binary system 
consisting of a non-reactive solute in dilute solution in an incompressible 
fluid yields 

DcjDt = 9 V2c ,  (1-38) 

where 9, the diffusivity, is assumed constant. The driving force for diffusion 
is provided by molar concentration gradients. Hence Eq. (1-38) provides a 
good description of diffusion in most liquids, since the density is essentially 
constant, and in gases when the molecular weight of the solute is similar to 
that of the host gas. Alternate forms of the species continuity equation based on 
other driving forces are given by Bird et al. (B3) and Skelland (S4). Multi- 
component diffusion is considered by Cussler (Cl) and Bird et al. (B3). 

In this book we limit our treatment to dilute solutions so that the diffusional 
mass flux is small. In this way the existence of diffusion does not appreciably 
alter the fluid motion, so that the velocity and stress boundary conditions can 
be considered to be unaltered. Treatments of diffusion with high mass fluxes 
appear elsewhere (B3, S3, S4). 

Of the many possible boundary and initial conditions for Eq. (1-38), we 
consider in this book only uniform concentration at the particle surface, uniform 
concentration in the continuous phase far from the particle, and uniform initial 
concentrations in each phase. In addition, the interface is taken to be at an 
equilibrium described by a linear relationship between the concentrations in 
each phase: 

c, = H c  (everywhere on interface). (1-39) 

Equation (1-38) in dimensionless form becomes 

D 4  1 ,, -=-(V) 4 
Dt' Pe 

where the dimensionless time and spatial coordinates are given by Eq. (1-5). 
A new dimensionless group, the Peclet number, 
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appears in Eq. (1-40). Pe can also be written as the product of the Reynolds 
number, defined in Eq. (1-7), and the Schmidt number. Sc = v l 9 ,  i.e., 

Pe = Re Sc. (1 -42) 

The concentration is made dimensionless in one of several ways depending 
upon the situation considered. For example. for steady transfer to the continuous 
phase from a particle at constant concentration. the boundary conditions 
considered in this book are 

remote from particle: c = c,, (1 -43) 

at particle surface: c = c,. (1 -44) 

It is then convenient to define the dimensionless concentration as 

Other forms of 4 appropriate to different physical situations are introduced in 
subsequent chapters. 

2. The Energy Eqtiatio~z 

Application of the first law of thermodynamics to an infinitesmal element 
of incompressible Newtonian fluid of uniform composition and constant prop- 
erties yields 

where 0,, the dissipation function, represents the rate at which the tangential 
and deviatoric normal stresses do work on the element of fluid. 0, may also 
be viewed as the rate at which the internal energy of the fluid is increased due to 
viscous dissipation. Explicit forms for 0, are tabulated in standard texts [e.g. 
(B3, Sl)]. The dissipation function becomes important in high-speed flows and 
in flows of fluids with extremely large viscosities (e.g.. molten polymers). For 
almost all situations considered in this book, the simple form of the energy 
equation suffices with the dissipation term deleted. i.e., 

Equation (1-47) is identical in form to the species continuity equation, Eq. (1 -38). 
and this leads to close analogies between heat and mass transfer as discussed 
in the next section. 

Parallel to the boundary conditions discussed above for the species continuity 
equation, we consider in this book only uniform temperature on the surface 
of the particle, uniform temperature in the continuous phase remote from the 
particle and uniform initial temperatures in each phase. Hence 

T = T, (everywhere on interface). (1 -48) 
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Other types of boundary conditions are discussed in standard works on heat 
transfer [e.g. (El. Kl)]. 

Putting the energj equation into dimensionless form yields an equation 
identical to Eq. (1-40) with 

or 

Pe = Re Pr. (1-50) 

Thus the Prandtl number, Pr = PC, K,,  plays the same role in heat transfer 
as the Schmidt number, Sc. in mass transfer. 

3. Equicalence of Slzerwood and Nusselt .Vumbers 

Since all properties have been assumed constant in Eqs. (1-I), (1-38), and 
(1-47). and the solute concentration has been assumed small. the Navies-Stokes 
equation may be solved independently of the species continuity and energy 
equations. We treat only one exception where the velocity field is considered 
to be affected by heat or mass transfer. This exception, natural convection, is 
covered in Chapter 10. 

The formal analogy between heat and mass transfer under the conditions of 
no dissipation, low mass flux and constant properties can be completed as 
follows. Equations (1-38) and (1-39) and the boundary conditions considered 
in this book apply to heat transfer if one replaces c by pC,T, c, by ppCtpT,, 
H by p,C,,/pC,. 2 by the thermal diffusivity x = KtIpC,. 8, by x, = KtpjppCtp 
and the mass transfer coefficient k by hjpC,. 

Since the dimensionless equations and boundary conditions governing heat 
transfer and dilute-solution mass transfer are identical. the solutions to these 
equations in dimensionless form are also identical. Profiles of dimensionless 
concentration and temperature are therefore the same. while the dimensionless 
transfer rates. the Sherwood number (Sh = k L j 8 )  for mass transfer, and the 
Nusselt number (Nu = hL, K t )  for heat transfer, are identical functions of Re, 
Sc or Pr. and dimensionless time. Most results in this book are given in terms 
of Sh and Sc: the equivalent results for heat transfer may be found by simply 
replacing Sh by Nu and Sc by Pr. 

4. Thin Concerztratioiz Boundarj. Laj'er 

For transfer in the continuous phase. it is possible to simplify Eq. (1-38) 
when the continuous-phase Peclet number is large. For high Pe the concen- 
tration varies only in a thin layer adjacent to the particle surface. In this region 
the gradient of concentration normal to the surface is much larger than the 
gradient parallel to the surface. The thin concentration boundary layer approxi- 
mation consists of neglecting diffusion parallel to the surface and retaining 
on the right-hand side of Eq. (1-38) only the term involving the derivative normal 
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to the surface. Formally this requires Pe -, x, which. for most practical situa- 
tions, means Sc + x for any finite Reynolds number. Surprisingly, this ap- 
proximation is often reasonable down to Sc of order unity. Use of the thin 
concentration boundary layer approximation, sometimes called the asymptotic 
solution for Sc -, x. does not require that Re be large or that the momentum 
boundary layer approximation (see above) be made. 

Two particularly useful equations can be derived by applying the thin 
concentration boundary layer approximation to steady-state transfer from an 
axisymmetric particle (L2). The particle and the appropriate boundary layer 
coordinates are sketched in Fig. 1.1. The x coordinate is parallel to the surface 
(s = 0 at the front stagnation point), while the J. coordinate is normal to the 
surface. The distance from the axis of symmetry to the surface is R. Equation 
(1-38). subject to the thin boundary layer approximation. then becomes 

with boundary conditions 

Axis 

FIG. 1.1 Coordinates for the thin concentration boundary layer approximation. 

In the thin layer adjacent to the particle surface the overall continuity equation 
may be written (Sl) 

?(uXR) ?x + i(u,R) ij = 0. (1-55) 

Since we only require u, and u, near the surface. the following approximations 
may be used. For a solid particle we write 

where I,, the surface vorticity. is given by 
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slnce ( i l l ,  c'u), =, = 0 for all u from the normal velocltj boundary condition. 
Eq (1-1 1). For a fluid part~cle 

where ~i, is the interfacial velocity discussed above. In general, is and u, are 
functions of x. The normal velocit~ ii, is determined from u, through the 
continuity equation, Eq. (1-55). 

Combination of Eqs. (1-51) to (1-55) with either Eq. (1-56) or (1-58) yields 
an equation which may be solved to give concentration profiles from which 
mass transfer rates may be found. For a solid particle the average Sherwood 
number is 

where 

Here X, is the maximum value of X and A, is the surface area of the volume 
equivalent sphere. For a fluid particle the average Sherwood number is 

(kA,'A,)d 
Sh, = ---2 9 = 0.798 [(*(~)9~ d X I 1  'Pel '. (1-63) 

Equation (1-63) is valid as long as the x direction velocity is essentially equal 
to the tangential velocity throughout the concentration boundary layer. This 
requires (L2) that 

As we shall see in Chapter 3, this places severe restrictions on the range of 
K = pp,/p for which Eq. (1-63) can be applied. Equations equivalent to Eq. (1-63) 
have been derived for fluid particles from another point of view (B2, S5). 
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Chapter 2 

Shapes of Rigid and Fluid Particles 

I. INTRODUCTION 

Natural and man-made solid particles occur in almost any imaginable shape 
from roughly spherical pollen and fly ash through cylindrical asbestos fibers to 
irregular mineral particles. Bubbles and drops, on the other hand, adopt a 
smaller range of shapes, and although they are often axisymmetric, they are 
spherical only under special circumstances. A nonspherical particle may have 
planes and axes of symmetry. but it cannot possess the unique point-symmetry 
of the sphere. Thus a nonspherical particle presents problems which are more 
complex than those arising for the sphere. This chapter presents a summary of 
methods of classifying and quantifying the shapes of particles. A method is also 
presented for distinguishing which of three overall shape regimes a fluid particle 
adopts in unhindered motion under the influence of gravitl. 

11. CLASSIFICATION OF PARTICLE SHAPES 

It is convenient to classify symmetric particles into several general groups. 
A shape may belong to more than one group, and this overlap generally makes 
it easier to predict flow properties, motion in free fall or rise. etc. The most useful 
divisions are as follows. 

1. Axisymnzetric Particles 

This group comprises bodies generated by rotating a closed curve around an 
axis. Spheroidal particles (also called ellipsoids of revolution) are of particular 
interest, since they correspond closely to the shapes adopted by many drops and 
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bubbles and to the shapes of some solid particles. A spheroid is an ellipsoid of 
revolution. generated by rotating an ellipse about one of its principal axes. 
If this is the minor axis, the body is said to be oblate; otherwise the spheroid is 
prolate. 

Axisymmetric shapes are conveniently described by the "aspect ratio" E, 
defined as the ratio of the length projected on the axis of symmetry to the 
maximum diameter normal to the axis. Thus, E is the ratio of semiaxes for a 
spheroid, with E < 1 for an oblate spheroid and E > 1 for a prolate spheroid. 

2. Ortl~otropic Particles 

A body has a plane of symmetry if the shape is unchanged by reflection in the 
plane. Orthotropic particles have three mutually perpendicular planes of 
symmetry. An axisymmetric particle is symmetric with respect to all planes 
containing its axis, so that it is orthotropic if it has a plane of symmetry normal 
to the axis, i.e., if it has fore-and-aft symmetry. 

3. Spherically Isotropic Particles 

This group comprises regular polyhedra and all shapes obtained by sym- 
metrically smoothing or cutting pieces from these bodies. It includes isometric 
orthotropic particles, i.e., shapes for which the half-body obtained by cutting 
the particle along a plane of symmetry is the same whichever plane is chosen for 
the cut. Particles obtained by symmetrical deformation of a regular tetrahedron 
are "spherically isotropic" (see Chapter 4), even though they are not orthotropic. 

Some simple examples may help to clarify these classes of symmetry. Circular 
cylinders, disks, and spheroids are axisymmetric and orthotropic: cones are 
axisymmetric but not orthotropic; none of these are strictly spherically iso- 
tropic. Parallelepipeds are orthotropic, but the cube is the only spherically 
isotropic parallelepiped. Regular octahedra and tetrahedra are spherically 
isotropic; octahedra are orthotropic whereas tetrahedra are not. 

Most particles of practical interest are irregular in shape, and so do not fall 
into the above categories. A variety of empirical factors have been proposed to 
describe nonspherical particles and correlate their flow behavior. Empirical 
description of particle shape is provided by identifying two characteristic 
parameters from the following (B3): 

(i) volume, V 
(ii) surface area, A 

(iii) projected area, A, 
(iv) projected perimeter, P, 

The projected area and perimeter must be determined normal to some specified 
axis. For axisymmetric bodies, the reference direction is taken parallel or normal 
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to the axis of symmetry (see Chapter 4). Man> naturally occurring particles have 
an oblate or lenticular form. In this case, the reference direction is usually taken 
parallel to the particle thickness t ,  the minimum distance between two parallel 
planes tangential to opposite surfaces. This choice has some immediate practical 
advantages. If the particle is observed or photographed at rest on a flat hori- 
zontal surface (such as a microscope slide), then the outline usually defines A, 
and P,. In the intermediate Reynolds number range (see Chapter 6). an oblate 
particle tends to fall with its greatest area horizontal. so that correlations based 
on these 4 ,  and P,  values are useful. They are less reliable in creeping flow or at 
high Re where other orientations may be adopted. 

An "equivalent sphere" is defined as the sphere with the same value of one of 
the above measures. The commonest referent is the volume-equivalent sphere, 
which many authors describe as the equivalent sphere without further definition. 
The "particle shape factor" is defined as the ratio of another measure from the 
above list to the corresponding value for the equivalent sphere. Of the many 
possible shape factors, those which have proved most useful are described below. 
All shape factors are open to the criticism that a range of bodies with different 
forms may have the same shape factor, but this is inevitable if regular or complex 
shapes are to be described by a single parameter. 

1. Volumetric Slzape Factor 

Heywood (H5) proposed a widely used empirical parameter based on the 
projected profile of a particle. The "volumetric shape factor" is defined as 

k = V dA3, - (2-1) 

where d, = ,, 4A,, n is the "projected area diameter." the diameter of the sphere 
with the same projected area as the particle. 

A number of methods have been suggested for obtaining an estimate for d, 
without determining A, : 

(i) The diameter may be estimated by comparison with a graticule super- 
imposed on the image of the particle. This method has the disadvantage that it 
is open to subjective operator error. Generally it leads to overestimation of d,, 
especially for elongated particles (H6). 

(ii) Two images of the particle are displaced until they just touch, as shown 
in Fig. 2.la. The displacement gives the "image-shearing diameter." This method 
greatly reduces operator error. Moreover, a number of values can be obtained 
for a given particle, corresponding to different orientations of the image relative 
to the direction of displacement. The mean of these values gives a good estimate 
for d, (H6). 

(iii) A line with random orientation is drawn to bisect the projected area. 
The intercept ofthe outline on this line. shown in Fig. 2.1b, gives the value of the 
"statistical intercept diameter" proposed by Martin et al. (MI). This method is 



11. Classification of Particle Shapes 

Image  
Snearng 
Dlarneter 

Stctstlcal 
Interceot 
D~arneter 

FIG. 2.1 Methods of estimating d,. the projected area diameter: (a) image shearing method 
[after Hcynood (Hh)]: (b) statistical intercept method [after Martin er ui. (MI)] .  

subject to operator error since the position of the line bisecting the area is judged 
subjectively. A number of such measurements can, however, be made with 
different orientations; the geometric mean gives d, (H6). 

Automatic techniques for characterizing particle shape without operator error 
are also under development, based primarily on fiber optics with automatic 
signal processing. Kaye (Kl )  has given a useful review of recent developments. 

Even if an estimate for d, is available. the volumetric shape factor can only 
be evaluated if the particle volume is known, and this may not be readily 
available for naturally occurring particles. or if a distribution of particle sizes 
or shapes is present. Heywood (H4) suggested that k may be estimated from the 
corresponding value, k,, of an isometric particle of similar form by the rela- 
tionship 

- 

k = k,i(eIt e,). (2-2) 

The parameters el and e, are obtained from: 

(i) the thickness, t ,  defined above. 
(ii) the breadth, b, defined as the minimum distance between two parallel 

planes which are perpendicular to the planes defining the thickness and tan- 
gential to opposite surfaces. 

(iii) the length, I, projected on a plane normal to the planes defining t and b. 
The "flatness ratio" is then 

and the "elongation ratio" is 
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Values of k ,  for some regular shapes and approximate values for irregular shapes 
are given in Table 6.3. Equation (2-2) - is exact for regular shapes such as spheroids 
and cylinders, and the group (el, e,)- '  has itself been proposed as a simple 
shape factor (Cl. M2). 

Wadell (Wl)  proposed that the "degree of true sphericity" be defined as 

A surface area of volume-equivalent sphere 
*='= 

A surface area of particle 2 (2-5) 

so that I) = 1 for a true sphere. Although the sphericity was first introduced 
simply as a measure of particle shape, it was subsequently claimed to be useful 
for correlating drag coefficients (W3). There is some theoretical justification 
for the use of I) as a correlating parameter for creeping flow past bodies whose 
geometric proportions resemble a sphere, but for other circumstances its use 
is purely empirical. The more the aspect ratio departs from unity, the lower 
the sphericity. For irregular particles, it is difficult to determine I) directly. 

3. Circularity 

Wadell (Wl)  also introduced the "degree of circularity": 

= P, = perimeter of projected-area-equivalent sphere -- nd, 
- 

projected perimeter of particle P~ (2-6) 
P 

Unlike the sphericity, t can be determined from microscopic or photographic 
observation. Use of & is only justified on empirical grounds, but it has the 
potential advantage of allowing correlation of the dependence of flow behavior 
on particle orientation. For an axisymmetric particle projected parallel to its 
axis, & is unity. 

Determination of the perimeter may be avoided if Feret's "statistical projected 

FIG. 2.2 Method of estimating d,, the projected perlmeter dlameter [after Feret (Fl)] 
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length" (F1) is employed. As for Martin's intercept diameter. a line with random 
orientation is drawn across the projected area. The length of the particle pro- 
]ected onto this line as shomn in Fig. 2.2 gives the statistical projected length. 
provided that the profile is not re-entrant, the mean of a number of such deter- 
minations gives the "projected perimeter diameter," d,, the diameter of a sphere 
nith the same projected perimeter as the particle (W6). The circularity is then 
gil en by 

i. = d, d,. (2-7) 

4. Operutiolzal Sphericity and Circularity 

Since the sphericity and circularity are so difficult to determine for irregular 
particles, Wadell (Wl)  proposed that $ and $ be approximated by "operational 
shape factors" : 

volume of particle 
= 

volume of smallest circumscribing (2-8) 

projected area of particle 
hp = [area of smallest circumscribing circle (2-9) 

For rounded particles the operational sphericity, $,,, is well approximated 
(K2, P3) by (e2el)-' 3, which is exact for ellipsoids. However. $,, is not generally 
a good approximation to $. Aschenbrenner (A2) showed that a better approxi- 
mation to I) is given by a "working sphericity" obtained from the flatness and 
elongation ratios by a result derived for a specific truncated polygonal form: 

This parameter has been found to correlate well with the settling behavior of 
naturally occurring mineral particles (B4). 

The operational circularity. cop.  is sometimes called the "projection spher- 
icity," since Wadell (W2) suggested that e.,, provides an estimate of $ based on 
a two-dimensional projection. However, @,, does not approximate $ for regular 
bodies, and is virtually uncorrelated with settling behavior for natural irregular 
particles (B4). Quick methods for evaluating in, are available. It may be deter- 
mined as 

d,, = d,/(diameter of circumscribing circle), (2-1 1) 

where d, is the projected-area diameter determined, for example, by image- 
shearing or from the Martin intercept diameter previously described. Ritten- 
house (Rl)  has given a series of calibrated outlines for irregular particles covering 
the range 0.45 I cop I 0.97. Pye and Pye (P3) showed that for rounded particles 
c,, is approximated closely by e;' '. an exact relation for ellipsoids. 
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5 .  Perimeter-Equicule~zt Factor 

For axisymmetric bodies with creeping flow parallel to the axis of symmetry, 
Bowen and Masliyah (B3) found that the most useful shape parameter was 
based on the sphere with the same perimeter, P'. projected normal to the axis. 
Their shape factor is given by 

surface area of particle 
- - - 

A 
1 = (2- 12) 

surface area of perimeter-equivalent sphere Ap,  ' 

It is shown in Chapter 4 that C is also a valuable correlating parameter for 
motion normal to the axis, and for diffusional mass and heat transfer. 

111. SHAPE REGIMES FOR FLUID PARTICLES 

Bubbles and drops tend to deform when subject to external fluid fields until 
normal and shear stresses balance at the fluid-fluid interface. When compared 
with the infinite number of shapes possible for solid particles, fluid particles at 
steady state are severely limited in the number of possibilities since such features 
as sharp corners or protuberances are precluded by the interfacial force balance. 

Bubbles or drops which are prevented from moving under the influence of 
gravity by a flat plate are termed "sessile" (see Fig. 2.3a and 2.3b). When bubbles 
or drops remain attached to a surface with gravity acting to pull them away, 
they are called "pendant" (see Fig. 2 . 3 ~  and 2.3d). Floating bubbles or drops, 
shown in Fig. 2.3e, are those which sit at the interface between two fluids. 

The profiles of pendant and sessile bubbles and drops are commonly used in 
determinations of surface and interfacial tensions and of contact angles. Such 
methods are possible because the interfaces of static fluid particles must be at 
equilibrium with respect to hydrostatic pressure gradients and increments in 
normal stress due to surface tension at a curved interface (see Chapter 1). It is 
simple to show that at any point on the surface 

where y is measured vertically upwards from point 0 on the axis of symmetry 
where the radius of curvature of the surface is R,, while R ,  and R, are the 
principal radii of curvature at the point of interest. The above equation shows 
why the radius of curvature must increase on proceeding away from 0 for 
pendant drops or bubbles while decreasing for sessile bubbles or drops. When 
substitutions are made for R ,  and R,, a second-order ordinary differential 
equation results which must be solved numerically (Bl). The recent book by 
Hartland and Hartley (H3) provides complete and accurate tabulations as well 



111. Shape Regimes for Fluid Particles 

(a)  
Sessile Drop (b) 

Sessile Bubble or Drop 

cc, 
Pendant Drop ( d l  

Pendant Bubble or Drop 

.-, 
Floating Bubble or Drop 

FIG. 2.3 Shapes of static bubbles and drops: (a),(b) sessile; (c),(d) pendant: (e) floating. (Shading 
denotes more dense fluid in each case.) 

as a general review, approximate solutions, numerical methods, and treatment 
of menisci and stationary particles subject to applied forces. Another useful 
review of this subject, including also the case of fluid particles at equilibrium in 
centrifugal fields, has been prepared by Princen (PI). Many standard texts on 
surface chemistry [e.g. (Al)] also contain discussions of the use of pendant and 
sessile drops in determining interfacial tensions. 

Bubbles and drops in free rise or fall in infinite media under the influence of 
gravity are generally grouped under the following three categories: 

(a) "Spherical" : Generally speaking, bubbles and drops are closely approxi- 
mated by spheres if interfacial tension and/or viscous forces are much more 
important than inertia forces. For our purposes, fluid particles will be termed 
"spherical" if the minor to major axis ratio lies within 10% of unity. Spherical 
fluid particles in free rise or fall are discussed in Chapters 3 and 5. 

(b) "Ellipsoidal": The term "ellipsoidal" is generally used to refer to bubbles 
and drops which are oblate with a convex interface (viewed from inside) around 
the entire surface. Photographs of bubbles and drops in this regime are given in 
Fig. 2.4a, b, and d. It must be noted that actual shapes may differ considerably 
from true ellipsoids and that fore-and-aft symmetry must not be assumed. 



FIG. 2.4 Photographs of bubbles and drops in different shape regimes. All photographs repro- 
duced with the permission of the publisher and author. if previously published. 
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Moreover, ellipsoidal bubbles and drops commonly undergo periodic dilations 
or random wobbling motions which make characterization of shape particu- 
larly difficult. Chapter 7 is devoted to this regime. 

(c) "Spherical-cap" or "ellipsoidal-cap": Large bubbles and drops tend to 
adopt flat or indented bases and to lack any semblance of fore-and-aft symmetry. 
Such fluid particles may look very similar to segments cut from spheres or from 
oblate spheroids of low eccentricity; in these cases the terms "spherical-cap" 
and "ellipsoidal-cap" are used. If the fluid particle has an indentation at the rear, 
it is often said to be "dimpled." Large spherical- or ellipsoidal-caps may also 
trail thin envelopes of dispersed fluid referred to as "skirts." Photographs of 
freely rising fluid particles in this regime are shown in Fig. 2.4c, e, f, g and h. 
Spherical- and ellipsoidal-caps with and without skirts are treated in Chapter 8. 

When bubbles and drops rise or fall in bounded media their shape is affected 
by the walls of the container. If the bubble or drop is sufficiently large, it fills 
most of the container cross section and the "slug flow" regime results. A photo- 
graph of a slug flow bubble is shown in Fig. 2.4i. The effect of bounding walls 
is treated in Chapter 9. 

For bubbles and drops rising or falling freely in infinite media it is possible 
to prepare a generalized graphical correlation in terms of the Eiitviis number,+ 
Eo: Morton number.: M:  and Reynolds number, Re (GI, G2): 

The resulting plot is shown in Fig. 2.5. Figure 2.5 does not apply to the extreme 
values of density ratio, 7 = p,lp, or viscosity ratio, K: = p,/,u, found for liquid 
drops falling through gases. Drops in gases are considered explicitly in Chapter 
7. Aside from this exclusion, the range of fluid properties and particle volumes 
covered by Fig. 2.5 is very broad indeed. Since Re is the only one of the three 
groups to contain the terminal velocity, Fig. 2.5 may be used to estimate terminal 
velocities as well as the shape regime, although more accurate predictive correla- 
tions are usually available. It is notable that p, does not play an important role 
in determining terminal velocities and shape regimes since it does not appear 

' When the Hungarian alphabet was reformed in the 1920's. Eotvos (pronounced Ertversh) 
was given special dispensation to keep the archaic spelling. For convenience. we drop the umlauts 
from now on. In the present context, the name appears to have originated with Harmathy (H2). 
This group is sometimes referred to as the Bond number. 

We have called this group the Morton number throughout this book. although it was used prior 
to Haberman and Morton (HI)  by Rosenberg (R2) who refers to an even earlier user. In the 
literature. the group is often simply referred to as the M-group or property group, and its inverse 
as the P-group. 
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EOTVOS NUMBER, Eo 

FIG. 2.5 Shape regimes for bubbles and drops in unhindered gravitational motion through 
liquids. 
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in any of the three groups used to construct Fig. 2.5. The role of p, may be 
significant, however, for very pure (surfactant-free) systems or for large fluid 
particles in high M liquids. These cases are considered in Chapters 3 and 8. 

Figure 2.5 shows boundaries between the three principal shape regimes 
described above. as given by Grace et al. (G2). While the boundaries between 
the principal shape regimes are somewhat arbitrary. it is clear that bubbles and 
drops are ellipsoidal at relatively high Re and intermediate Eo while the 
spherical- or ellipsoidal-cap regime requires that both Eo and Re be large. 
Various subregimes may also be mapped (B2, W4). and some of these are 
included in Fig. 2.5. Again the boundaries are somewhat arbitrary. Nevertheless, 
Fig. 2.5 is a useful tool for demonstrating the wide range of bubble and drop 
behavior considered in the following chapters. 
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Chapter 3 

Slow Viscous Flow Past Spheres 

I. INTRODUCTION 

The system considered in this chapter is a rigid or fluid spherical particle 
of radius a moving relative to a fluid of infinite extent with a steady velocity L. 
The Reynolds number is sufficiently low that there is no wake at the rear of the 
particle. Since the flow is axisymmetric, it is convenient to work in terms of the 
Stokes stream function @ (see Chapter 1). The starting point for the discussion 
is the "creeping flow approximation," which leads to Eq. (1-36). It was noted 
in Chapter 1 that Eq. (1-36) implies that the flow field is "reversible," so that 
the flow field around a particle with fore-and-aft symmetry is also symmetric. 
Extensions to the creeping flow solutions which lack fore-and-aft symmetry 
are considered in Sections 11, E and F. 

11. FLUID MECHANICS 

One of the most important analytic solutions in the study of bubbles, drops, 
and particles was derived independently by Hadamard (HI)  and Rybczynski 
(R5). A fluid sphere is considered, with its interface assumed to be completely 
free from surface-active contaminants. so that the interfacial tension is constant. 
It is assumed that both Re and Re, are small so that Eq. (1-36) can be applied 
to both fluids, i.e., 

E4$ = E4$p = 0. (3-1) 

The boundary conditions require special attention. Taking a reference frame 
fixed to the particle with origin at its center, they are 
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(a) Uniform stream flow in the - z  direction at large distances from the 
sphere : 

$r2-+- (U,2)s in20  as I .+x:  (3-2) 

(b) No flow across the interface: 

(c) Continuity of tangential velocity across the interface: 

(d) Continuity of tangential stress across the interface: 

where K = p p j p  is the viscosity ratio. 
(e) Continuity of normal stress across the interface: 

where p and pp are the modified pressures in each phase (see Chapter 1) and 
the term 2 d a  results from the pressure increment associated with interfacial 
tension. 

The solution of Eq. (3-1) with boundary conditions (3-2) to (3-5) may be 
found in a number of standard texts [e.g. (B2: L3)], and is 

The internal motion given by Eq. (3-8) is that of Hill's spherical vortex (H6). 
Streamlines are plotted in Figs. 3.1 and 3.2 for K = O and K = 2, and show the 
fore-and-aft symmetry required by the creeping flow equation. It may also be 
noted in Fig. 3.2 that the streamlines are not closed: for any value of K, the 
solution predicts that outer fluid is entrained along with the moving sphere. 
This entrainment, sometimes known as "drift," is infinite in creeping flow. This 
problem is discussed further in Chapter 4. 

The solution given by Eqs. (3-7) and (3-8) is derived using only the first four 
boundary conditions (L3); i.e. without considering the normal stress condition. 
Eq. (3-6). The modified pressures can be obtained from Eq. (1-33) and are 
given by 
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FIG. 3.1 Streamlines relative to spherical fluid particle at lo!%- Re: Hadamard-Rybczynski 
solution. 

FIG. 3.2 Streamlines for motion of fluid sphere through stagnant fluid at low Re caused by 
translation of spherical fluid particle: HadamardR>bczynski  solution. 

pp = pop - [5p,C'rcos Bla2(1 + K ) ] ,  (3-10) 

where po and pop are constants. Even though Eqs. (3-9) and (3-10) are derived 
without considering Eq. (3-6), the latter is also satisfied if pop - po = 2a a. 
Thus the problem is not overspecified, and the assumed spherical shape is 
consistent with the other assumptions in the derivation. This leads to the 
important conclusion that bubbles and drops are spherical when the creeping 
flow approximation is valid, and only deform from a spherical shape when 
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inertial terms become significant. A further corollary is that it is not necessary 
for surface tension forces to be predominant for a bubble or drop to be spherical. 
Moreover, as we shall see below, surface-active contaminants may cause marked 
changes in internal circulation and drag for a bubble or drop. but the effect 
on shape is negligible at low Reynolds numbers. Thus if Reynolds numbers 
are very low, bubbles and drops remain spherical no matter how small the 
surface tension forces. The onset of deformation of fluid particles is discussed 
in Chapter 7. 

The pressure distribution given by Eq. (3-9) is an odd function of 0. so that 
the particle experiences a net pressure force or "form drag." Integration of the 
pressure over the surface of the particle leads to a drag component given by 

This result may be contrasted with potential flow past a sphere, where the 
streamlines again have fore-and-aft symmetry but p is an even function of 0 
so that there is no net pressure force (see Chapter 1). Additional drag components 
arise from the deviatoric normal stress: 

and from the shear stress: 

The overall drag coefficient is the sum of these three contributions: 

so that C,, = CD/3 for all K. For a gas bubble (K = 0) the shear component, 
C,,, is zero and the deviatoric normal stress plays a very important role in 
determining the overall drag.+ 

The terminal velocity of a fluid particle in creeping flow is obtained by 
equating the total drag to the net gravity force, 47ca3 Ap g,'3, giving: 

Finally, the vorticity at the interface is 

I t  is an interesting semantic question whether C,, should be regarded as a component of form 
drag or of skin friction. 
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Stokes's solution (S9) for stead) creeping flow past a rigid sphere may be 
obtained directly from the results of the previous section with K + x. The 
same results are obtained by solving Eq. (3-1) with Eqs. (3-4) to (3-6) replaced 
by the single condition that u, = 0 at r = a. The corresponding streamlines are 
shown in Figs. 3.3a and 3.4a. As for fluid spheres, the particle causes significant 

I I 1 

FIG.  3 . 3  Streamlines relative to rigid sphere at low Re: (a) Stokes's solution: (b) Oseen approxi- 
mation. 

FIG. 3.4 Streamlines for motion oi'rigid sphere through stagnant fluid at lo\\ Re:  (a) Stokes's 
solution: (b) Oseen approximation. 
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streamline curvature over a very extensive region, and there is infinite drift. 
On the axis of symmetry, the fluid velocity falls to half the sphere velocity 
almost two radii from the surface. The corresponding distance for potential 
flow is 0.7 radii. 

From Eqs. (3-1 1) to (3-14), the total drag coefficient is given by "Stokes's law": 

C,,, = 24 'Re. (3-17) 

Two thirds of this drag arises from skin friction, one third from form drag, and 
the component due to deviatoric normal stress is zero. The corresponding 
terminal velocity follows from Eq. (3-15) as: 

The surface vorticity obtained from Eq. (3-16) is 

[, = 3 L  sin 8:2a. (3-19) 

The Hadamard-Rybczynski theory predicts that the terminal velocity of a 
fluid sphere should be up to 50'6 higher than that of a rigid sphere of the same 
size and density. However, it is commonly observed that small bubbles and 
drops tend to obey Stokes's law. Eq. (3-la), rather than the corresponding 
Hadamard-Rybczynski result. Eq. (3-15). Moreover, internal circulation is 
essentially absent. Three different mechanisms have been proposed for this 
phenomenon, all implying that Eq. (3-5) is incomplete. 

Bond and Newton (B3) found that small bubbles and drops followed Stokes's 
law while, with increasing diameter, there was a rather sharp increase in velocity 
toward the Hadamard-Rybczynski value. They suggested that a circulating 
particle requires energy locally to stretch interfacial area elements over the 
leading hemisphere. while these shrink over the rear surface. It was hypothesized 
that this process caused additional tangential stresses to retard the particle 
and that surface tension played the dominant role in determining whether C ,  
followed Eq. (3-15) or (3-18). They proposed that internal circulation could 
only occur for Eo > 4. This has come to be known as the "Bond criterion." 
That it gave fair agreement with observed bubble or drop sizes at which the 
terminal velocity was midway between the Stokes and Hadamard-Rybczynski 
values probably reflects the fact that the degree of contamination by surface 
active substances is often roughly proportional to the surfactant-free interfacial 
tension. o,, (D3, G7). However, subsequent experimental work [e.g. (GI,  G2, 
G3, L5)] has shown that the Bond criterion is not always applicable. Harper 
et al. (H5) and Kenning (Kl), on the other hand, have shown that the surface 
energy argument is valid if tangential gradients of temperature and hence 
surface tension are considered. However. the effect is much too small to account 
for the immobile interfaces of small bubbles and drops. 
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Boussinesq (B4) proposed that the lack of internal circulation in bubbles 
and drops is due to an interfacial monolayer which acts as a viscous membrane. 
A constitutive equation involving two parameters, surface shear viscosity and 
surface dilational viscosity. in addition to surface tension, was proposed for 
the interface. This model, commonly called the "Newtonian surface fluid model" 
(W2), has been extended by Scriven (S3). Boussinesq obtained an exact solution 
to the creeping flow equations, analogous to the Hadamard-Rybczinski result 
but with surface viscosity included. The resulting terminal velocity is 

where Cis equal to the surface dilational viscosity divided by 1.5 times the radius. 
Although Eq. (3-20) reduces to Eqs. (3-15) and (3-18) for C = 0 and C = x, 
respectively, the transition between these results with decreasing radius is in 
practice much sharper than predicted [e.g. (B3)]. A further difficulty with 
surface viscosity is that it is very difficult to obtain reliable measurements 
(01,  W2). 

The most reasonable explanation for the absence of internal circulation for 
small bubbles and drops was provided by Frumkin and Levich (F l ,  L3). 
Surface-active substances tend to accumulate at the interface between two fluids, 
thereby reducing the surface tension. When a drop or bubble moves through a 
continuous medium, adsorbed surface-active materials are swept to the rear, 
leaving the frontal region relatively uncontaminated. The concentration gra- 
dient results in a tangential gradient of surface tension which in turn causes a 
tangential stress (see Eq. (1-14)) tending to retard surface motion. These gra- 
dients are most pronounced for small bubbles and drops, in agreement with 
the tendency for small fluid particles to be particularly subject to retardation. 
Models relating to surface contamination are discussed in the next section. 

The surface contamination theory implies that all bubbles and drops, no 
matter how small, will show internal circulation if the system is sufficiently 
free of surface-active contaminants. Experimental evidence tends to support 
this view. For example, Redfield and Houghton (R2) took considerable pains 
to purify systems in which air bubbles rose in aqueous dextrose solutions, and re- 
ported excellent agreement with the Hadamard-Rybczynski drag relationship. 
Similarly, Levich (L3) reports that mercury drops falling through pure glycerine 
have velocities which are 50'4 greater than the Stokes value. Observations at 
higher Reynolds numbers also confirm this theory qualitatively (Bl, El ,  E2, L5). 

Internal circulation patterns have been observed experimentally for drops 
by observing striae caused by the shearing of viscous solutions (S7) or by 
photographing non-surface-active aluminum particles or dyes dispersed in the 
drop fluid [e.g. (G2, G3, J2, L5, MI,  Sl)]. A photograph of a fully circulating 
falling drop is shown in Fig. 3.5a. Since the internal flow pattern for the 
Hadamard-Rybczynski analysis satisfies the complete Navier-Stokes equation 
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FIG. 3.5 Internal circulation in a water drop falling through castor oil [from Savic (Sl), repro- 
duced by permission of the National Research Council of Canada]: (a) (1 = 1.77 cm. L', = 1.16 
cm,/s, exposure 1:2 s, fully circulating: (b) d = 1.21 cm, C ,  = 0.62 cm,#s, exposure 1 s, stagnant 
cap at top of drop. 

(H3, TI), it is unimportant that the Reynolds number of the internal motion 
was rather large for many flow visualization studies which set out to verify 
the Hadamard-Rybczynski predictions, so long as the Reynolds number based 
on the continuous fluid properties was small and the fluid particle spherical. 
The observed streamlines show excellent qualitative agreement with theory, 
although quantitative comparison is difficult in view of refractive mdex differ- 
ences and the possibility of surface contamination. When a trace of surface-active 
contaminant is present, the motion tends to be damped out first at the rear of 
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the bubble or drop (G3, H7, MI,  Sl).  A photograph reproduced in Fig. 3.5b 
demonstrates that the internal vortex for a falling drop is pushed forward, 
leaving a stagnant region at the rear where the contaminant tends to accumulate. 
Similar asymmetry has been noted by others (G9, L5). 

Traces of surface-active contaminants may have a profound effect on the 
behavior of drops and bubbles. Even though the amount of impurity may be 
so small that there is no measurable change in the bulk fluid properties, a 
contaminant can eliminate internal circulation, thereby significantly increasing 
the drag and drastically reducing overall mass- and heat-transfer rates. Systems 
which exhibit high interfacial tensions, including common systems like airlwater, 
liquid metalslair, and aqueous liquids/nonpolar liquids, are most subject to 
this effect (D2. L5). The measures required to purify such systems and the 
precautions needed to ensure no further contamination are so stringent that 
one must accept the presence of surface-active contaminants in most systems 
of practical importance. For this reason, the Hadamard-Rybczynski theory is 
not often obeyed in practice, although it serves as an important limiting case. 

Accounting for the influence of surface-active contaminants is complicated 
by the fact that both the amount and the nature of the impurity are important 
in determining its effect (G7, L5, Rl). Contaminants with the greatest retarding 
effect are those which are insoluble in either phase (L5) and those with high 
surface pressures (G7). A further complication is that bubbles and drops may 
be relatively free of surface-active contaminants when they are first injected 
into a system, but internal circulation and the velocity of rise or fall decrease 
with time as contaminant molecules accumulate at the interface (G3, L5, R3). 
Further effects of surface impurities are discussed in Chapters 7 and 10. For 
a useful synopsis of theoretical work on the effect of contaminants on bubbles 
and drops, see the critical review by Harper (H3). Attention here is confined 
to the practically important case of a surface-active material which is insoluble 
in the dispersed phase. The effects of ions in solution or in double layers adjacent 
to the interface are not considered. 

The first attempt to account for surface contamination in creeping flow of 
bubbles and drops was made by Frumkin and Levich (F1. L3) who assumed 
that the contaminant was soluble in the continuous phase and distributed over 
the interface. The form of the concentration distribution was controlled by one 
of three rate limiting steps: (a) adsorption-desorption kinetics, (b) diffusion in 
the continuous phase, (c) surface diffusion in the interface. In all cases the 
terminal velocity was given by an equation identical to Eq. (3-20) where C, 
now called the "retardation coefficient", is different for the three cases. The 
analysis has been extended by others (D6, D7, N2). 

Since the Frumkin-Levich approach predicts symmetrical internal circu- 
lation, various workers have tried to account for the asymmetry clearly shown 
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in photographs such as Fig. 3.5. Savic was the first to attempt an analysis by 
assuming that the contaminant was strongly surface active and insoluble in 
both phases. The equations solved and the boundary conditions imposed were 
Eqs. (3-1) to (3-4) with the tangential stress condition replaced by: 

where 8, is the "stagnant cap angle," measured from the nose of the bubble or 
drop. Note that Eq. (3-21) restricts the direct applicability of Savic's analytic 
results to cases in which K -+ 0. The terminal velocity is 

Savic's calculated values of Y, along with values obtained subsequently (D5, HS), 
are plotted in Fig. 3.6. Also shown is an asymptotic solution (H4) for a small 
stagnant cap ( 3 q 4  < l3 < n): 

Savic estimated cap angles from his photographs and the resulting predictions 
using Fig. 3.6 showed good agreement with experimental terminal velocities. 

Angle excluded by stagnant cap. 0, 

F I G  3.6 Effect of stagnant cap on terminal belocit) of a bubble or in~iscid drop. 

By assuming that the surface tension on the surface of a fluid sphere varied 
from the surfactant-free value, o,,, at the nose to zero at the rear, Savic also 
deduced a relationship between velocity and Eotvos number, shown in Fig. 3.7, 
which agrees qualitatively with the experimental results of Bond and Newton. 
Modifications of this approach for cases where the maximum change in local 
interfacial tension is less than o,, have been devised for bubbles (D5, G7) and 
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for drops (Ul).  Griffith (G7) treated a surface-active monolayer distributed 
under the influence of the shear at the interface. The difference between the 
interfacial tension between the pure fluids and the equilibrium value with the 
surfactant present may then be denoted by Ao'  and the corresponding modified 
Eotvos number by Eo'. Davis and Acrivos (D5) assumed that the supply of 
surfactant is unlimited. so that the minimum surface tension corresponds to the 
condition at which the surface film collapses. The difference between this value 
and the surfactant-free value. assumed to prevail at the nose, may be denoted by 
Ao*, and the corresponding Eotvos number by Eo". The resulting curLes are 
shown in Fig. 3.7. 

EOTVOS NUMBER: Eo, Eol,or Eo* 

FIG. 3.7 Effect of surfactant on the terminal velocity of small bubbles and drops 

Subsequent theoretical work has allowed the contaminant to distribute itself 
over the interface under the influence of fluid shear as expressed through Eq. 
(1-16). Schecter and Farley (S2) showed that a drop or bubble would remain 
spherical and Eq. (1-15) could be satisfied only for a particular variation of 
interfacial tension around the periphery. Using this variation led to symmetrical 
circulation. Wasserman and Slattery (W2) assumed that the surface contaminant 
diffused to the particle from the continuous phase and was convected along the 
interface. A perturbation solution was obtained for an air bubble of 0.0022 cm 
diameter in water containing a trace of isoamyl alcohol. The contaminant had 
little effect on bubble shape, while it drastically reduced the terminal velocity. 
Noting these results Levan and Newman (L2) derived stream functions for 
creeping flow of a spherical fluid particle with an arbitrary variation of inter- 
facial tension. These stream functions can be used for any mechanism of con- 
taminant transport to and along the interface. Applying their stream functions 
to Wasserman and Slattery's example showed that the interfacial contaminant 
concentration was highest and the interfacial velocity lowest near the rear 
stagnation point. 



11. Fluid Mechanics 4 1 

Following a suggestion made by Davies (D2, D4). we define a "degree of 
circulation" Z such that the terminal velocity of a spherical bubble or drop in 
slow viscous flow is given by 

where C-,, is the Stokes terminal velocity defined by Eq. (3-18). Griffith assumed 
that the effects of viscosity and surface contamination could, to a first approxi- 
mation, be separated, so that 

where the first bracketed term accounts for the influence of the viscosity of the 
dispersed phase and follows directly from the Hadamard-Rybczynski analysis, 
and the term in Y accounts for surface effects. Griffith's values for Y, plotted in 
Fig. 3.7, give good agreement with experimental results except for one or two 
anomalous cases. 

Figure 3.7 together with Eqs. (3-25) and (3-26) provide an approximate but 
rational means of estimating the effect of surface-active impurities for bubbles 
and drops at low Reynolds numbers. If the contaminant is strong (i.e., for a large 
surface excess of surfactant) and its type and amount can be characterized in 
terms of Ao'. the difference in interfacial tension between the pure and equili- 
brated phases. Griffith's curve can be used to estimate Y. If the amount of 
surfactant is relatively large and the value of o at which the surface film collapses 
is known, the Davis and Acrivos curve should be used. When the amount and 
types of contaminant are unknown. the Savic curve in Fig. 3.7 describes the 
limiting case where the surface is so fully contaminated that the surface tension 
varies from its value for a pure system at the front to zero at the rear. For the 
other limit of a very pure system, Y should be taken as 1.5. For cases of inter- 
mediate but unknown purity, transition from rigid to circulating behavior 
occurs for Eo lower than the Savic values, and there is presently no alternative 
to using the Bond criterion, which corresponds to a maximum reduction in 
interfacial tension of 102, to 45% (D5). 

There is a fundamental difficulty, first noted by Oseen (02),  in applying the 
creeping flow equations to particles in unbounded media. In the creeping flow 
solution given by Eqs. (3-7) and (3-8). the ratio of neglected inertia terms to 
retained viscous terms is O[Re(r a)]. For any finite Re. the neglected terms 
dominate at large distances from the sphere, and the creeping flow approxima- 
tion is only valid for distances less than order a 'Re. To remove this inconsistency, 
Oseen suggested that the Navier-Stokes equation should be linearized by 
simplifying, rather than neglecting, the inertia term. The continuous phase 
velocity U is written as (v - Ui) so that v represents the deviation from the 
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uniform stream, - Ci. For steady flow 

Ci . Vv. (3-27) 

The final term in Eq. (3-27) dominates at large distances from the body. Since 
this is the region in which inertial effects are significant, Oseen suggested that 
the nonlinear term v . Cv be neglected. Equation (1-33) then becomes 

which is generally called Oseen's equation. The additional term, p U i .  Vv, 
removes the property of "reversibility," so that solutions no longer possess 
fore-and-aft symmetry. 

For a rigid sphere, the boundary conditions are 

Lamb (Ll)  has given an approximate solution: 

Ur2 sin2 8[ 3Ga2 * = r Re 
2 1 + , + -- ( I  - cos s) Re 

Corresponding streamlines are shown in Figs. 3.3b and 3.4b. Like the creeping 
flow result. the Oseen solution predicts infinite "drift." For large r the velocity 
is unbounded, but the divergent terms are O[Re2] and formally beyond the 
range of the Oseen approximation. For r << a, Re, the stream function may be 
approximated as 

The modified pressure at the surface is 

Re 
3 cos 0 + - (3 cos2 e - 1) . 

4 I 
Equations (3-32) and (3-33) differ from the Stokes solution only in the Re terms. 
The contribution to p is symmetrical about the equator, so that the form drag 
is the same for the two solutions. 

The vorticity at the surface is given by 

3, sin " [j { Re - 
' S  - 1 + - exp -- (1 - cos 0) : 4 I (3-34) 

2a 

and is shown in Fig. 3.8. By comparison with Stokes's solution: vorticity is 
increased over the leading hemisphere and reduced over the rear. In the outer 
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8, degrees 

FIL 3 8 Dlmenslonless vort~clty, Csu L', at surface of rlgld sphere Oseen, Eq (3-34).--- 
Proudman and Pearson (P3), Eq (3-38). -- Woo (W5) (numerical) 

part of the flow, vorticity is small except for a wake-like region behind the 
particle. The vorticity distribution leads to a drag coefficient greatert than the 
Stokes law value (C,,,): 

C D -- 3 
1 = - Re. 

C ~ ~ l  16 

A plot of (C,/CDs, - 1) against Re gives a particularly sensitive indication of 
departures from Stokes law (M3). Figure 3.9 compares the recommended 
correlation of reliable drag data with Oseen's solution and other approxima- 
tions. As Re + 0, the drag approaches zero via the Oseen drag, Eq. (3-35), 
rather than via the Stokes' drag, emphasizing that the Stokes solution is strictly 
invalid for Re # 0. This implies rhar there is never true fore-and-aft symmetry 
in the flow field, and is particularly important for the motion of interacting 
particles (S8). 

+ The difference is of smaller order than the error in either solution and Eq. (3-35) is exact to 
O(Re) (P3). In fact, the Re term in (C,, C,,, - 1) can be deduced from the Stokes drag alone for 
any three-dimensional body symmetrical about a plane normal to the direction of motion (C6). 
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FIG. 3.9 Fractional departure from Stokes's la~b.  Numbers 1-6 correspond to expressions in 
Tablc 3.1. Curve numbered 7 is a correlation of a~a i lab le  data (see Chapter 51. Shaded region 
represents range of experimental scatter. 

Equation (3-33) shows how the inertia term changes the pressure distribution 
at the surface of a rigid particle. The same general conclusion applies for fluid 
spheres, so that the normal stress boundary condition, Eq. (3-6), is no longer 
satisfied. As a result, increasing Re causes a fluid particle to distort towards an 
oblate ellipsoidal shape (TI). The onset of deformation of fluid particles is 
discussed in Chapter 7. 

Figure 3.9 shows that Eq. (3-36) is applicable only for Re I 0.1. Several more 
complete series solutions to Eq. (3-28) have been obtained (G5, S5) including 
one to 24 terms (V2). The expression of Goldstein involving terms to Res is 
shown in Table 3.1. Figure 3.9 shows that this series diverges rapidly from the 
experimental correlation for Re > 4. Although series solutions are more accu- 
rate representatives of the Oseen drag, the Oseen drag itself is only an approxi- 
mation to the true drag. To improve the approximation Lewis and Carrier (L4) 
proposed a semiempirical modification of the Oseen equation in which the 
final term in Eq. (3-28) is multiplied by a parameter c which may be a function 
of Re. The drag result is given in Table 3.1 and plotted in Fig. 3.9 with their 
suggested value of c = 0.43. Although the approximation is better. the form of 
the dependence on Re is not improved. 

Rather than obtaining accurate solutions to Oseen's approximate equation, 
Proudman and Pearson (P3) suggested a technique to obtain successive approxi- 
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TABLE 3.1 

Drag Coefficient Expressions a1 Lou Reqnolds Sumber 

h o  Approximdtion from (CD CDS,) - 1 Reference 

2 Oseen equation. Eq. 3 19 71 R e  - R e 2  + Re3 
(3-28) 16 1280 20408 

3 Modified Eq. (3-28) 
(see text) 

4 Nal  ier-Stokes 
equation, Eq. (1-1) 

5 Nabler-Stokes 
equation. Eq. (1-1) 

6 Na! ier-Stokes 
equation, Eq. (1-1) 

301 79 
-- 

122519 
Re4 + 

34406400 
Re' 

550502400 

Oseen ( 0 2 )  

Goldstein (Gj)  

Lert is and 
Carrier (L4) 

Proudman and 
Pearson (P3) 

uhere ;, = Euler's constant = 0.5772157 

Chester and 

360 Breach (C7) 

uhere c = Re(C, C,,,,). "' 
111 = 5 (P4) 

mations to the Navier-Stokes equation. Since different forms for the stream 
function are appropriate in the region near the sphere and in the outer part of 
the flow field, two separate expansions were used. The "inner" or "Stokes" 
series was chosen to satisfy the boundary condition at I = a, while the "outer" 
or "Oseen" series satisfied the condition for r. + x. Alternate terms in each 
expansion were generated by "matching" the series in a region of supposed 
common validity. For a rigid sphere. the two-term inner series gives (Vl):  

Figure 3.8 shows the corresponding vorticity at the surface of the sphere: 

3C; sin 8 3 
is - --[ 20 1 + - R e j l + - c o s B  I6 3 11 . 
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For Re > 16, the vorticity from Eq. 13-38) becomes negative over part of the 
rear hemisphere, indicating a recirculatory wake. In practice, recirculation 
starts at Re = 20 (see Chapter 5). Moreover, the predicted length of the wake at 
higher Re agrees well with experiment, although the width is less well predicted. 
Unfortunately, these predictions are fortuitous. Wake formation occurs at Re 
beyond the range where perturbations to Stokes's solution are valid, and inclu- 
sion of higher terms in the inner series eliminates the recirculatory wake (Vl) .  
Comparison with the numerical solution of Woo (W5) shows that Eq. (3-38) 
gives a close representation of the surface vorticity for Re < 0.5. Even at 
Re = 1.0, the error is less than 4%. 

The drag coefficient corresponding to the two-term approximation is the 
Oseen value, Eq. (3-35). The addition of a further term yields expression 4 in 
Table 3.1. Figure 3.9 shows that this expression fits the data within about 1.5% 
for Re < 0.7, but divergence is rapid at higher Re. The series was extended to 
terms of order Re3 (C7): see Table 3.1. Figure 3.9 shows that the additional 
terms make the fit worse. Similar conclusions apply for fluid spheres (A3, G6). 
Proudman suggested that the divergence might result from the unsuitability 
of Re as the expansion parameter. He proposed instead expansion in terms of a 
semiempirical parameter E ;  see Table 3.1. His result, with the value rn = 5 
suggested by Pruppacher et al. (P4), is plotted in Fig. 3.9. Agreement with the 
data is better than for any of the other analytic results, but deviation is still 
marked for Re > 3. 

Thus: analytic solutions for flow around a spherical particle have little value 
for Re > 1. For Re somewhat greater than unity, the most accurate representa- 
tion of the flow field is given by numerical solution of the full Navier-Stokes 
equation, while empirical forms should be used for C,. These results are dis- 
cussed in Chapter 5. 

111. HEAT AND MASS TRANSFER 

There are no solutions for transfer with the generality of the Hadamard- 
Rybczynski solution for fluid motion. If resistance within the particle is impor- 
tant, solute accumulation makes mass transfert a transient process. Only 
approximate solutions are available for this situation with internal and external 
mass transfer resistances included. The following sections consider the resistance 
in each phase separately, beginning with steady-state transfer in the continuous 
phase. Section B contains a brief discussion of unsteady mass transfer in the 
continuous phase under conditions of steady fluid motion. The resistance within 
the particle is then considered and methods for approximating the overall 
resistance are presented. Finally, the effect of surface-active agents on external 
and internal resistance is discussed. 

' See Chaptcr 1 for discussion of the equixalence of heat and mass transfer 
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For axisq-mmetric flow with constant properties. the diffusion equation may 
be written (see Eq. (1-38)) as: 

For a rigid sphere or a fluid particle with negligible internal resistance and 
constant concentration, the boundary conditions are: 

c = c  at r = a, (3-40) 

e - - t e a  as r +  X, (3-41) 

?c i0 = 0 at 0 = 0 and 0 = n. (3-42) 

Section I1 shows that the dimensionless external velocity field (u, C', u, C )  is 
a function of dimensionless position (r a. 0) and K for creeping flow. The dimen- 
sionless concentration defined in Eq. (1-45) is a function of these quantities and 
of the Peclet number, Pe = 2aU g. Hence the Sherwood number, Sh = 2ka 2, 
is a function of K and Pe (with additional dependence on Re unless the creeping 
flow approximation is valid). The exact solution of Eqs. (3-39) to (3-42) with 
the Hadamard-Rybczynski velocity field is not available for all values of Pe 
and K, but several special cases have been treated. 

1. Stagnant Continuous Phase 

When the velocity is everywhere zero, diffusion is in the radial direction only. 
Equation (3-39) reduces to 

with boundary conditions given by Eqs. (3-40) and (3-41). Since there is no 
dependence on 0, local and average values of Sh are equal and 

Sho = 2. (3-44) 

where the subscript denotes stagnant fluid. Equation (3-43) may also be regarded 
as the limiting form of Eq. (3-39) for B + x (Pe -, 0); i.e., convective terms in 
the diffusion equation are neglected. just as inertia terms in the Navier-Stokes 
equation are neglected in the creeping flow approximation. Thus, Sh, may be 
considered analogous to the drag coefficient in creeping flow. 

2. Rigid Splzere in Creeping Flow 

Equation (3-39) has been solved for steady Stokes flow past a rigid sphere 
(B6, M2). The resulting values of Sh, obtained numerically for a wide range of Pe, 
are shown as the K = x curve in Fig. 3.10. For small Pe, Sh approaches Sh,, 
while for large Pe. Sh becomes proportional to Pel 3.  The numerical solution 
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FIG. 3.10 External Sh for spheres in Stokes f loa:  (1) Exact numerical solution for rigid and 
circulating spheres: 12) Brenner (B6): rigid sphere. Pe - 0. Eq. (3-45): (3) Lebich (L3):  rigid sphere. 
Pe + z, Eq. (3-47): (4) Acrivos and Goddard ( A l ) :  rigid sphere: Pe + z. Eq. (3-48): i5) Approximate 
values: fluid spheres. 

provides a standard for assessing the validity of asymptotic solutions for Pe + 0 
and Pe -+ x. 

Brenner (B6) pointed out that similar problems arise in obtaining Eq. (3-44) as 
in the low Re approximation for fluid flow. The neglected convection terms 
dominate far from the particle, since the ratio of convective to diffusive terms 
is O[Pe(r a)]. An asymptotic solution to Eq. (3-39) with Pe + 0 was therefore 
obtained by the matching procedure of Proudman and Pearson discussed above. 
Brenner's result for the first term in a series expansion for Sh may be written: 

(Sh Sh,) - 1 = $Pe. (3-45) 

Equation (3-45) is analogous to the Oseen correction to the Stokes drag, and 
is accurate to O[Pe].' It applies for any rigid or fluid sphere at any Re. provided 
that Pe -+ 0 and the velocity remote from the particle is uniform. Figure 3.10 
shows that Eq. (3-45) is accurate for Pe 2 0.5. Acrivos and Taylor (A2) extended 
the solution to higher terms, but, as for drag, the additional terms only yield 
slight improvement at Pe < 1. 

Levich (L3) obtained an asymptotic solution to Eq. (3-39) for Pe -+ x, using 
the thin concentration boundary layer assumption discussed in Chapter 1. 
Curvature of the boundary layer and angular diffusion are neglected (i.e., the 
last term in Eq. (3-39) is deleted), so that the solution does not hold at the rear 
of the sphere where the boundary layer thickens and angular diffusion is 
significant. The asymptotic boundary layer formula, Eq. (1-59), reduces for a 
sphere to : 

' Furthermore. just as for drag. the Pe term in (Sh Sh, - 1 )  can be deduced from Sho alone for 
any particle symmetric about a plane normal to the direction of motion iB6). 
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Substitution of the Stokes surface vorticitj. ;,, frorn Eq. (3-19) yields 

Figure 3.10 shows that Eq. (3-47) gikes Sh approximatell 10" too low for 
Pe = lo3. while the deviation becomes worse at lower Re. Acrikos and Goddard 
(Al) used a perturbation method to obtain the first-order correction to Eq. 
(3-47) : 

Sh = 0.991 Pel + 0.92. (3-48) 

Figure 3.10 shows that Eq. (3-48) lies within 37, of the numerical solution for 
Pe > 30. 

It is convenient to have a relationship for Sh valid for all Pe in creeping flow. 
The following equation agrees with the numerical solution within 29;: 

Sh = 1 + (1 + Pe)' 3 .  (3-49) 

Equation (3-49) can be used for Re I 1 even though the Stokes surface vorticity 
is not accurate for Re > 0.1. This fortuitous result follows because mass transfer 
is much less sensitive than drag to errors in c,. 

Figure 3.11 shows the local Sherwood number. Sh,,,, for the limits of high 
and low Pe. Values for Pe = 0.1 are not symmetrical about the equator, and 
show the greatest transfer rates over the leading surface indicating that the 
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concentration field lacks fore-and-aft symmetr). The local Sherwood number 
always exceeds Sh, = 2, indicating that convection increases the transfer rate 
at all points on the surface. For high Pe, on the other hand, the solute is swept to 
the rear so that the local concentration gradient is reduced and Sh,,, < Sh, 
(H2. S6), as shown by the curves for Pe = lo3. The boundary layer solution 
unrealistically predicts that Sh,,, falls to zero at the rear stagnation point due to 
neglect of angular diffusion. 

3. Fluid Sphere in Creeping F l o ~ c  

For fluid spheres with K = 0, Eq. (3-39) has been solved numerically with the 
Hadamard-Rybczynski velocit) field (01). and the resulting variation of Sh 
with Pe is shown in Fig. 3.10. The values are approximated within 6OlO for all 
Pe by 

For Pe + 0 an asymptotic solution through the matching procedure has been 
obtained for all K (B6). As for solid spheres its range of applicability is limited 
to Pe i: 1. 

For a fluid sphere with Pe + x the thin concentration boundary layer 
approximation. Eq. (1-631, becomes 

Inserting the Hadamard-Rybczynski form for u, yieldsi 

which agrees hith the numerical solution for K = 0 within 1Oo0 for Pe i 100. 
From Eqs. (1-64) and (3-52). this approximation applies if 

The Hadamard-Rybczmski results are applicable if Re i 1,  so that 

For liquids of low viscosity. Sc is of order lo3. so that Eq. (3-54) is satisfied for 
K -2 2: thus Eq. (3-52) is valid for bubbles or drops of low viscosit). . Experimental 
data on dissolution of small low-viscosity drops (Wl)  and bubbles (Cl)  with 

' The dependence of Sh on Pe 11 + k) at hlgh Pe results because the Hadamard -R!bcz>nskl 
ana l~s i s  gives dimcllsionless \elocities (u ,  C, ii, C )  proportioslal to 11 + I<)-' 1%-ithin and close to 
the particle (Eqs. 13-71 and 13-8) 1. Similar dcpcndence is encountered for unstead! external transfer 
(Section B.Z), and for internal transfer at all Pe (Section C.4). These rcsulls d o  not give the rigid 
sphere lalucs as ic -, Y-. because of fundamental difl'erences between the boundary la!er approxi- 
mations for tile t ~ o  cases (see Chapter 1) .  and arc o n l ~  \ d i d  for i i  C 2. 
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,; -? 2 agree with Eq. (3-52) if the particle is spherical and there is negligible 
interfacial contamination. 

Although no exact solution valid for all K and Pe is available, an approximate 
solution using the integral boundary layer approach has been given (B5). The 
curves for intermediate K in Fig. 3.10 were prepared by locating them between 
the exact solutions for K = 0 and K = cc,, using the relative spacings from this 
approximate solution. As K increases, the variation of Sh at high Pe changes 
from Pel to Pe' 3 .  Although this procedure is not exact, the curves in Fig. 3.10 
are recommended for predicting Sh for any K with Re i 1. 

4. E?ctension t o  Larger Re 

The preceding results can be extended beyond the creeping flow regime by 
using any of the flow fields discussed in Sections 1I.E and 1I.F. For moderate to 
high Sc, say Sc > 1, the layer of variable concentration lies near the sphere, and 
only stream functions accurate in this region give improved results. The Oseen 
stream function only differs significantly from the Stokes stream function in 
the outer field, and is not useful for extending the theoretical prediction of Sh to 
finite Re. However, the Proudman and Pearson solution can be used to extend 
the range of the solutions for rigid spheres. Since the inner stream function 
contains Re, the value of Sh is a function of a set of two dimensionless groups 
from among Re, Sc, and Pe. 

Gupalo and Ryazantsev (G10) followed the analysis of Acrivos and Taylor 
(A2) with the Proudman-Pearson stream function rather than Stokes flow. 
For Sc > 10: the two predictions for Sh agree within I%, while for Sc = 1 they 
differ by at most 8% for Pe < 1. The results of Gupalo and Ryazantsev, although 
valid to higher Re, are still restricted to Pe + 0, so that this extension is of little 
practical value. 

The asymptotic solution for Pe -+ x embodied in Eq. (3-46) can be extended 
to finite Re in a similar way. The Oseen value for surface vorticity, (,, predicts 
little effect of Re. However, the Proudman and Pearson expression for is, 
Eq. (3-38), yields: 

Sh = 0.991 Pel 3[1 + (Re~4)]0~27 (3-55) 

where the integral has been approximated by a simpler form which agrees 
within 2";. Equation (3-55) extends the range of the boundary layer solution up 
to Re r 1 but, as with drag predictions, the Proudman and Pearson approach 
has little value at higher Re. 

If a particle is suddenly exposed to a step change in the composition of the 
continuous phase. or if the surface composition undergoes a step change to a 
new constant value. the rate of mass transfer becomes a function of time even 
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if the fluid motion is steady and the fluid properties are constant. During un- 
steady transfer: the concentration field is governed by: 

The boundary conditions of Eqs. (3-40) to (3-42) apply for t > 0, with the 
additional condition 

c = c ,  at t = O , r > a .  (3-57) 

Considering the order of magnitude of terms in Eq. (3-56), we see that for any 
finite 9 there will be times short enough that the terms in u,, u,. and ( 2 : E O )  are 
small relative to the others. Thus, at very short times, unsteady transfer is not 
affected by convection, and the time variation of Sh is identical to that in a 
stagnant medium. It is convenient to  express the results in terms of the dimen- 
sionless time z = 9t/a2,  sometimes called the Fourier number,? which may be 
regarded as the ratio of real time to the time for diffusion to become established. 
For long times, Sh approaches the steady values in Fig. 3.10. 

1. Stagnant Continuous Phase 

For a stagnant medium or with D -+ 0, Pe -+ 0 and Eq. (3-56) reduces to 

The instantaneous Sherwood number follows as 

The dimensionless time, 7,. for Sh to come within 100x"/, of the steady value 
indicates the duration of the unsteady state; for Pe = 0, T O , ,  = 31.8, and s, . = 
2.35. Diffusivities in gases are of order lo4 times diffusivities in liquids; hence, 
for particles with equal size and equal exposure, transient effects in a stagnant 
medium are much more significant in liquids. 

2. Solutions for Larger Pe 

For a rigid or circulating sphere in creeping flow, Sh may be written as a 
series expansion in Pe and z, valid for small Pe and s (C8, K2, K5). The first 
term in Pe is O[Pe2]. Hence, Eq. (3-59) for small s and Eq. (3-45) for long times 
are both valid to O[Pe]. The results of Konopliv and Sparrow (K2) and Choud- 
hury and Drake (C8) for rigid or circulating spheres with Pe < 0.5 are approxi- 
mated within 5% for all times by: 

For heat transfer the Fourier number is r*t!a2. The heat transfer analogs of the mass transfer 
dimensionless groups can be found by making the substitutions described in Chapter 1. 
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Thus the effect of fluid motion is to reduce the unsteady period: e.g.. z,,, is 
reduced by a factor of 3 on raising Pe from zero to 0.5. 

Unsteady transfer with Pe -+ x has been treated using the thin concentration 
boundary layer assumptions. With this approximation, the last term in Eq. (3-56) 
is deleted. Hence, for small T where the convection term is negligible. the transfer 
rate for rigid or circulating spheres is identical to that for diffusion from a plane 
illto a semi-infinite region: 

- 

Sh,,, = 21, nz. (3-61) 

The range over which Eq. (3-61) provides a useful approximation may be 
evaluated by comparison with more detailed solutions. 

Complete solutions are available for Pe -+ x for rigid spheres (K4) and for 
fluid spheres (C5. R4) subject to the limitation of Eq. (3-54). Approximations 
good within 3% are, for rigid spheres: 

and for fluid spheres: 

The duration of the unsteady period, denoted by t,, the time required for Sh 
to come within loox"/, of the steady value, is different for rigid and fluid spheres. 
For a rigid sphere at high Pe, T, x PeC2 3. From Stokes's law, Eq. (3-18), 
U ,  x a 2 ;  hence t, is independent of particle size for a given fluid. However, 
for a fluid sphere, z, cc (1 + K) Pe; thus U,t,ia is a constant, and a given 
fractional approach to steady state is achieved when the particle has moved 
a fixed number of radii, e.g., 

UTt0,,ia = 1.8(1 + K). (3-64) 

Approximate values of Sh for intermediate Pe may be obtained by using 
Eq. (3-61) until Sh equals the steady-state value of Fig. 3.10. For larger z this 
steady-state value is used. Although this approximation underestimates the 
duration of the unsteady period, the error in Sh is not large. In terms of the 
time-averaged Sh or the total mass transferred, the error is less than 1.52, for all 
times. 

When mass diffuses into or out of a fluid particle, the concentration within 
the particle changes with time. Therefore the time derivatives must be retained 
in the diffusion equations for both internal and external fluids. The internal 
and external concentration fields are related at the interface. If there is no 
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chemical reaction at the interface, the species mass fluxes on each side are equal. 
A second condition on interfacial concentrations is given by Eq. (1-39). I f  we 
assume constant properties in each phase and axial symmetry, the concentration 
fields are described by Eq. (3-56) with 9 replaced by 9, within the particle. 
Assuming that each phase is initially at uniform concentration. the boundary 
conditions are: 

cp = c,, and c = c ,  at t = 0, (3-65) 

c'c i c  cP = Hc and 9 3 3  = 9 - at I. = LI for t > 0, (3-68) 
Er E r 

i c ,  ? H  = Zc i d  = 0 at 0 = 0 and 0 = n. (3-69) 

The profiles of the dimensionless concentrations: 

are then governed by Pe, H, 9, 9. and T ,  as well as by Re and 7c which determine 
the dimensionless velocity fields. 

Since the concentration within the particle varies with time, instantaneous 
mass transfer rates are difficult to measure. Experimental data are frequently 
presented in terms of the fractional approach to equilibrium: 

where 7, is the average concentration within the particle at time t .  i.e., the 
concentration obtained by mixing the dispersed fluid. As t increases, F increases 
from zero to unity. This group is sometimes termed the "extraction efficiency," 
but the definition of Eq. (3-71) applies for transfer both into and out of the 
particle. 

1 .  Approximation for Slzorl Times 

It was noted in Section B that. for finite Pe and short times, Eq. (3-56) is 
dominated by the first term on each side. Mass transfer is then determined by 
unsteady diffusion. and fluid motion has no effect on F. Only the region near 
the interface is affected, and diffusion occurs as if it were between two semi- 
infinite media. givingt (C4): 

- 

For heat transfer the group H, /;, 2 becomes. p,C,,K,, pC,K, 
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uhere 7, is B,t a'. Immediate11 after z = z, = 0. the concentration outside the 
interface changes to : 

-- 
c = (c, + c,,\ f2, Q ) f ( l  + H\ a, 2). (3-73) 

For semi-infinite media. this interface concentration remains constant, but for a 
particle it changes with time towards c,. Equations (3-72) and (3-73) are com- 
p r e d  with more complete solutions below. 

If the fluids are stagnant (i.e., Pe = Pep = O), the concentration profiles display 
angular symmetry and the fractional approach to equilibrium is a function only 
of H, 8, '9; and T or zp. The corresponding solution for F (K3, P I )  is shown in 
Figs. 3.12-3.14, for a wide range of values of these parameters. Fluid motion 
always increases F for given z,, so that these solutions give a lower limit for the 
fractional approach to equilibrium. 

Figure 3.12 shows the variation of F with 7, when H = 1. As 9 , M  decreases, 
the curves approach a limiting case solved much earlier, (Nl), often called the 
Newman solution. This corresponds to negligible external resistance, and Eqs. 

FIG. 3.12 Variation of fractional approach to equilibrium F with dimensionless time. 7 ,  = 
'/,i ( i 2 .  for a sphere in stagnant surroundings with H = 1. 

r~ 

FIG 3 13  Var~dtion of fractional dpprodch to equ~llbr~um F ~ l t h  dlmenslonless tlme. T, = 

?,1 (1'.  for d sphere In stagnant surroundings a ~ t h  H I 1 dnd 9, 9 j I 
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0.01 0.1 1 
r /  H 

FIG. 3 14 Variation ol fractional approach to equilibrium I; uith dimensionless time. s = 

/If a'. for a sphere in stagnant surroundings with HV, 2 2 1 .  

(1-39) and (3-73) show that, as H, 2, 9 -. 0 ,  the concentration inside the 
interface approaches He,. At the other extreme, Ht 9, 2 >> 1, the external 
resistance controls and the concentration within the particle is nearly uniform. 
The short-time solution, Eq. (3-72), gives a good approximation for F < 0.2. 
Figure 3.13 shows F(z,) for H I 1 and 9, 9 < 1. In this case the results are 
brought closer together by using H ,  2, 2 as parameter. as suggested by 
Eq. (3-72), and calculations for different combinations of H and 8, 9 lie within 
37 ,  of the curves shown. Typical results for larger H and 2,,3 are shown in 
Fig. 3.14. 

3. Linzitiny Cases 

It was noted above that the external resistance may sometimes be neglected 
relative to the internal resistance. Criteria for the importance of the external 
resistance can be developed from Eq. (3-72) for short times, and for long times 
from the steady-state external resistance taking the internal resistance as 
roughly u,/9,.  The external resistance is negligible for short times when - 

H v ' 9 ,  9 << 1 (3-74) 

and for long times when 

H&,,9  << Sh. (3-75) 

The short-time criterion is the more stringent except when H >> 1 and 8,,'9 << 1. 
External resistance controls and the concentration within the particle is uniform 
when the inequalities in Eqs. (3-74) and (3-75) are reversed. Even if the external 
resistance is not negligible relative to the internal resistance, it may be possible 
to assume constant external resistance, i.e., quasi-steady behavior. Comparison 
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betbyeen the external transient time from Section B and the time constant for a 
particle with uniform concentration shows that the quasi-steady assumption 
is justified if 

Table 3.2 summarizes these criteria, and indicates the section in this chapter 
where each limiting case is discussed. 

TABLE 3.2 

Transient Transfer to Spheres: Criteria for Limiting Cases 

Significant external resistance 

Negligible external Quasi-stead) 
resistance Transient ( H  Sh >> 1) 

Section C.5.a Section C.5.b 

Neglig~ble internal res~stance 
(particle concentration uniform) 

- -- 
Short times H ,  a, 3 >> 1 
Long tlmes H 9 ,  2 >> Sh 

Section C.4 General case 

S~gn~ficant ~nternal resistance Short tlmes H, 2; 9 << 1 (Sect~on C 2 Sectlon C 6 
Long t~mes  H%, 9 << Sh for Pe -t 0) 

4. Segligible External Resisturzce 

If the external resistance is negligible, it is only necessary to solve Eq. (3-56) 
for the dispersed fluid with boundary conditions given by Eqs. (3-65), (3-66), 
(3-69) and 

c, = Hc, at I. = cr for t > 0. (3-77) 

These equations have been solved for rigid (Nl)  and circulating spheres (Jl ,  K6. 
W3, W4) in creeping flow. Since the dimensionless velocities within the particle 
are proportional to (1 + K ) - '  (see Eq. (3-8)), F is a function only of 7, and 
Pe,/(l + K) .  In presenting the results, it is instructive to consider the instan- 
taneous overall Sherwood number, Sh,, as well as F. The driving force is taken 
as the difference between the concentration inside the interface, Hc,, and the 
mixed mean particle concentration, T,, giving 

a ~:(2) sin o d~ = -2 dc Sh, = - - 
2 dF  

p - -- . (3-78) 
C, - He, v = a  3(Fp-Hc,)dz, 3(1-F)dr ,  

Hence the time-averaged Sherwood number is 

5, = - 2 ln(1 - F ) ,  37,. (3-79) 
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Figure 3.15 shows the variation of F with t, for several values of Pep (1 + K). 
For a stagnant sphere. Pep '(1 + K )  = 0 and Newman (Nl)  obtained 

2Tt2 " " 1 
Sh, = -- 1 exp(- iz27c2~,)  1 -i- exp(- n2n2zp). (3-8 1) 

3 , = I  ,,= 1 11" 

For a circulating sphere with Pep (1 + K) + x, the time required for diffusion 
is much greater than that for fluid circulation, so that surfaces of uniform con- 
centration coincide with the Hadamard-Rybczynski streamlines. Kronig and 
Brink (K6) s b o ~ e d  that the solution is then 

32 " 
Sh, = - 1 A ,,2i,2 exp( - 16;.,~,) / An2 exp( - 16~.,zP). (3-83) 

3 , = I  , n = l  

Corresponding values for F, evaluated by finite differences from the governing 
equations, are shown in Fig. 3.15. As Pe, increases, circulation causes F to rise 
more rapidly. but the effect is not large: z, for a given F decreases by at most a 
factor of three as Pep (1 + K )  increases from zero to infinit>. In fact, the Kronig- 
Brink curve in Fig. 3.17 is closely approximated by Eq. (3-80) with 9, replaced 
by 2.58,. Thus circulation causes an effective diffusivity at most 2.5 times the 
molecular value. For negligible external resistance, the short-time approxima- 
tion given by Eq. (3-72) becomes 

7- 

F = 6,/ t, n. (3-84) 

0.001 0,Ol 0.1 

'P 

FIG. 3.15 Variation of fractiollal approach to equilibrium with dimensionless timc for spheres 
in creeping flow with negligible external resistance. 
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Equation (3-84) lies within 1 0 U f  the Newman solution for s, < and 
within 10% of the Kronig-Brink curve for s, < low4. 

Figure 3.16 shows the time variation of Sh,. Although Sh, cannot easilq be 
measured, it is useful for displaying the interaction of diffusion and circulation. 
The period of the local maxima and tninima shown in Fig. 3.16 is inversely 
proportional to Pep (1 + K ) .  As a fluid element circulates along the surface of 
the particle and up through its center, solute diffuses to it from the region of the 
stagnation ring. A fluid element originally near the surface of the drop and 
depleted in solute is enriched in solute before it returns to the neighborhood of 
the surface. Thus the flux remains higher than it would have been if there were no 
diffusion from the stagnant regions of the drop. This is reflected by an increase 
in dF,dz, (Fig. 3.15) and a maximum in Sh,. For long times, Sh, approaches an 
asymptotic value, shown in Fig. 3.17. For the Newman solution the steady 
asymptotic value is 

while for the Kronig-Brink solution 

(Sh,) ,p,, = yjvl = 17.66. (3-86) 

FIG. 3.16 Variation of instantaneous o\erall Sherwood number with dimensionless time for 
spherea in creeping flow with negligible external resistance. 
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P e p / ( l + ~ )  

FIG. 3.17 Asymptotic balue of overall Sheraood number at long times for spheres in creeping 
flow with negligible external resistance. 

The asymptote is within 5% of the Newman value for P e p  (1 + K) < 10 and 
within 5% of the Kronig-Brink value for Pe,/(l $ K) > 250. Figure 3.16 shows 
that the steady state is reached sooner for higher Pep (1 + K). However, for 
.rp > 0.15. Sh, is close to its steady asymptotic value for all Pep (1 + K). For 
PeP/(l  + K) > 1000 little error is incurred by using the Kronig-Brink result, 
since Sh, is within 15% of the Kronig-Brink value even with oscillation. 
Experimental data at low Re for heat transfer (C2) and extraction from single 
drops (B7, G4, 53) agree with the Kronig-Brink analysis if care is taken to 
eliminate the external resistance, to exclude surfactants, and to correct for end 
effects. 

5. Negligible Internal Resistunce 

When the internal resistance is negligible, the particle concentration is uni- 
form and its time variation can be related to the external concentration gradient 
by a mass balance on the diffusing species: 

with the initial condition 

a. Trurisierzt Exterrzul Resistulice With the time variation of the external 
resistance unspecified. the problem posed by Eq. (3-87) reduces to diffusion and 
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FIG. 3.18 \'ariation of fract~onal approach lo equilibrium ~ i t h  time for a sphere in stagnant 
su r ro~~ndings  (PC - 0) with negligible internal resistailce (HCs ,  2 > 25).  

FIG. 3.19 Variation of fractional approach to equilibrium \\ith time for rigid spheres with 
ilcgligible internal resistance in creeping flow at  high Pe. 

convection in the external phase subject to a time-varying boundary condition. 
It can be solved with any of the step function solutions in Section B using 
Duhamel's theorem, to give the variation of F with 7 (A4, C4, K4, K5). The 
solution for a sphere in stagnant surroundings, Eq. (3-59), yields the results in 
Fig. 3.18, valid for H 2 , / 9  > 25'(K3). Figures 3.19 and 3.20 show corresponding 
results for rigid (K4) and circulating (Dl )  spheres in creeping flow at high Pe, 
obtained from the step function solutions. A solution is also available (K5) for 
rigid spheres with Pe < 1. 

For hcat transfer the group HOP 9 becomes K,, K, 
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FIG. 3.20 Variation of frac~ional approach to equilibrium ~vith time for circulating spheres with 
negligible iilteriial resistance in creeping Roa at high Pe. 

b. Quasi-Stead?. External Resistance In the cases shown in Figs. 3.18 to 
3.20, the curves approach a limit corresponding to the quasisteady case as H, 
HPel 3,  or HPel becomes very large. If the external resistance is assumed 
constant at its steady value. the solution to Eqs. (3-87) and (3-88) is 

F = 1 - exp(- 32 Sh 2H) = 1 - exp(- 3.rp Bi), (3-89) 

where Bi, the Biot number. is ka HgP. '  The appropriate value of Sh is given by 
Eq. (3-44) for stagnant fluids (Fig. 3.1 8). by Eq. (3-47) for rigid particles (Fig. 3.19), 
and by Eq. (3-52) for circulating spheres (Fig. 3.20). 

6. Conzparable Resist~lnce irz Eaclz Phase 

Except for stagnant fluids, discussed in Section (2.2, there are no general solu- 
tions for the case where the transient resistances in both phases are significant. 
If  the external resistance is assumed constant. Eq. (3-56) must be so l~ed  with 
boundary conditions given by Eqs. (3-65), (3-66), (3-69), and 

Solutions have been obtained for a rigid sphere with Pep = 0 (G8), and the 
results are shown in Fig. 3.21. We have complemented these with solutions for 
a sphere circulating with the Hadamard-Rybczynski velocities at PeP/(l  + K) + 

x. assuming Sh,,, proportional to sin 0 and ~ i t h  the overall mean Sh used to 
define Bi. These results are shown in Fig. 3.22. For Bi + x (i.e., negligible 
external resistance), the limiting curves are the Newman solution in Fig. 3.21 
and the Kronig-Brink solution in Fig. 3.22. For Bi < 0.2 the internal resistance 

' For hedt transfer. BI = h ~ i  K,,  
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FIG. 3.21 Variation of fractional approach to equilibrium with time for stagnant spheres 
(Pe, = 0) with constant external resistance. 

FIG. 3.22 Variation of fractional approach to equilibrium with time for circulating spheres Ivith 
Pep (1 - ic) + x and constant external resistance. 

is negligible, so that the particle concentration is uniform and Eq. (3-89) can be 
used to predict F. 

Surface contaminants affect mass transfer via hydrodynamic and molecular 
effects, and it is convenient to consider these separately. Hydrodynamic effects 
include two phenomena which act in opposition. In the absence of mass trans- 
fer, contaminants decrease the mobility of the interface as discussed in Section 
I1.D. In the presence of mass transfer, however, motion at the interface may be 
enhanced through the action of local surface tension gradients caused by small 
differences in concentration along the interface. This enhancement of surface 
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motion. often called the Marangoni effect (S4). is considered in more detail in 
Chapter 10. The molecular effects are interfacial resistances to mass transfer 
which ma! arise from the interaction of surface contaminants nith the species 
being transferred. The magnitude of the interfacial resistance depends upon 
the nature of the transferring substances and the contaminants.%ere we assume 
that the contaminants cause no additional resistance to transfer. Finite inter- 
facial resistances are considered briefly in Chapter 10. 

1. Esterrial Resirtunce -Stead! State 

The effect of surface contaminants on mass transfer has been calculated using 
the models of Frumkin and Levich (F l ,  L6), Schecter and Farley (S2), and 
Savic (G7, S1) (see Section 1I.D). The following crude but systematic method 
of estimating the effect of surface contamination on mass transfer is based on 
Savic's stagnant-cap approach, analogous to the treatment of terminal velocity. 
The values of the velocity ratio, Y. and angle excluded by the stagnant cap, O , ,  
are estimated from Fig. 3.7 and Huang's curve in Fig. 3.6. The Sherwood 
number for the mobile interface, Sh,, is obtained by treating it as part of a 
fully circulating sphere, and is therefore taken from Fig. 3.10 at the appropriate 
K and Pe. An approximate upper limit for transfer through the stagnant cap 
is obtained by treating it as a portion of a rigid sphere at the same Pe. so that 
the appropriate Sherwood number, Sh,. is obtained from Fig. 3.10 or Eq. (3-49). 
The overall Sherwood number is then estimated as 

Use of Savic's surface velocities in Eq. (3-51) yields for high Pe: 

Sh = 0.651 Pel ', 3(Y - 1) Y. (3-92) 

which suggests that the weighting factor for mass transfer through the mobile 
interface can be approximated by 

Y, = y 3(Y - I), Y. (3-93) 

Similarly, Y, follows from the Levich solution for a rigid sphere in creeping 
flow at high Pe as 

Y,  = 1 - (0 ,  - sin 0 ,  cos H,) ,  71. (3-94) 

2. Traizsjer \~ i t / z  Vuriahle Particle Contetitrntion 

Dispersed phase resistances are increased when surface contaminants reduce 
interfacial mobility. Huang and Kintner (H9) used Savic's stagnant-cap theory 
in a semiempirical model for this resistance. A simpler quasi-steady model is 
proposed here, analogous to that for continuous phase resistance. The Sherwood 

' It is unlikely that appreciable molecular resistance to heat transfer across fluid- solid or fluid- 
fluid in~erfaces can be caused by surfacc contamination. 
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numbers for the cap and the mobile portion of the sphere are obtained as 
functions of T ,  from the Newman and Kronig-Brink solutions described in 
Section C.4. It is assumed that the cap angle is constant with time and that the 
spherical segment bounded by the cap is stagnant and occupies a fraction f,, 
of the sphere volume: 

f,, = (1 + cos 00)[2 + cos 0,(1 - cos O,)] 4. 13-95) 

Mass balances for the mobile and stagnant portions of the particle then give 

where the subscripts M and S indicate the mobile and stagnant portions of the 
particle. I indicates the plane separating these portions, f,, is the fraction of 
the particle surface occupied by the stagnant cap. and j,, is the area of contact 
between the two portions of the particle expressed as a fraction of the surface 
area of the sphere. The mean approach to equilibrium is 

It is further assumed that the resistances between the two portions of the sphere 
are additive : 

Sh,-' = Sh,-' + Shs-l, (3-99) 

with Sh, and Shs given by Eqs. (3-81) and (3-83). For uniform initial composi- 
tion, the initial condition is 

These equations hale  been solved numerically to gi\e the hariation of 
F with T ,  shoun in Fig. 3.23 for se\eral lalues of the angle excluded by the 

I O - ~  0.001 0.01 0.1 

'P 

FIG. 3.23 Variation of fractioilal approach to equilibrium with time for fluid particles with 
contaminated interface and Pep ( 1  + ti) + X :  O0 = angle excluded b> stagnant cap. 
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stagnant cap, 0,. Results lie between the solutions of Neuman  and Kronig and 
Brink. This model can easily be extended to include changes of cap angle with 
time. 
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Chapter 4 

Slow Viscous Flow 
Past Nonspherical Rigid Particles 

I. INTRODUCTION 

In this chapter, we extend the discussion of the previous chapter to non- 
spherical shapes. Only solid particles are considered and the discussion is 
limited to low Reynolds number flows. The flow pattern and heat and mass 
transfer for a nonspherical particle depend on its orientation. This introduces 
complications not present for spherical particles. For example, the net drag 
force is parallel to the direction of motion only if the particle has special shape 
properties or is aligned in specific orientations. 

11. FLUID MECHANICS 

It is convenient to define an "equivalent sphere" as in Chapter 2. Drag is 
then related to that on the equivalent sphere either by a "drag ratio" defined 
as 

drag on particle 
A = 

drag on equivalent sphere at same velocity (4- 1) 

or by a "settling factor," 

terminal velocity of particle 
S = . (4-2) 

terminal velocity of equivalent sphere with same density 
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When these factors are based on the volume-equivalent sphere, 

in creeping flow because of the linear dependence of drag on relative velocity. 
Since the net drag on an arbitrary particle is generally not parallel to the 

direction of motion, a particle fallsi vertically without rotation only if it 
possesses a certain symmetry or a specific orientation. The following guidelines 
for solid particles with uniform density are derived from general results for 
creeping flow (H3): 

(ii Orthotropic particles (see Chapter 2) have no preferred orientation and 
always fall without rotation. Motion is vertical only if a plane of symmetry is 
horizontal. 

(ii) Axisymmetric particles fall vertically if the axis is vertical. If the particle 
has fore-and-aft symmetry, it is orthotropic. It therefore falls vertically also if 
the axis of symmetry is horizontal, and always moves without rotation. Other- 
wise, it falls without rotating only when its axis is vertical: it is only stable, 
however, in one of the two directions. 

(iii) Spherically isotropic particles always fall vertically without rotation, 
and the settling velocity is independent of orientation. This is the origin of the 
name for this class of shapes. 

Particles subject to Brownian motion tend to adopt random orientations, 
and hence do not follow these rules. A particle without these symmetry prop- 
erties may follow a spiral trajectory, and may also rotate or wobble. In general, 
the drag and torque on an arbitrary particle translating and rotating in an 
unbounded quiescent fluid are determined by three second-order tensors which 
depend on the shape of the body: 

(i) A symmetric translation tensor which describes the resistance to trans- 
lational motion. 

(ii) A symmetric rotation tensor giving the torques resulting from rotation. 
(iii) An asymmetric coupling tensor which defines torques resulting from 

translation and drag forces resulting from rotation. 

The use of these resistance tensors is developed in detail by Happel and Brenner 
(H3). While enabling compact formulation of fundamental problems, these 
tensors have limited application since their components are rarely available 
even for simple shapes. Here we discuss specific classes of particle shape without 
recourse to tensor notation, but some conclusions from the general treatment 
are of interest. Because the translation tensor is symmetric, it follows that every 
particle possesses at least three mutually perpendicular axes such that, if the 
particle is translating without rotation parallel to one of these axes, the total 

+ The same guidelines apply to rising particles with density less than that of the surrounding fluid. 
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drag force is also parallel to the axis (H3). These axes are usually called "principal 
axes of translation." If the particle is translating with velocity U parallel to 
principal axis i, then the drag is given by 

ED = - ~lc,U, (4-4) 

where the three values of c, are termed the "principal translational resistances." 
For an orthotropic particle, the principal axes are normal to the planes of 
slmmetry. For an axisymmetric particle, the axis of symmetry is one of the 
principal axes. 

Particles which are orthotropic. axisymmetric, or spherically isotropic possess 
a point about which the coupling tensor is zero. In this case, pure translation 
in creeping flow never causes a torque component of drag. The resistance to 
any translation can then be estimated by a simple procedure described by 
Dahneke (Dl) ,  relying on the linearity of the governing equations. The total 
drag is obtained by adding the drag components due to the components of 
velocity parallel to each of the principal axes of translation. Thus, ifthe principal 
axes are defined by the three orthogonal unit vectors i, j, k, the total drag 
resulting from translation at velocity U is given by 

For a large number of identical particles with random orientations, the mean 
resistance is obtained by integrating Eq. (4-5) over the range of orientations 
(H3). The mean resistance follows as 

while the mean direction of settling is parallel to the gravity field. The resistance 
given by Eq. (4-6) is used to describe the translational motion of dilute sus- 
pensions of small particles of arbitrary shape and random orientation (e.g. as 
a result of Brownian motion). 

1 .  Gerzernl Considerations 

a. Resistance to Translation Consider an axisymmetric particle translating 
with steady velocity U through a stationary unbounded viscous fluid. The 
orientation of the particle is defined as shown in Fig. 4.1 by the angle 0 between 
its axis of symmetry and the direction of motion. In the plane of Fig. 4.1, the 
principal axes of translation are parallel and perpendicular to the axis of 
symmetry. Therefore the components of drag along the principal axes follow 
from Eq. (4-5): 

parallel to the axis of symmetry: 
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FIG. 4.1 Arbitrarj axisymmetric particle in steady translation 

perpendicular to the axis of symmetry: 

FD2 = - pc2 C' sin 0, (4-8) 

where c1 and c2 are the principal resistances for translation parallel and normal 
to the axis of symmetry. The net drag is then 

F, = - pC[c, cos2 e + cZ2 sin2 01' (4-9) 

at an angle yi to the axis of symmetry such that 

tan 6 = (c2ic,) tan 0. (4- 10) 

Thus the drag resulting from any translation can be determined if the two 
principal resistances are known. The principal resistances of common axisym- 
metric shapes are given in subsequent sections. 

b. Motioiz in Free Fall or Rise For the particle to move steadily in free fall 
or rise, two conditions must be met: 

(i) The total drag FD must be directed vertically to counterbalance the 
net gravity force acting on the particle. 

(ii) The point on the axis of symmetry through which FD acts, C in Fig. 4.1. 
must coincide with the center of mass (assuming the particle has uniform 
density). 

For a particle without fore-and-aft symmetry, condition (ii) is generally met 
only when the axis is vertical: hence such particles fall with a "tumbling" motion. 
However, if the particle has fore-and-aft symmetry of shape and density. both 
FD and immersed weight must act through the point where the plane of sym- 
metry cuts the axis; condition (ii) is automatically satisfied, and the particle 
falls without rotation. Condition (i) then determines the direction of motion. 
The angle 4 becomes the inclination of the axis from the vertical. so that the 
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falls at an angle to the vertical given by 

As a general guide: c, is usually less than c2 for a prolate particle, so that 0 < q5 
and the direction of motion is between the axis and the vertical. On the other 
hand, an oblate body usually has c, > c2 so that the direction of fall is between 
the vertical and the equator. The settling velocity follows from Eq. (4-9): 

where V is the particle volume and Ap the density difference between the 
particle and the fluid. The component parallel to the axis of the particle is 

while the vertical component is 

For a dilute suspension of identical particles oriented randomly, the mean 
resistance follows from Eq. (4-6): 

- 
C = 3/(c1-' + 2c2-l), (4- 1 5 )  

so that the mean settling velocity is 

c. Trarzslutiolz Parullel to tlze Axis of  Sj.nzr?zetry Many more results have 
been reported in the literature for the axial resistance c, than for the normal 
resistance c2 of axisymmetric particles. since axisymmetric flows are more 
tractable than three-dimensional flows. The equation of motion for creeping 
flow parallel to the axis of symmetry, Eq. (1-36), may be expressed in various 
orthogonal curvilinear coordinate systems (H3). For a frame of reference fixed 
to the particle with origin on the axis of symmetry, the boundary conditions 
are Eq. (1-27) and 

$ = 0 on the surface of the particle, (4- 17) 

?$,'?n = 0 on the surface of the particle, (4- 18) 

where 11 is a coordinate normal to the surface. 
A useful theorem due to Payne and Pel1 (P3) enables the drag on an axisym- 

metric body to be calculated directly from the stream function $' for steady 
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motion of the bod) through stagnant fluid': 

FD = 871~1 lim ($', 1. sin2 0).  
r -  7 

(4- 19) 

This theorem could have been used to obtain the drag for fluid and solid spheres 
in Chapter 3. Explicit analytic solutions are available for bodies whose bound- 
aries are easily described in relatively simple coordinate systems. Results for 
spheroids and disks (01 ,  P3, Sli  are discussed below. Solutions are also available 
for lenses and hemispheres (P3)> hollou~ spherical caps (D3: C3. P3): toroids 
(P4), long spindles or needles (P5), and pairs of identical spheres (S7). 

Techniques have also been developed for obtaining approximate solutions 
in axisymmetric creeping flow. The general approach is to use a series expansion 
for the drag or stream function, truncate the series after a number of terms: 
and use the boundary conditions to evaluate the terms retained. The "point- 
force approximation technique" developed by Burgers (B10) is applicable to 
particles (e.g., needles or fibres) which have a large aspect ratio. The total drag 
is approximated by a distributed line force along the axis of symmetry. The 
force is represented by a polynomial approximation in which the constants are 
determined by satisfying Eq. (4-18) as closely as possible. O'Brien ( 0 2 )  expanded 
the stream function as an infinite series in general spherical coordinates and 
truncated after a finite number of terms. The remaining coefficients were ob- 
tained by satisfying Eq. (4-18) at the same number of points on the surface of 
the particle. Bowen and Masliyah (B4) improved this approach by fitting the 
solution to the boundary condition in the least-squares sense over the entire 
surface. Gluckman et nl. (G2, G3) developed a "multipole representation tech- 
nique," by which any convex axisymmetric body is represented as an array of 
oblate spheroids. Again, individual terms in the resulting series for $ are deter- 
mined by satisfying Eq. (4-17) and Eq. (4-18) at a finite number of points on the 
surface. These approximate techniques allow reliable results to be obtained for 
bodies as deformed as cylinders and cones. However. care is required in handling 
plane surfaces normal to flow, e.g., the ends of a cylinder. Results obtained by 
these techniques are discussed below. 

2. Spheroids 

Spheroidal particles can be treated analytically, and allow study of shapes 
ranging from slightly deformed spheres to disks and needles. Moreover. a 
spheroid often provides a useful approximation for the drag on a less regular 

' This theorem leads to an interesting result concerning "drift." t o r  an axis)mmctric body. 
the drift xolume (D2). the volume encloscd bctwcen the initial and final position of a horizontal 
laler of tracer fluid. is given bq V, = lim,.,,(q'). If the bod) is to h a ~ e  finite drag, then lim,.,,i$' i.) 

10 < 0 < xl must be finite from Eq. 14-1 9). Hence V, must be unbounded. Therefore an) axisymmetric 
body with finite drag in creeping flow through an infinite medium must cause infinite drift. It 
seems likcl) that this result should apply to bodies xvithout axis~mmetrq.  but no proof of this 
appears to have been given. 
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axis 

I 
I Oblate 

FIG. 4.2 Dimensions of spheroids. 

particle (see Section E below). Figure 4.2 shows the notation used here: the 
axial dimension of the particle is 2h while the maximum dimension normal to 
the axis of symmetry is 2a. The aspect ratio, b,a, of the particle is denoted by E. 

a. Creepi~zg Flolt Table 4.1 gives expressions for the principal resistances 
of spheroids. first obtained (GI) from Oberbeck's general results for ellipsoids 

TABLE 4.1 

Resistances of Spheroids in Creeping Flow" 

Oblate (E < I !  Prolate ( E  > 1 )  

Principal Resistances 

1 .  Axial. c ,  

Xnu(1 - E2) Exact - -- - - - - - . - - - 
8nu(k2 - 1 )  

- - -  - - - - - - - - - - - - 

[ ( I  - Z E ~ ) L O \ - '  L , I - E2] + L [ ( 2 ~ ' -  I J I ~ ( ~ : + , L ~ Z  I )  t 2  :I] - L  

Approx 1 2nid4 + t) 12rru(4 + ti 

2. Normal, c2 

16za(l - t 2 i  
- - - - - - - - - - - - - 

167(i(E2 - 1) 
Exdct - - -- - - - - - - - - - - 

- 

[ ( 3  - 2E2)cos-' E \ 1 - !I2] - k [(ZE' - 3)ln(E + , E' --I) , L2 -11 + E 

Approx 1 2nu(3 + 2 t )  1 2nii(3 1 2E) 

Mean Res~staiice (random orientation! T 
- - -  

Exact 67111\ I - E 2  c05-I E 6 ~ ,  E2 - 1 ln(E + \ L'- 1) 

Ratio of form drag to skin fric~ion (axis)mme~ric flow). R :  
- -  - - 

Exact: ~ c o s - l  t: - , 1 - E' I : ~ + '  2 -  1 
- -. - -~ - - - - - - -. -_\1 . 

- 

E', 1 - E' - I:cos-' E E2\ CT.I 1 - f:ln(t: - , gr- 11 

" After Aol (Al I. Cans (GI I, Happel dnd Brenner (H3). Obcrbeck (Ol),  dnd Pa>ne  and Pel1 (P3) 
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(01) .  Results for thin disks are obtained in the limit as E + 0. Approximate 
relationships, obtained by treating the spheroid as a slight11 deformed sphere 
(H3, Sl), are also g i~en .  The drag ratio may conveniently be expressed as the 
ratio of the resistance of the spheroid to that of the sphere with the same 
equatorial radius cr : 

A,, = c ,  6na. 

A,, = c,l6nc1. 

A, = 7 6na, 

where c is the mean resistance for a large number of spheroids with random 
orientation. obtained from Eq. (4-15). The drag ratio is thus equal to the radius 
of the sphere with the same resistance in creeping flow. expressed as a multiple 
of a. 

Figure 4.3 shows exact and approximate values for A,, , the axial drag ratio. 
Corresponding curves for A,, and A, appear in Fig. 4.4 with the exact values 
of A,, for comparison. Due to the dependence of surface area on the axial 
dimension, 2b, drag increases with E. For flow parallel to the axis, the polar 
regions contribute least to the total drag, so that A,, depends less strongly 
than A,, on E. The approximate results give good estimates for the resistances. 
The maximum deviation for oblate particles, approximately 6% for both A,, 
and A,,, occurs for disks. For prolate particles the deviation increases with 
aspect ratio; for E = 5 the error is almost 10% in A,, but less than 1% in A,, . 

' i  I 

i/ I 
0 0.5 1.0 1.5 2.0 2.5 

Aspect Ratlo, E 

FIG. 4.3 Drag ratios for spheroids in axisymmetric flow. Drag ratio A,, : -Exact: ---- Approxi- 
mate: Drag Component; (1) Friction: (2) Form. 
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Aspect Ratlo, E 

FIG. 4.4 Drag ratios for spheroids: -- Exact: --- Approximate. 

It is common practice to define a "hydraulic equivalent" sphere as the sphere 
with the same density and terminal settling velocity as the particle in question. 
For - a spheroid in creeping flow. the hydraulic equivalent sphere diameter is 
2u, ElA, and thus depends on orientation. 

It was noted in Chapter 3 that the ratio R of form drag to skin friction for 
a rigid sphere in Stokes flow is 1 :2. Table 4.1 gives expressions for R due to 
Aoi (Al) for flow parallel to the axis of spheroids. The ratios of form drag and 
skin friction to the total drag on a sphere of radius u are RA,, (1 + R)  and 
A,,,(l + R), respectively. These two terms are plotted in Fig. 4.3. The two 
components of drag depend strongly on aspect ratio for oblate spheroids. 
However, the changes are largely compensating so that the dependence of total 
drag on E is weak. 

The drag ratio based on the sphere with equal volume is 

Figure 4.5 shows the variation of A, with E for flow parallel and normal to the 
axis, and averaged over random orientations. Except for disk-like particles, the 
dependence of A, on aspect ratio is rather weak. In axial motion, a somewhat 
prolate spheroid experiences less drag than the volume-equivalent sphere: A,, 
passes through a minimum of 0.9555 for E = 1.955. For motion normal to the 
axis of symmetry, A,, takes a minimum of 0.9883 at E = 0.702. However, the 
average resistance A, is a minimum for a sphere. 

b. Axisyr71tnetric Motioiz at Sonzelthat Higher Rej.nolds I\'~inzbers The in- 
consistency noted by Oseen (see Chapter 3) is also present in creeping f l o ~  solu- 
tions for nonspherical bodies. Extensions to the Stokes solution similar to those 
for a sphere in Chapter 3 have been investigated for flow parallel to the axis of 
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091 
0 10 2 0  

Aspect Ratio, E 

FIG. 4.5 Drag ratios for spheroids compared to volume-cquivalent spheres 

a spheroid. Motion with any other orientation is significantly harder to analyze 
due to the need for three spatial coordinates. Breach (B5) applied Proudman 
and Pearson's method of inner and outer expansions to obtain: 

(i) Oblate: 

(ii) Prolate: 

where A,, is the drag ratio defined by Eq. (4-20) with c, from Table 4.1 and Re 
is based on the equatorial diameter, 2a. The first term on the right of each 
equation gives the Oseen drag (Al, 03) .  The term A,, Re is the Reynolds 
number for the sphere with the same Stokes resistance as the spheroid. Within 
the Oseen range. the ratio of form to friction drag is independent of A,, Re (Al). 

Figure 4.6 compares Eqs. (4-24) and (4-25) with selected experimental and 
numerical results for spheroids. When plotted in this form, (C,, CD,, - 1) is only 
weakly dependent on E for A,, Re less than about unity. The drag is then very 
close to the Oseen value, and Eqs. (4-24) and (4-25) are accurate. Above this 
range, the equations predict that the drag should exceed the Oseen value, 
whereas the reverse occurs in practice. Thus, as for spheres in Chapter 3, 
analytic results have littie value for A,, Re 5 1. 

For higher Re, departure from the Oseen drag increases with increasing 
aspect ratio. It is common practice to determine a hydraulic equivalent diameter 
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A01 Re 

FIG. 4.6 Departure from Stokes's drag for spheroids. Breach curves from Eqs. (4-24) and (4-25). 

for an irregular particle by measuring its terminal settling velocity under a 
specific set of conditions, usually in creeping flow. Figure 4.6 shows that, even 
for simple shapes, the dependence of drag on particle shape prevents the 
hydraulic equivalent diameter determined at one Re from being used to predict 
the settling velocity reliably at another Re. This problem is aggravated by 
particle orientation effects, discussed in Chapter 6. 

3. Cylinders 

Analytic results for cylinders comparable to those discussed for spheroids 
are not available. However, Heiss and Coull (H4) reported accurate experi- 
mental determinations for cylinders, spheroids, and rectangular parallelepipeds, 
and developed a general correlation for settling factors. In terms of the volume 
drag ratio, A,, their results may be written: 

(i) for motion parallel to the axis: 

(ii) for motion normal to the axis: 
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where tj is the sphericit) defined in Chapter 2. and x is a shape factor similar to 
the circularity. defined as: 

c l  y = P -  diameter of volume-equivalent sphere 
- 

" d ,  diameter of projected-area-equivalent sphere' 
(4-28) 

The area defining d, is projected parallel to the direction of motion. The 
modified circularity x is related to Heywood's shape factor (see Chapter 2) by 

provided that k is evaluated for the same projected area.? 
For spheroids with aspect ratios between 0.1 and 10, Eqs. (4-26) and (4-27) 

agree closely with the analytic results in Table 4.1 (H4). For cylinders, these 
results may be written explicitly in terms of the aspect ratio, E = L, d. using 

The principal resistances may be obtained from the drag ratios as 

Figures 4.7 and 4.8 show experimental and numerical results for the resis- 
tance of cylinders. The drag values predicted by the multipole representation 
technique of Gluckman et al. (G3) lie closer to the experimental values (B2, H4) 
than do the series truncation approximations of Bowen and Masliyah (B4). 
Equation (4-26) gives a reasonable approximation for 0.1 < E < 10, but is 
unreliable outside this range. If the drag on a cylinder is approximated by that 
on a spheroid of the same aspect ratio, the value of A, for the spheroid must 
be multiplied by 1.5-' = 0.874, since the volume of the cylinder is 1.5 times 
that of the spheroid. Figure 4.7 shows the resulting curve, obtained from the 
exact results for spheroids in Table 4.1. The drag on a cylinder approaches that 
on the spheroid as E + 0 or E -+ x. For E < 0.1, the result for a spheroid gives 
a close estimate for the drag on a cylindrical disk. For E > 9, the closest ap- 
proximation is given by Cox's result from slender-body theory, Eq. (4-36) below. 

Figure 4.8 shows that Eq. (4-27) gives a good approximation for the drag on 
a cylinder with motion normal to the axis for the range in which experimental 
results are available. The curve obtained from the exact results for spheroids 
can be used to estimate A, for very small or large E. The slender-body result, 
Eq. (4-37), appears to be applicable for E > 3. 

Singh and Chowdhurq (S4) proposed al ternati~e correlations in terms of $ and x for cylinders 
and square bars. Their equations are simpler in form than Eqs. (4-26) and 14-27). However, the 
fit to available data is no better for 0.5 < E < 5.0. and the trend is wrong outside this range. 
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4. Slerzder Bodies 

In the "point force approximation" technique (see Section lc), Burgers (B10) 
suggested a polynomial approximation for the distributed line force along the 
axis of a body of large aspect ratio: 

where the x axis is the axis of symmetry, the body has length L: and B,, B,, 
and B ,  are constants determined by requiring the fluid velocity induced by 
the drag to counterbalance the free stream velocity as closely as possible on 
the surface of the particle. The total drag is then 

This approach leads to expressions for the resistance to axial motion of the 
form 

c, = 2nL/[ln(2E) - ti]. (4- 3 6) 

For prolate spheroids, ti is predicted to be 0.50, in agreement with the result 
in Table 4.1 when E -+ m. For cylinders, Burgers obtained ti = 0.72. Broersma 
(B9) improved Burgers' estimate for cylinders by taking further terms and 
solving numerically. The value obtained, K = 0.80685, was subsequently con- 
firmed by Cox (C5) using an asymptotic expansion. Cox's treatment has the 
advantages of leading to an estimate of the error in the approximation and of 
enabling results to be obtained for curved slender bodies and for cases in which 
the axis of the body is not parallel to the direction of motion. Cox showed that 
the principal resistance for motion normal to the axis of symmetry is 

c, = 4nL,'[ln(2E) + 1 - ti]. (4- 3 7) 

For prolate spheroids. Eq. (4-37) with ti = 0.5 again agrees with the limiting 
exact result for E -t x. The validity of these equations for cylinders is demon- 
strated in Figs. 4.7 and 4.8. Comparison of Eqs. (4-36) and (4-37) shows that 
the ratio of c, to c, tends to 2 as E + x. This result holds for any axisymmetric 
particle, while c, < 2c, for finite aspect ratios (W2). Consequently a needle- 
like particle falls twice as fast when oriented vertically at low Re than when 
its axis is horizontal. 

Cox (C5) and Tchen (TI) also obtained expressions for the drag on slender 
cylinders and ellipsoids which are curved to form rings or half circles. The 
advantages of prolate spheroidal coordinates in dealing with slender bodies 
have been demonstrated by Tuck (T2). Batchelor (B1) has generalized the 
slender body approach to particles which are not axisymmetric and Clarke (C2) 
has applied it to twisted particles by considering a surface distribution rather 
than a line distribution. 



11. Fluid Mechanics 83 

j. Arbitri1i.j. Asis~mnzetric Particles 

Boxen and Maslijah (B4) g i ~ e  a useful discussion of the axial resistance of 
~,arious axisymmetric bodies. For particles which may be regarded as spheres 
~5 lth axisymmetric deformations, simple estimates for the resistance are avail- 
able. Suppose that a particle of volume V with principal resistance c, is obtained 
b) deforming a sphere of volume T/, and resistance c, , .  It is convenient to use 
t ~ +  o factors introduced by O'Brien (02):  

Ac = (cl - cis) cls,  

A V  = ( V -  K) y .  

For deformations with fore-and-aft symmetry, 

while "p-deformations" (lacking fore-and-aft symmetry) give (B3) 

Equation (4-40) is equivalent to the approximate results for spheroids given in 
Table 4.1; Figs. 4.3 and 4.4 demonstrate that the approximation is useful even 
for grossly deformed spheres. 

Bowen and Masliyah examined the axial resistance of cylinders with flat. 
hemispherical and conical ends, and of double-headed cones and cones with 
hemispherical caps. together with the established results for spheroids. Widely 
used shape factors (including sphericity) did not give good correlations, while 
Eqs. (4-26) and (4-27) were found to be inapplicable to particles other than 
cylinders and spheroids. The best correlation was provided by the perimeter- 
equivalent factor 1 defined in Chapter 2. With this parameter, the equivalent 
sphere has the same perimeter as the particle viewed normal to the axis. Based 
on their numerical results, Bowen and Masliyah obtained the correlation 

Figure 4.9 shows that Eq. (4-42) also gives a good correlation of results of other 
workers. For shapes where experimental data are lacking, Eq. (4-42) is likely to 
give the best estimate for resistance to axial translation. Figure 4.9 also shows 
experimental results for rectangular parallelepipeds. which may be regarded as 
analogous to axisymmetric particles (see Section C below). The shape factor 
and drag ratio are evaluated from the arithmetic mean of the maximum and 
minimum perimeters, viewed normal to the corresponding axes. Equation (4-42) 
also correlates these results within about 6%, suggesting that this form of 
correlation may prove to be useful for nonaxisymmetric particles. 

Results for translation normal to the axis are more limited and all experimen- 
tal. Figure 4.10 shows available data plotted employing Bowen and Masliyah's 
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FIG. 4.9 Bowen and Masliyah correlation for axial resistance of axisymmetric particles: - Eq. 
(4-42): --- Spheroids (exact). 
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FIG. 4.10 Resistance of axisymmetric particles to translation normal to the axis: - Eq. (4-43): 
- - -  Spheroids (exact). 
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groups. where the perimeter viewed along the axis (or "equivalent axis" dis- 
;used below for rectangular parallelepipeds) has been used. The parameters C 
and A,, also appear to give a useful correlation for the second principal resis- 
tance, since the data fall generally below but within 107; of the exact curve 
for spheroids. The following correlation is obtained from the experimental data 
together with an equal number of points from the exact curve for spheroids: 

Equation (4-43) may be used to estimate the normal resistance of particles for 
which no experimental results are available. 

For an orthotropic particle in steady translation through an unbounded 
viscous fluid, the total drag is given by Eq. (4-5). In principle. it is possible to 
follow a development similar to that given in Section IT.B.l for axisymmetric 
particles, to deduce the general behavior of orthotropic bodies in free fall. 
This is of limited interest. since no analytic results are available for the principal 
resistances of orthotropic particles which are not bodies of revolution. General 
conclusions from the analysis were given in 1I.A. 

The only orthotropic particles for which comprehensive experimental results 
are available are "square bars." rectangular parallelepipeds with one pair of 
square faces. Symmetry then shows that the two principal resistances cor- 
responding to translation with square faces parallel to the direction of motion 
are equal. These resistances will be denoted by c,. while the resistance for 
translation normal to the square faces will be called c , .  Consider such a particle 
in arbitrary translation at velocity U. Figure 4.1 1 shows a section of the parti- 
cle parallel to the square faces: C ,  is the component of U in this plane. and the 
angle between C2 and principal axis 2 is 0. From Eq. (4-5), the drag components 
are as shown in Fig. 4.1 1. Hence the drag component parallel to C2 is 

u2 

FIG. 4.1 1 Rectangular parallelepiped with square section in steady translation 
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FIG. 4.12 Drag ratios for rectangular parallelepipeds with square section. 

while that perpendicular to C, is 

FD , = pU2(c2 cos 0 sin 0 - c, sin 8 cos 0). (4-45) 

Since c3 = c, for this class of shapes, FDl is zero while FDII is pC,c,. Thus 
the drag component in the plane of Fig. 4.11 is always in the - L2  direction 
with magnitude independent of the direction of C 2 .  Thus, for drag in steady 
translation or motion in free fall. these particles may be treated like axisym- 
metric particles.+ The axis through the centres of the square faces is like an 
axis of symmetry and may be termed the "equivalent axis." 

Heiss and Coull (H4) measured the drag on rectangular parallelepipeds. 
Results were correlated by Eqs. (4-26) and (4-27). For a particle with dimensions 
I x l x E l  

$ = (9nE2 2)' 3 ~ ( 1  f 2E). (4-46) 

For motion parallel to the equivalent axis 

while for motion normal to the equivalent axis 

x 2  = ( 0 . 7 5 ~  2)' 3.  

' Sqmmetry arguments show that the same conclusion applies to bodies. such as bars with regular 
polygonal cross sections, whose shapes are unchanged on rotation through an angle of 2n n (n  2) 
about the equivalent axis. Unfortunately, this simplification does not apply to rotational motion, 
or in general to heat or mass transfer. 
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The principal resistances may be obtained from the drag ratios as 

c = 31(6En2)' A, 14-49) 

Corresponding values for A, are shown in Fig. 4.12. Agreement with available 
experimental data is reasonable. but no better than for the more general 
correlations, Eqs. (4-42) and (4-43). 

For a particle which is spherically isotropic (see Chapter 2), the three prin- 
cipal resistances to translation are all equal. It may then be shown (H3) that 
the net drag is -pcU regardless of orientation. Hence a spherically isotropic 
particle settling through a fluid in creeping flow falls vertically with its velocity 
independent of orientation. 

Settling velocities of such particles have been measured by Pettyjohn and 
Christiansen (P6) and Chowdhury and Fritz (Cl). Correlation of both sets of 
data with the results of Heiss and Coull for cubes gives: 

A, = 1/(1 + 0.367 In $). (4-50) 

For a cube of side 1, Eq. (4-50) gives the resistance as 12.701, compared with 
experimental values of 12.581 (P6), 12.631 (H4), and 12.711 (Cl). To the accuracy 
of the determinations, the resistance can be taken as 4x1 (Dl).  It is noteworthy 
that Eqs. (4-26) and (4-27) predict that a spherically isotropic cylinder with 
aspect ratio 0.812 should have a drag ratio of 1.050, while Eq. (4-50) gives 
A, = 1.054. Agreement is so favorable that Eq. (4-50) may be useful for spheri- 
cally isotropic particles other than the simple shapes for which it was developed. 

No fully satisfactory method is available for correlating the drag on irregular 
particles. Settling behavior has been correlated with most of the more widely 
used shape factors. Settling velocity may be entirely uncorrelated with the 
"visual sphericity" obtained from the particle outline alone (B8). General cor- 
relations for nonspherical particles are discussed in Chapter 6. 

For creeping flow, a few simple general results often lead to useful estimates 
for the resistance or settling velocity of arbitrary particles. Sharp edges have 
little effect on drag. the most significant features being areas where the tangen- 
tial stress is parallel to the direction of motion. For a sphere which has been 
slightly deformed, the average resistance Z is equal to that of the sphere with 
the same volume (H3). However, the average resistance should be used with 
care, since even slight asymmetry causes a particle to adopt a preferred orienta- 
tion (M3). Hill and Power (H6) showed that the Stokes drag on an arbitrary 
particle is less than or equal to that on a body which encloses it and greater 
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than or equal to that on a body contained within it. Judicious choice of cir- 
cumscribed and inscribed bodies can give close bounds on the resistance or 
settling velocity. 

Weinberger (W2) showed that the sphere has the largest average Stokes 
settling velocity of all bodies of a given volume. Keller et a/. (Kl) showed that 
creeping flow solutions always underestimate drag at nonzero Re. The results 
for spheroids discussed above illustrate these general principles. 

111. HEAT AND MASS TRANSFER 

Very few solutions have been obtained for heat or mass transfer to non- 
spherical solid particles in low Reynolds number flow. For Re = 0 the species 
continuity equation has been solved for a number of axisymmetric shapes, 
while for creeping flow only spheroids have been studied. 

For constant-property steady flow the species continuity equation, Eq. (1-38), 
becomes 

Pe u 
--- . 

2 C 
V'c = (V')", 

where Pe is based on some characteristic length and c is the species concentra- 
tion. The boundary conditions are 

c = c, on surface of particle, (4-52) 

c = c, far from particle. (4-53) 

Brenner (B7) has shown that, whatever the particle shape, the total mass or 
heat transferred from a particle in creeping flow is the same if the flow infinitely 
far from the particle is reversed. Although the variation of the rate of transfer 
over the surface of the particle may differ under forward and reLerse flow. the 
total rate of transfer is the same. 

1. Stagnant External Plzase 

For Pe = 0, Eq. (4-51) reduces to Laplace's equation 

V2c=  0: (4-54) 

with the boundary conditions given by Eqs. (4-52) and (4-53). Diffusion from 
a finite particle into a stagnant external medium is analogous to the electro- 
static problem of a charged conductor located in a charge-free homogeneous 
dielectric medium. This problem has been treated thoroughly (S5, V1, W1) and 
the capacitance, the ratio of charge to potential. has been obtained for a number 
of shapes. These results can be utilized directly in the present application by 
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TABLE 4.2 

External Conductances of Particles in a Stagnant Medium" 
7 

Particle shape Conductdnce. L,A 9 

Sphere (radius = ~ r )  
Spheroid 

oblate (E < 1) 

prolate (E > 1) 

Thin rectangular plate (side L ,  2 side L,) 

Cube (edge = a) 

Touching spheres (equal size, radius = u) 

Intersecting spheres, radii a, and u,, with orthogonal intersection 

2nL, ln(4LI L,) 

" Arter Smbthc (S5. S6), Weber (WI), Schneider iS2). Reltan and Hlggins (Rl) .  and Hahne and 
Grlgul (HI) 

noting the equivalence 

where C, is the capacitance of the conducting particle and E is the permittivity 
of the medium. The quantity k,AIB may be called the "conductance" and has 
dimensions of length.+ The subscript zero denotes the absence of external flow. 
The distribution of conductance over the surface of a particle is identical to 
the distribution of surface charge in the geometrically similar electrostatic 
problem. With the exception of spheres, the local conductance is not uniform 
over the surface because edges and corners, where the curvature is high, have 
higher conductances. There is no solution to Eq. (4-54) for an infinite cylinder 
of any cross section. Instead, the steady-state rate of transfer to an infinite 
body is zero. Conductances obtained from solutions to Eq. (4-54) for finite 
bodies of various shapes are given in Table 4.2. Values of Sh, can be obtained 
from the tabulated conductances by dividing by the surface area of the particle 
and multiplying by a characteristic length. 

' In thc heat transfer literature the corresponding quantlt). h,A K, .  1s sometimes called the 
conduction shape factor 
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The conductance of arbitrary axis41nmetric particles may be approximated 
using the correlation given in Fig. 4.13. By analogy ~vith the drag ratio. a 
"conductance factor" is defined as 

conductance of particle A' = 
conductance of equivalent sphere' 

(4- 5 6) 

The graphical correlation is presented in terms of the perimeter equivalent 
factor C used in Figs. 4.9 and 4.10. The points have been calculated for 
axisymmetric shapes. 

0%- FINITE CYLINDER 1 

0 Eq. (4 -57) 
BODIES CUBE 

A HEMISPHERE 
x INTERSECTING - 

0 1 I I I I I I 
0 0.2 0 .L  0.6 0.8 1.0 1.2 1.L 

PERIMETER-EQUIVALENT FACTOR Z 

Frc;. 3.13 Correlation for conductance factor of axis)mmctric particles in slagliailt media 
(bascd on pcrimctcr-equivalent sphere). 

For needle-like bodies an electrostatic slender body theory is available (M4) 
which yields 

Comparison with the conductance for cylinders indicates that Eq. (4-57) is 
accurate within 5"/, for E 2 10. 

For shapes whose boundaries are not simply described in a single coordinate 
system, numerical solution of Eq. (4-54) is required. However, it is possible to 
provide upper and lower bounds for the conductance (P8) in much the same 
way as for the drag. A lower bound for an arbitrary particle is the conductance 
of the sphere of the same volume, i.e., 

Another lower bound is given by 
- 

k,A'B 2 8 \  A, n, 
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where A,  is the area of the maximum orthogonal projection of the body onto 
a plane. The equality is achieved for a disk. An upper bound is given by the 
conductance of a shape circumscribing the particle, spheres and spheroids 
being frequently used. More precise bounds can be obtained with extra effort 
(PI, P8). 

2. Creeping F1ol.t 

a. Particles o f  Arbitrary Slzape For Pe -, 0. an asymptotic solution for a 
particle of arbitrary shape has been obtained using matched asymptotic ex- 
pansions (B6). To first order in velocity, the solution is 

The effect of flow depends solely on a Peclet number formed using the con- 
ductance in a stagnant medium, k0A ,  3, as the characteristic length. Equation 
(4-60) has wider generality; it is valid for a fluid or solid particle of any shape 
at any Re so long as Pe + 0 and the stream far from the particle is uniform. 
This expression gives a good prediction of the conductance ratio for k ik ,  < 1.2. 
Equation (3-45) is the special case of Eq. (4-60) for spheres. The next term in 
the series expansion depends explicitly upon the shape and the orientation of 
the particle. 

b. Spheroids For creeping flow at finite Pe, Eq. (4-51) has been solved 
numerically for oblate and prolate spheroids of axis ratio 0.2 (MI). Solutions 
were obtained up to Pe = 70 with equatorial diameter as characteristic length 
in both Pe and Sh. An asymptotic solution for Pe + x has also been obtained 
(S3) for spheroids of any aspect ratio using the thin concentration boundary 
layer approach (see Chapter 1). With the equatorial diameter as characteristic 
length, this solution is 

Sh = 0.991K(Pe)' 3 ,  (4-61) 

where K is plotted in Fig. 4.14. For oblate spheroids the following formula 
holds asymptotically : 

K = 4(EJ3n)' (E -+ 0). (4-62) 

The corresponding asymptotic formula for prolate spheroids is 

Equations (4-62) and (4-63) yield good predictions for E < 0.1 and E > 10, 
respectively. 

The asymptotic formulae, Eqs. (4-62) and (4-63), predict that K + 0 at the 
respective limits. However, Sh does not go to zero because the assumption 
of a thin concentration boundary layer breaks down for extreme values of E. 
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I 
0.2 I  I I  I  I I I I ,  I I I  I l l l l  

0.1 1 .o 10 
ASPECT RATIO E 

FIG. 4.14 Factors to be used Jvith Eqs. (4-61). (4-68). (4-69) and (4-70) for predicting heat and 
mass transfer to spheroids in crceping flow. 

It was assumed that the concentration boundary layer was thin relative to the 
shorter axis of the spheroid. The order of magnitude of the boundary layer 
thickness can be approximated by the thickness 6 of a fictitious film 

Combining Eqs. (4-64) and (4-61) yields 

6,a x K - I  PeC1 3. 

For the oblate spheroid 

6 a x (EPe)- '  3, 

and thus the analysis leading to Eq. (4-62) applies only if E Pe + x. Similarly 
for the prolate spheroid the analysis leading to Eq. (4-63) applies only if 
Pe,E + r,. 

The asymptotic solution can be recast in a variety of forms using different 
characteristic lengths. Pasternak and Gauvin (P2) proposed a length which is 
useful at higher Re (see Chapter 6): 

surface area of particle L' = -- (4-67) 
maximum perimeter projected on a plane normal to the flow 

If we denote the Sherwood and Peclet numbers based on this length by primes, 
Eq. (4-61) becomes 

Sh' = 0,99lK'(Pe')l 3, (4-68) 

where K' is plotted in Fig. 4.14. 
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The correlation presented earlier for spheres, Eq. (3-60), suggests the following 
form for spheroids 

Sh = (Sh, 2) + [(She 2)3 + K3 Pel1 3 .  (4-69) 

With K-values from Fig. 4.14 and Sh, derived from Table 4.2, Eq. (4-69) predicts 
Sh within 10% of the numerical values of Masliyah and Epstein (MI) for 
Pe < 70 and E = 0.2 for oblate spheroids and E = 5 for prolate spheroids. 
The analogous correlation with L' as the characteristic length is 

Sh' = (Sh,' 2) + [(Sho'Y2)3 + ( K ' ) ,  Pe']' 3 .  (4-70) 

c. Other Shapes Flow normal to an infinite cylinder at low Re and Pe has 
been treated by the method of matched asymptotic expansions (H5). The first 
two terms in the expansion are 

where 7 is Euler's constant. The first term represents transfer from a line source 
into a uniform stream. The coefficient a,. a function of Sc, must be evaluated 
numerically. It increases with increasing Sc from zero at Sc = 0 to 1.38 at 
Sc = 0.72. Experimental data for heat transfer from fine wires to air (C4) agree 
well with Eq. (4-71) for Re < 0.4. 

For flow parallel to a cylinder the rate of mass or heat transfer decreases 
with axial distance. Far from the leading end, the transfer at low Pe may be 
considered as transfer from a line source into a uniform stream and the local 
Sherwood number becomes 

Near the leading end a more complex analysis is necessary (B3). 
It would seem that no theoretical calculations have been made for shapes 

other than spheroids. In addition, no experimental measurements have been 
reported for shapes other than spheres or circular cylinders in creeping flow. 
Equation (4-60) is useful for cases in which Pe is small. 

The variation of particle concentration with time has been determined only 
for quasi-steady external resistance in two cases. 

1. At'egliyible Iizter~zal Resistance 

For a particle of arbitrary shape a mass balance yields 

VdF dt = ( k A l H ) ( l  - F), (4-73) 
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subject to the initial condition 

Solution yields the fractional approach to equilibrium as 

If the characteristic length is taken as 

Eq. (4-75) can be rewritten as 

where Bi = kdei28,H and z, = 4tgPlde2 are the Biot and Fourier numbers. 
Equation (4-75) is expected to apply when Bi < 0.1. 

2. Conzparable Resistarzce in Each Phase 

Diffusion within a solid particle with convection at the boundary is described 
by 

t c ,  i.sp = (V')2cp. (4-78) 

At the surface 

where n is a coordinate normal to the particle surface. These equations have 
been solved to yield c, as a function of position and time for simple geometries: 
spheres (see Chapter 3). semi-infinite slabs, and infinite cylinders which can 
be described using a single coordinate (Ll,  S2). Values of c, as a function of 
position and time for certain two- and three-dimensional shapes can be con- 
structed from these simple cases. The basic requirement is that the boundaries 
must be described by constant values of the coordinate parameters used in 
the one-dimensional solutions. For example, the concentration history of rec- 
tangular parallelepipeds and finite cylinders can be determined in this way. 
Luikov (Ll)  outlines the method and gives equations for F derived from volume 
integration of c,. 

The time variation of concentration at the center and at the foci of prolate 
spheroids has been calculated for negligible external resistance, Bi + x (H2). 
These appear to be the only calculations for shapes other than those mentioned 
above. 
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Chapter 5 

Spheres at Higher Reynolds Numbers 

I. INTRODUCTION 

Analytic solutions for flow around and transfer from rigid and fluid spheres 
are effectively limited to Re < 1 as discussed in Chapter 3. Phenomena occur- 
ring at Reynolds numbers beyond this range are discussed in the present 
chapter. In the absence of analytic results, sources of information include 
experimental observations, numerical solutions. and boundary-layer approxi- 
mations. At intermediate Reynolds numbers when flow is steady and axisym- 
metric, numerical solutions give more information than can be obtained 
experimentally. Once flow becomes unsteady, complete calculation of the flow 
field and of the resistance to heat and mass transfer is no longer feasible. 
Description is then based primarily on experimental results. with additional 
information from boundary layer theory. 

11. RIGID SPHERES 

1. Theoretical Approaclzes 

a. .Yt~merical Solution oJ Gocerlziny Eq~~atiolzs For numerical solution of 
the Navier-Stokes and continuity equations in axisymmetric flow, it is useful to 
introduce the dimensionless stream function, Y ,  and vorticity. Z = l a / U  (see 
Chapter 1). The Navier-Stokes equation for steady flow becomes 

E ~ Y  = ZR sin 0 (5-1) 
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and 
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i Y  i (  Z j iY i ( Z 1 - 2 ~ '  IZRsinH), 
- - - - - - - -- 
iR 20 R sin 0 20 iR R sin 0 Re (5-2) 

where 

and R = r a. (5-3) 

The boundary conditions for a sphere of radius a are 

(a) at O = O a n d n :  Y = Z = O .  (5-4) 

(b) at R = 1 :  Y = 0: 2Y 2R = 0 ;  Z = E2Y sin t). (5-5) 

(c) at R -t z :  Y R2 -+is in20:  Z+O. (5-6) 

Useful results have been obtained by solving finite-difference equations ob- 
tained from Eqs. (5-1) and (5-2) by Taylor-series expansion. These algebraic 
equations are solved by iteration to give Y and Z at a number of discrete 
points forming the nodes of a grid. Because Y and Z vary most rapidly near 
the particle surface, the intervals in the grid are commonlq taken to increase 
exponentially with R. The outer boundary condition, Eq. (5-6). is satisfied on 
some outer envelope; care is required to ensure that this is sufficiently remote 
from the particle (L8). The basic finite-difference scheme was developed by 
Jenson (Jl) ,  but the grid used was too coarse to give accurate results. Subse- 
quent studies (HI, L5, L8. 11, M2, W9) have used the same technique with 
digital computers to give accurate results. The results of the various workers 
generally agree closely. 

An alternative approach is to solve the time-dependent problem in which 
the development of the flow is calculated from some arbitrary initial state. 
Eq. (5-1) is unchanged. but F(ZRsin 6) 2t" must be added to the left side of 
Eq. (5-2), where 

t v =  tC a (5-7) 

is a dimensionless time. The usual initial condition is an "impulsive start," in 
which there is no relative motion for t* < 0, while the relative velocity between 
particle and fluid is constant for t" 2 0. Solution is continued until the flow 
is effectively steady. This method sometimes requires less computation than 
the iterative approach. Rimon and Cheng (R8) and Rafique (Rl)  have obtained 
results by this method. However, the former may be unreliable (M4, R1) due 
to use of a different condition at R + x which makes the solution sensitive 
to the outer boundary of numerical calculation. 
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Dennis and Walker (D3) expanded Y and Z as a series of Legendre functions 
in the position coordinates. Equations (5-1) and (5-2) were reduced to a set 
of ordinary differential equations, solved numerically. This approach is in- 
convenient for high Re since the number of terms which must be included 
becomes prohibitive. Solutions to the steady equations were obtained for 
Re < 40 (D3) and for impulsively started motion for Re < 100 (D4). 

Form drag and skin friction drag coefficients are obtained from the numerical 
results by integrating the distributions of surface pressure and vorticity: 

and 

d c,, = & J: :(& + cot 0 

The total drag coefficient, C,, is the sum of C,, and C,,. 
The validity of the numerical solutions has often been justified by comparison 

with experimental values for drag and wake dimensions (see below). However. 
these are not very sensitive to detailed changes in the flow field. Seeley et al. 
iS7) have given a more precise comparison based on measurements of stream 
function and surface vorticity at Re = 300. Near the front stagnation point 
significant discrepancies were found, attributable to the relative sparseness of 
grid points in this region in all numerical solutions. Agreement was much better 
in the vicinity of separation. 

b. Bou~zdary Lciyer T1zeorj) Boundary layer theory has been applied to 
predict fluid velocities with some success for Re > 3000, but with less success at 
lower Re. The main difficulties are that the pressure distribution only follows 
potential flow up to about 30' from the front stagnation point, that the bound- 
ary layer thickness is only small relative to the sphere radius at very high Re, 
and that the tangential velocity in the boundary layer shows a maximum which 
is greater than the free stream value. Although an exact solution is available 
(F4, Sla) using the potential flow solution as the outer boundary condition, it 
gives velocity and vorticity distributions which are only realistic within 20 of 
the front stagnation point. Separation is predicted at 109.6- which corresponds 
to observed separation at Re = 400, whereas at very high Re where boundary 
layer theory should be more reliable, separation occurs at about 81'. A some- 
what more reliable treatment was given by Tomotika (T3) using Pohlhausen's 
method [see (Sla)] and an experimental pressure distribution (Fl).  This ap- 
proach predicts separation correctly at 81', but the predicted velocity distribu- 
tion is again only accurate over the leading part of the sphere (S7). A full 
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evaluation of boundary layer solutions in the range 300 < Re < 3000 is given 
by Seeley et al. (S7). 

For Re < 100 the pressure distribution departs from the ideal distribution 
even over the leading surface. This is because the boundary layer thickness is 
too large for conventional boundary layer theory to be applicable. Gluckman 
et ill. (G8) attempted to overcome this limitation by a modified boundary layer 
theory accounting for the effect of the displacement thickness on the outer 
potential flow and by allowing for a pressure gradient across the boundary 
layer. Their predictions for the separation point are shown in Fig. 5.6 below. 
Generally the wake size is overestimated. However, the dependence of 8, on Re 
shows roughly the right form and the approach warrants further development. 

2. Derelopmerzt of Flow Field ~ , i t h  Reynolds Strmher 

a. Unseparated Flow (1 < Re < 20) As s h o ~ n  in Chapter 3. steady flow 
past spheres has fore-and-aft s~mmetry  only in the limit of zero Reynolds 
number. Asymmetry becomes progressively more marked as Re increases. 
Figures 5.1 and 5.2 show streamlines and vorticity contours calculated numeri- 
cally (M2). For Re = 1, asymmetry is most apparent in the vorticity distribution. 
The surface vorticity has a maximum forward of the equator (Fig. 5.3), while 

[dl Re.100 

FIG. 1 Streamlines for floa past a spherc. Vumerical results of Mas1i)ah (M2). Flow from right 
to left. Values of Y indicated. (a) Re = 1.0: (b) Re = 10: (c) Re = 50: id) Re = 100. 



FIG. 5.2 Vorticity contours for flow past a sphere. Numerical results of Masliqah (hf2j. Flow 
from right to icft. Values of Z indicated. (a) Re = 1.0: (bi Re = 10: (cj Rc = 50: (d) Re = 100. 

Dimensionless vorticity at surface of sphere. Numerical results of Woo (W9). 

101 
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contours remote from the body (Fig. 5.2) show convection of vorticity down- 
stream. B) Re = 10. asymmetry is also apparent in the streamlines (Fig. 5.1) 
while the position of the maximum surface vorticity has moved further forward 
(Fig. 5.3). The excess modified surface pressure shows some recovery at the 
rear (Fig. 5.4). 

I I I 1 - 8 

- 4  

- 

Potent~a l  flow 

- -2 

- 

- - 4  

0 30 6 0 90 120 150 180 
ANGLE 0 

FIG 5 3 Dlrnen~lonless eucebs modlficd pressure dt surface of sphere Numerical results of 
1 WY) (Uote d~fferent scale for Re = 1 0 curle ) 

Woo 

b. Onset of Sep~ll.ntzo~~ (Re = 20) Flow separation is indicated by a change 
in the sign of the vorticity and first occurs at the rear stagnation point. The 
precise Re at which recirculation begins has been the subject of debate [e.g., 
see (G3)]. Some experimental and numerical results (Nl .  N7. R8) suggest 
separation at Re = 10, but this evidence is questionable (L8. M5). Taneda (T2) 
gave the onset of wake formation as Re = 24, but the difficulty of observing a 
very small eddy probably makes this figure slightly high. By extrapolating 
observed wake lengths to zero, Kalra and Uhlherr (K2) concluded that separa- 
tion first occurs at Re = 20, in close agreement with the most reliable numerical 
solutions (D3, L5. L8, M2. W9). Drag determinations also indicate a change in 
flow regime at Re = 20 (P7). The best estimate for the onset of recirculation 
is therefore Re = 20. 

c. Steudj, Wuke Reyioil(20 < Re i 130) As Re increases beyond 20, the 
separation ring moves forward so that the attached recirculating wake aidens 
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and lengthens. The outer streamlines also curve less and \orticity is convected 
f~lrther downstream. Development of the wake is evident in photographs of 
flow past a rigid sphere (T2) reproduced in Fig. 5.5. The wake changes from a 
convex to a concave shape at Re = 35 iN1). 

The dimensions of the attached wake are shown in Figs. 5.6, 5.7, and 5.8. 
The various numerical solutions agree closelq with flow visualization results 
of Taneda (T2), although other workers (K2) report separation slightly closer 
to the rear. The separation angle. measured in degrees from the front stagnation 
point. is well approximated by 

9, = 180 - 42.5[ln(Re 20)1° 483  (20 < Re 2 400). (5- 10) 

Predicted and observed wake lengths and ~+ake  volumes agree closely for 
Re = 100 (Figs. 5.7 and 5.8). For Re 5 100. the excess pressure over the leading 
surface of the sphere approaches that for an ideal fluid, but there is little recovery 
in the wake. As Re increases, the importance of skin friction decreases relative 
to form drag. 

d. Onset of Wulce Iizstahility (130 < Re -2 400) As Re is increased beyond 
about 130, diffusion and convection of vorticity no longer keep pace with 
vorticity generation. Instead, discrete pockets of vorticity begin to be shed 
from the wake. The Re at which vortex shedding begins is often called the 
"lower critical Reynolds number," although the transition is much more gradual 
than this label would imply. 

At Re = 130, a weak long-period oscillation appears in the tip of the wake 
(T2). Its amplitude increases with Re, but the flow behind the attached wake 
remains laminar to Re above 200. The amplitude of oscillation at the tip 
reaches lo0, of the sphere diameter at Re = 270 (G10). At about this Re, large 
vortices, associated with pulsations of the fluid circulating in the wake. periodi- 
cally form and move downstream (S6). Vortex shedding appears to result from 
flow instability, originating in the free surface layer and moving downstream 
to affect the position of the wake tip (R11. R12, S6). 

The relative importance of form drag continues to increase in this region 
with skin friction becoming inferior once Re > 150 (M2), and C, begins to 
level out. The separation angle is still given by Eq. (5-10). 

e. High Subcr.itica1 Reynolds .Yunzher. Range (400 < Re < 3.5 x 10') Un- 
steadiness and asymmetry, originating in wake instability and shedding. limit 
the range of applicability of numerical results. based as they are on axisym- 
metric and often steady flow equations (see above). Predictions of the separation 
angle (Fig. 5.6) appear to be reliable to higher Re than predictions of wake 
length (Fig. 5.7) or wake volume (Fig. 5.8). This suggests that unsteadiness 
downstream has little effect upstream near the particle surface, at least for 
rigidly supported or heavy particles, and this has been confirmed by flow 
visualization (A4, S6). The surface vorticity distribution in the wake (see curve 



5 .  Spheres at Higher Reynolds Numbers 

FIG. 5.5 Photographs of Taneda (T2) showing the development of the attached wake behind 
rigid spheres. (a) Re = 17.9: (b) Re = 26.8: (c) Re = 37.7; (d) Re = 73.6: (e) Re = 118: if) Re = 133. 
(Reproduced with permission.) 
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FIG. 5.6 Angle from front stagnation point to separation from the surface of a r ~ g ~ d  sphere 
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FIG. 5.7 Length of sphere wake. 

for Re = 400 in Fig. 5.3) has been interpreted as indicating secondary eddies, 
but these do not appear to have been observed experimentally. 

As Re increases beyond about 400, vortices are shed as a regular succession 
of loops from alternate sides of a plane which precesses slowly about the axis 
(A4, K6, M11). As shown in Fig. 5.9. the Strouhal number Sr for vortex shed- 
ding increases. At the same time, the point at which the detached shear layer 
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Reynolds Number, Re 

F I G  5.8 Volume of closed wake behind a sphere. Measurements of Kalra and Uhlherr (K2) 
and numerical predictions of Woo (W9). 
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FIG. 5.9 Strouhal number Sr of phenomena in sphere wake 

rolls up to form shed vortices moves closer to the sphere. Shed loops progres- 
h i \  ely lose their character (A4) and ma) combine to form "\ ortex balls" (MI 1 J. 

By Re = 1300, the wake shows three-dimensional rotation, while velocities near 
the rear surface of the sphere fluctuate in direction and magnitude due to 
vortex shedding (S6). At Re = 6000, Sr reaches a maximum, and the point at 
which the shear layer rolls up approaches the sphere surface (A4). From here 
until the critical transition (Re = 3 x lo5, see below). separation occurs at a 
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FIG. 5.10 Dimensioi~less pressure at surface of sphere: (a) Numerical results of Woo (W9): 
Re = 400; (b)-(d) Measurements of Achcnbach (A3): (b) Re = 1.62 x LO5: (c) Re = 3.18 x lo5 :  
(d) Re = 1.14 x lo6. 

point which rotates around the sphere at the shedding frequency (A4). The 
wake may appear like a pair of helical vortex filaments (F2, K6), although the 
structure cannot be so regular in detail (A4). Hot-wire measurements in the 
near-wake show strong periodicity right up to the critical transition, with Sr, 
ranging between 0.18 and 0.2, virtually independent of Re (A4, C3, C7, K3, 
K6, M13). Moller (M11) reported Sr = 0.42 for "vortex balls," but this is in- 
consistent with subsequent measurements. Because of the periodicity, the wake 
should not be considered turbulent. As discussed later, wake shedding can 
cause appreciable fluctuations in the motion of freely falling particles. thereby 
affecting mean drag. 

Figure 5.10 shows the surface pressure distribution at different values of Re. 
The distribution changes remarkably little between Re = 400 and 1.6 x 10'. 
Since form drag now predominates as noted above, C, is also insensitibe to Re. 
For 750 I Re 5 3.5 x lo5. the "Newton's law" range,' C,  varies by only & 13% 

' Newton proposed a law equivalent to C, = 0.5 (N4). and confirmed this experimentally by 
timing the fall of spheres from the dome of St. Paul's Cathedral iK5). However. his explanation 
was based on ideas which bear little resemblance to current concepts of fluid mechanics. 
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about a value of 0.445. An alternative label for this range, the "turbulent flow" 
range, is inaccurate and misleading. The drag force in this and other ranges of 
Re is treated in sections 3 and 4. 

Throughout the Newton's law range, the separation ring continues to move 
forward as Re increases. At Re = 5000, separation moves in front of the equator 
towards a limit of 81 -83: (A3, F1, M8, R4). Direct observations of the separa- 
tion ring are scant for 800 < Re < 6 x lo4. Several workers [e.g., B14, L10. 
L13, N3. W1) have determined the point of minimum heat or mass transfer 
in this range, but, as discussed below, this occurs aft of separation. Seeley et ul. 
(S7) report some flow visualization results, but they found separation closer to 
the rear than observed by other workers: perhaps due to wall effects. As shown 
in Fig. 5.6, a realistic interpolation is provided by 

f. Critical Transitiorz u r ~ l  S~ipercriticul F~OLV (Re > 3.5 x lo5) As Re in- 
creases beyond 2 x 10" changes in the flow pattern occur which are so marked 
that they are termed "critical transition." Figure 5.1 1 shows the separation point 
in this range determined from direct visualization (R3) and inferred from pres- 
sure and skin friction measurements (A3). On increasing Re above 2 x lo5, 
separation begins to move aft, while fluctuations in the position of the separa- 
tion point and in pressure and skin friction become more marked. The detached 
free shear layer becomes turbulent soon after separation and. for Re =; 2.8 x lo5, 
reattaches to the surface (A3). As a result of enhanced momentum transfer, the 
turbulent boundary lajer is able to withstand the adverse pressure gradient 
longer nithout separation. Final separation therefore shifts abrupt13 domn- 
stream. In the same range the surface pressure minimum decreases towards the 

lo5 lo6 
Reynolds Number, Re 

I .  5 1  I Position of boundary layer separation and laminar turbuleni transition in the critical 
rcgion and bejond. Experimental results of Achenbach (A31 and Raithbq and Eckert (R3) .  
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potential flow value; and more pressure is recovered in the wake (see Fig. 5.10). 
Similar changes can be induced at lower Re by "tripping" the boundary layer 
with an irregularity such as a fine wire attached to the sphere surface [e.g., see 
(M8)l. 

As a result of the changes in pressure distribution, form drag drops sharply 
in the critical range. The drag coefficient C ,  falls from 0.5 at Re = 2 x 10' to 
0.07 at Re = 4 x 10' (see Fig. 5.121, while the proportion of the total drag 
resulting from skin friction rises from 1.3 to 12.5% (A3). Critical transition is 
sensitive to free stream turbulence as discussed in Chapter 10. Thus drag 
measurements in this range show considerable scatter (A3: M8). The results 
least affected by turbulence (A3) appear to be those of Millikan and Klein 
(M10) who determined the drag on a sphere towed by an aircraft. Definition 
of a "critical Reynolds number" is arbitrary; for convenience: it is taken as the 
Re at which C, reaches 0.3 (C6, D7), Re, = 3.65 x lo5 for turbulence-free flow 
(M10). 

Above the critical range, further increases in Re cause the "separation bubble" 
between laminar separation and turbulent reattachment to shrink, although the 
positions of laminar.:turbulent transition and final separation remain essentially 
fixed (see Fig. 5.11). For Re 5 lo6, transition from laminar to turbulent flow 
occurs without a separation bubble (A3). At still higher Re, both transition 
and separation move forward on the sphere. As the pressure recovery in the 
wake declines, C, increases slightly and tends towards a constant value of 
approximately 0.19 at very high Re (A3). Appreciable fluctuating lift forces 
occur in the supercritical range, with an r.m.s. lift coefficient of approximately 
0.06, accompanied by fluctuating moments (W6). The fluctuations appear to 
be due to shedding of large turbulent eddies, with corresponding random 
changes in wake configuration. 

Re 

FIG. 5.12 Drag coefficient of a sphere as a function of Reynolds number (standard drag curve). 
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3. Dray:  Stnlzdurd Drag Curce 

The conventional correlation for the drag on a sphere in stead) motion is 
presented as a graph. see Fig. 5.12, called the "standard drag curve". where C ,  
is plotted as a function of Re. Many empirical or semiempirical equations have 
been proposed to approximate this curve. Some of the more popular are listed 
in Table 5.1. None of these correlations appears to consider all available data. 

TABLE 5.1 

Relationships for Sphere Drag 

Rdnge of 
de\ iation 

Author(s) Range Relationsh~p for C, 1" C D  ("0) 

1. Schiller and 
Nauman (Sl) 

2. Lapple (L3) 

3. Langmuir and 
Blodgett (L2) 

4. Allen (AS) (a) 2 < Re < 500 
(b) 1 < Re < 1000 

5. Gilbert et al. 
(G71 

6. Kurten et al. 
(Kg) 

6 21 
0.28 + - + - 

Re' Re 

0.2924(1 + 9.06 R e '  2 ) 2  7. Abraham (A2) 

8. Ihme et al. (11) 

9. Rumpf 
[see (Kg)] 

(a) Re < 10 
(b) Re < 100 
(c) Re < lo5  

Re < 3 x lo5 
10. Clift and 

Gauvin (C6) 

+ 0.42 (1 + 4.25 x lo4 R e '  ' 1 

4 24 
0.40 + - + - 

Re' Re 
11. Brauer (B11) 

12. Tanaka and 
Iinoya (TI) 

log,, C ,  = uli t2 + a,)$ + a, 

where \t = log,, Re 

and a,. a,. and a, are g l~c i l  for 
7 intervals of Re 
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Table 5.2 gives a new correlation, based on a critical examination of available 
data for spheres (N6). Results in which wall effects, compressibility effects, 
noncontinuum effects: support interference, etc. are significant  ha^-e been ex- 
cluded. The whole range of Re has been divided into 10 subintervals, with a 
distinct correlation for each interval. Adjacent equations for C ,  match within 
1% at the boundaries between subintervals, but the piecewise fit shows slight 
gradient discontinuities there. The Re = 20 boundary corresponds to onset of 
wake formation as discussed above, the remaining boundaries being chosen 
for convenience. 

For Re < 0.01, the Oseen result is reliable (see Chapter 3). Equation B was 
originally proposed by Beard (B7) as a fit to two specific sets of data (B5, P8) 

TABLE 5 . 2 " ~ ~  

Recommended Drag Correlations: Standard Drag Curve. iv  = log,, Re 

Range Correlation 

(A) Re < 001 C D = 3  16 + 2 4  Re 

(B) 0 01 < Re I 20 log lo[^ - I] = -0 881 + 0 8211 - 0 05it2 

24 
I e ,  C, = - [I + 0 1315 Rei0 8 2  O O"') 

Re I 

(D) 260 5 Re I 1500 log,,C, = 1.6435 - 1.12421~ + 0 . 1 5 5 8 ~ ~  

(E) 1.5 x lo3 $ Re I 1.2 x lo4 log,, C, = -2.4571 + 2.555811, - 0.9295ic2 + 0 . 1 0 4 9 ~ ~  

(F) 1.2 10% R~ < 4.4 lo4 log,, C, = - 1.9181 + 0.6370~'  - 0.0636~ '  

(G) 4.4 x lo4 < Re I 3.38 x 10' log,, C, = -4.3390 + 1 . 5 8 0 9 ~  - 0.15461c2 

(H) 3.38 x lo5  < Re I 4 x lo' C, = 29.78 - 5 . 3 ~  

(I) 4 x lo5  < Re I 10' C, = 0 . 1 ~  - 0.49 

(J)  lo6 < Re C,, = 0.19 - 8 x lo4 Re 

" Sources of data: Achenbach (A3); Arnold (A7); Bailey and Hiatt (B1); Beard and Pruppacher 
(B5); D a ~ i e s  (D2): Dennis and Walker (D3); Goin and Lawrence (G9); Goldburg and Florsheim 
(G10): Gunn and Kinzer (G14): Hoerner (H14); Ihme er ill. (11): LeClair (L5); Liebster (L12); 
Masliyah (M2); Maxworthy (M7, M8); Millikan and Klein (M10); Moller (M11): Pettyjohn and 
Christiansen (P4); Pruppacher and Steinberger (P8); Rafique (Rl ) ;  Rimon and Cheng (R8): Roos 
and Willmarth (R10); Schmiedel (S2); Shakespear (S9); Vlajinac and Covert (V3); Wieselsberger 
(W4); Woo (W9). 

Number of data points: C-149: D-74; E-61; F-52: G-142. 
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and agrees closely with all reliable experimental and numerical data in its 
range. Correlations C to G were obtained by least-squares regression. Cor- 
relation H fits the data of Millikan and Klein (M10) while I and J correspond 
to Achenbach's results (A3). The correlations in Table 5.2 may be regarded 
as the best available approximation to the standard drag curve. The standard 
curve, calculated from these equations, is shown in Fig. 5.12. 

The recommended standard drag curve of Fig. 5.12 differs from the curve 
originally given by Lapple and Shepherd (L4) and widely reproduced [e.g., 
(P3)]. They underestimate C ,  by up to 52, for Re < 100 and also place the 
critical Re too low. The revised curve of Bailey (B2) is in close agreement with 
the one recommended here except near the critical transition where there is 
considerable spread in the measurements and he used only a single ser of free- 
flight data. Deviations of other empirical relations from the recommended ones 
are listed in Table 5.1. The high errors for Allen's equations are noteworthy 
in view of their common use [e.g., (Gl l ) ]  for calculating terminal settling 
velocities. 

4. Ter~ninal  Velocity irz Free Fall or  Rise  

For a particle moving with steady terminal velocity CT in a gravitational 
field, the drag force balances the difference between the weight and buoyancy: 

so that the drag coefficient becomes 

where Re, is the Reynolds number at the terminal velocity. As noted above, 
C,, = 0.445 for 750 < Re < 3.5 x lo5. so that for this range 

C, = 1.73(gdAp p)' or Re, = 1.731YA2 (750 < Re < 3.5 x lo5)  

(5-14) 

where 

The term is sometimes called the "Best 11umbcr."~ An analytic cxprcssion 
for the terminal velocity corresponding to Stokes' law is also available at low 
Re [Eq. (3-1 811. Outside these ranges of Re. or when more accurate predictions 
are required, C ,  vs. Re relationships are inconvenient for determining terminal 
velocities since both groups involve CrT. Hence an iterative procedure is needed. 
It is more convenient to express Re as a function of N,, the latter being in- 
dependent of C,. Empirical correlations of this form. based on the same data 

- The group rr\, 8 is often termed the "Archimedes number," wh~le 3 \. 4 15 sometimes called 
the Ga l~ leo  number or Arch~medes number 
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as in Table 5.2: are presented in Table 5.3. Adjacent correlations agree within 
at the arbitrary boundaries of the ranges. Values of Re calculated from the 

correlations in Tables 5.2 and 5.3 agree within 4:(. Davies (D2) gave similar 
correlations for .V, < 4.5 x lon. Re < lo4. Although his expressions are based 
on pre-1945 data, they differ by at most 5;" from the results in Table 5.3. Re, 
is tabulated as a function of SA in Appendix A. 

TABLE 5.3 

Correlations for Re as a Function of .Yo. W = log,, .V,, 

Range Correlation 

(A) \ ,173,Re1237 Re = \, 24 - 17569 x lo-'\',2 + 69252 x 
- 2 3027 x lO-'O\," 

( B )  73 < V,, s 5x0 :  2.37 < R e  I 11.1 log,,, Re = - 1.7095 - 1.334381.1. - 0.11591 CV' 

(C) 580 < ~V,  I 1.55 x l o - ;  log,, Re = - 1.81391 - 1.34671 W - 0.12427W2 
12.2 < Re I 6.35 x 103 + 0.006344 W3 

It is also useful to define a dimensionless terminal velocity: 

N, = Re, C ,  = 3 p 2  LT3 4 A p  gp. (5-16) 

Here .YA is plotted versus ,VA3 in Fig. 5.13 and tabulated in Appendix B. 
This tabulation is particularly convenient for estimation of terminal velocities 
or diameters since ,VA is independent of U ,  and proportional to d, while 
~2': is proportional to C', and independent of d. 

Figure 5.13 shows that there is a range, 2.3 x lo3 -2 2 3.8 x lo3. for 
which three terminal velocities are possible. This range is of practical interest 
for meteorological balloons (S4) and large hailstones (B8, W5). The intermediate 
value, portion AB of the curve, corresponds to the critical range. The terminal 
velocity corresponding to this part of the curve is unstable in the sense that, if 
C', increases, the drag decreases. Thus terminal velocities in the critical range 
are not observed experimentally unless there is significant free stream turbu- 
lence (see Chapter 10). Instead, a sphere can show two stable terminal velocities, 
and may even alternate between them giving a mean velocity close to the 
unstable value (MI).  The cur\-e beyond B represents supercritical motion. 

Fluctuations in speed and direction also occur in the subcritical range (down 
to Re = 270) (G10). A sphere shows a rocking motion and follows a zigzag 
or spiral trajectoryt in this range (C5, MI, P5) with wavelength about 12d and 

Newton encountered this problem in experiments to determine thc drag on sphcres falling 
through liquids (N41. 
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N,Y' 

FIG. 5.13 Dimensionless terminal helocity (.Y,' 3 ,  for sphere as a function of dimensionless 
diameter (S,' 31 

lateral amplitude approximately 0.37dl(1 + 2;) (MI). At least for the lower 
Reynolds numbers, this phenomenon is associated with wake-shedding, which 
induces secondary motion of the particle at the same frequency. 

Variations in vertical velocity are typically 5",, of the mean (S10): horizontal 
velocities are of the same order and decrease as the density ratio, ;I = p, p ,  
increases (P5. S10). Wandering is enhanced if the center of mass is displaced 
from the geometric center of the particle (V2). Secondary motion increases the 
mean drag, i.e., a particle undergoing secondary motion tends to have a vertical 
terminal velocity less than that calculated from the drag on a fixed sphere 
(G10, P5, S10). This retardation appears to become more significant as .; is 
reduced (P5. V2). and to be negligible for Re < 103 (MI). The following cor- 
relations are proposed, based on data reported by Shetht (S10) for lo3 < Re < 
2 x 1 0 5 a n d 7 2  1: 

mhere the prime denotes the value appropriate to a sphere with density ratio ;. 
in free motion, and C,  and S, may be calculated from the standard correlations 
above. From Eq. (5-18). the terminal velocity is reduced by 3.5"" on reducing ; 

Sheth proposed a different correlation whlch shons anomalous beha\our for large , 
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from a very large value to nearly unity. In supercritical flow, horizontal motion 
is more marked, with erratic changes of speed and direction rather than periodic 
motion (MI,  M14, S4, S5.  W6). resulting from the fluctuating lift noted in 
section 2. Secondary motion is more important for nonspherical and fluid 
particles, and is discussed further in Chapters 6 and 7. 

Figure 5.14 shows terminal velocities of spheres of various densities in air 
and water at 20 C calculated from the correlations in Tables 5.2 and 5.3, 
incorporating corrections for secondary motion, Eq. (5-18), and slip (see 
Chapter 10). 

10pm 100pm lmm 1 cm 

DIAMETER, d 

FIG. 5.14 Terminal velocities of spheres in air and uater at 20°C 

1. LVtimerical Solutions 

For axisymmetric flow the species continuity equation, Eq. (1-38), written 
in terms of the dimensionless concentration $ and stream function Y (see 
Chapter 1)  is 
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The boundary conditions are 

(a) at H = 0 and K :  cf iO = 0. (5-20) 

Since the stream function depends upon Reynolds number, the rate of transfer 
will depend upon both Re and Sc except in the limit Re -+ 0 treated in Chapter 3. 
Solutions to Eq. (5-19) have been obtained using the techniques discussed 
earlier, i.e., finite-difference schemes (A6, D5. 11, M6, W9), solution to the 
time-dependent problem (HI I), and series expansions (D5). 

The local and mean Sherwood numbers are obtained from the numerical 
results using the equations 

and 

1 
Sh = - J n  Shloc sin B dB. 

2 0  

Figure 5.15 shows streamlines and concentration contours calculated by 
Masliyah and Epstein (M6). Even in creeping flow, Fig. 5.15a, the concentration 
contours are not symmetrical. The concentration gradient at the surface, and 
thus Sh,,,, is largest at the front stagnation point and decreases with polar 
angle: see also Fig. 3.1 1. The diffusing species is convected dournstream forming 
a region of high concentration at the rear (often referred to as a "concentration 
wake") which becomes narrower at higher Peclet number. 

We consider the changes which occur at increasing Reynolds number and 
at a constant Schmidt number of 0.7, typical of evaporation of liquids into air 
or of heat transfer to air (Pr = 0.7). Figure 5.15b shows streamlines and con- 
centration contours at Re = 20 where a steady wake first appears. Although 
there is no flow separation, a concentration wake is evident downstream from 
the sphere. At Re = 100, where separation occurs at H = 126' and a large 
recirculating wake exists, the downstream concentration wake has narrowed 
and the concentration contours are distorted by the recirculatory flow in the 
wake: see Fig. 5 .15~.  The variation of Sh,,, with polar angle B for the same Sc 
and various Re is shown in Fig. 5.16 (W9). For Re < 20, Shloc decreases mono- 
tonically from front to rear, but between Re = 30 and 57 a minimum first 
appears even though separation occurs for Re > 20. This minimum moves 
forward with increasing Re; however, as shown in Fig. 5.16, it occurs aft of the 
separation point due to the presence of angular diffusion. The increased Sh,,, 
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- Concentrat~on Contours ---Streaml~ne 

FIG. 5.15 Streamlines and concentratio11 contours for flon- past a sphere. Numerical results 
of Mas l i~ah  and Epstein (M6). F l o ~  from right to left. Values of Y and indicated. (a) Creeping 
floh. Pe = 70: (b) Re = 20. Sc = 0.7: (c) Re = 100. Sc = 0.7. 
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at the rear of the sphere at high Re is caused by the action of the recirculating 
xake (M3). Mass transferred from that portion of the sphere covered by the 
recirculating wake is ultimately transferred to the external flow by diflusion 
across the separating streamline, Y = 0. Elements of fluid in the wake near the 
separating streamline move away from the sphere losing mass to the external 
fluid. On their return toward and over the rear surface of the sphere the con- 
centration increases. Thus these wake elements of fluid "carry" mass (or heat) 
from the rear of the sphere to the external stream which then carries it away. 
Due to the recirculatory motion in the wake, fluid approaching the rear stagna- 
tion point does not have zero concentration and the approach velocity is less 
than the free stream velocity. Therefore, Sh,,, is lower at the rear than at the 
front stagnation point, at least until vortices are shed. 

As Re increases further and vortices are shed, the local rate of mass transfer 
aft of separation should oscillate. Although no measurements have been made 
for spheres, mass transfer oscillations at the shedding frequency have been 
observed for cylinders (B9: D6, S12). At higher Re the forward portion of the 
sphere approaches boundary layer flow while aft of separation the flow is 
complex as discussed above. Figure 5.17 shows experimental values of the 
local Nusselt number Nu,,, for heat transfer to air at high Re. The vertical 
lines on each curve indicate the values of the separation angle. It is clear that 
the transfer rate at the rear of the sphere increases more rapidly than that at 
the front and that even at very high Re the minimum Nu,,, occurs aft of 
separation. Also shown in Fig. 5.17 is the thin concentration boundary layer 

A N G L E ,  t3 

FIG. 5.1 7 Local Nussclt numbcr for heat transfer from a sphere to air ( P r  = 0.71). Experimental 
rcsul~s of Gallo~vay and Sage (GI).  Dashed lines are prcdicrio~ls of boundar) layer theory b! Lce 
and Barrow (L10). 
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ANGLE 8 

FIG. 5.18 Local Nusselt number for heat transfer from a sphere to alr (Pr  
results of Xenakis et 01. (XI). 

= 0.71). Experimental 

theory prediction for the forward portion of the sphere (LlO).? The theory, 
which predicts that Nu,,, is zero at the separation point. fails due to the neglect 
of angular diffusion which becomes increasingly important as the separation 
ring is approached. Theoretical predictions lie beneath the data for two reasons: 
first, the velocity profile outside the boundary layer differs from that assumed 
(S7); second, in an experiment the approaching stream is usually turbulent 
(for example, the intensity of turbulence was 1.3% for the data in Fig. 5.17)-see 
Chapter 10. 

Figure 5.18 shows the only reliable Nu,,, data available near the critical 
Reynolds number (XI). Since the data were taken with a side support, there is 
some effect on the separation and transition angles. Thus the values of Nu,,, 
are probably subject to error (R2, R3) although the trend with Re should be 
correct. At Re = 0.87 x lo5 the Sh,,, variation is similar to that shown at 
lower Re in Fig. 5.17. At Re = 1.76 x lo5 the critical transition has already 
occurred, with the separation bubble accounting for the minimum in Nu,,, 
at H = 110 . The maximum in Nu,,, at 0 = 125' reflects the increased transfer 
rate in the attached turbulent boundary layer. The local minimum at 0 = 160' 
is due to final separation. These angles do not agree exactly with those in Fig. 5.11 
because of the crossfl ow support and the fact that angular diffusion shifts the 

' Several results may be derived from the use of boundary layer theorj depending upon the 
velocity profile assumed to exist outsidc the boundarq layer. Lee and Barrow (LIO) used the velocit) 
profile of Tomotika (T3) which was, in turn. fitted to the surface pressure data of Fage (F1) at 
Re = 157.000. This profile predicts separation at 0 = 81 as noted in Section A.1. 
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minima rearward. As Re increases, the rate of transfer over the rear hemisphere 
Increases more rapidly with Re than the rate over the forward hemisphere 
because Nu,,, cc Re0 for a turbulent boundary layer while Nu,,, cc R ~ O  for 
a laminar boundary layer. 

We now consider the effect of Schmidt number. At constant Reynolds number, 
Increasing Sc narrows the concentration ~ a k e .  Figure 5.19 s h o ~ ~ s  the results 
of numerical solutions (H11, W9) for Sh,,, at several Re and Sc. As Sc increases 
from zero at Re = 100, the local Sherwood number increases, its minimum 
value shifting forward toward the separation point. In the limit as Sc + x, 
angular diffusion is negligible and the minimum occurs at the separation point. 
Thus determinations of the separation angle from the minimum value of Sh,,, 
are reliable only for experiments at large Sc. Also shown in Fig. 5.19 are the 
data of Frossling (F3) for sublimation of naphthalene spheres in air. Although 
the values of Re and Sc do not match exactly, the data and the numerical 
solutions agree well. 

8, at Re = 100 50 
0 I I I 10. 0 I 

0 30 60 90 120 150 180 
ANGLE, 8 

FIG, 5.19 Local Sherwood number for a sphere: Solid lines are the numerical results of Woo 
(W9) and Hatim (H11) at the lalues of Re and Sc indicated. Points are the data of Frossling (F3) 
for sublimation of naphthalene into air. 

3. Correlation of Acerage Sherwood Number 

Available numerical solutions for 1 I Re I 400 and 0.25 I Sc I 100 (A6, 
D5, H l l , I I ,  M6, W9) can be correlated within 3% by the expression 

(Sh - 1) Scl = [I + (1 ReSc)]' Re0 41 (5-25) 
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1 1 l l l l l l  I  I  I  I  / I l l  I I  I I  I l l 1  I I  l  I I l l 1  1 I l  I  I  1 
10 10 lo2 103 10' lo5 

REYNOLDS NUMBER,Re 

FIG 5.20 Sussell number for heat transfer from a sphere to alr (0.70 < Pr < 0.73). L ~ n e s  cdlcu- 
lated from Eqs. A and B of Table 5.4 and Eq. (5-25). 

The form of Eq. (5-25) was suggested b j  noting that the first order curvature 
corrections to Eqs. (3-47) and (5-35) are near unity and by matching the ex- 
pression to the creeping flom result. Eq. (3-49). at Re = 1. Equation (5-25) also 
represents the results of the application of the thin concentration boundary 
layer approach (Sc + x) through Eq. (3-46), using numerically calculated 
surface vorticities.' Thus the Schmidt number dependence is reliable for any 
Sc > 0.25. 

Experimental data on heat transfer from spheres to an air stream are shown 
in Fig. 5.20. Despite the large number of studies over the years, the amount of 
reliable data is limited. The data plotted correspond to a turbulence intensity 
less than 37,, negligible effect of natural convection (i.e., GrlRe2 < 0.1; see 
Chapter lo), rear support or freefloating, wind tunnel area blockage less than 
102, and either a guard heater on the support or a correction for conduction 
down the support. Only recently has the effect of support position and guard 
heating been appreciated: a side support causes about a lo"/,, increase in Nu 

Up to Re = 20 there is no difficulty in using thc thin concentration boundarq layer method 
with the calculated surface ~orticities. For larger Re two methods of calculating transfer to the wake 
were pursued: first. neglect transfer aft of separation: second, consider transfer aft of separation 
as if it Lverc a for~vard stagnation point. i.e., appl) the thcory starting from il = 180" and xork 
forwrd  to separation. The true valuc of Sh should lie between these t ~ o  limits and probably closer 
to  the first as the discussion in Section B.2 suggests. The limits on Sh for the entire sphere were 
~vithin 3:'" at Re = I00 and 10"" at Rc = 400. Equation (5-25) is within 3"; of the ~ a l u c s  calculated 
neglecting transfer aft of separation. 
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FIG. 5.21 Heat or mass transfer group for a sphcre at high Pr or Sc. Lines calculated from Eqs. C 
and D of Table 5.4 and Eq. (5-25). 

as does the lack of a guard heater (P2. R2). More data are needed, especially 
for 200 -2 Re < 2000 where the available data match poorly with the remaining 
results. Comparable experimental data for heat and mass transfer at high Pr 
and Sc are shown in Fig. 5.21 with the mass transfer group used in Eq. (5-25) 
as the ordinate. The least reliable data here are those for Re > lo4. Equations 
correlating the air and high Sc data are given in Table 5.4. All data for 1 < Re < 
100 are well correlated by Eq. (5-25). Separate equations are given for the data 
in Figs. 5.20 and 5.21. All the data are also correlated by Eqs. (E) and (F) of 

TABLE 5.4 

Correlations for Transfer from Stationary Spheres 

Heat transfer to air (Pr  = 0.7)-Fig. 5.20 

(A) 100 < Re I 4000 Nu = 1 f 0.677 Re0,47 

(B) 4 x 103 < Re I 1 x 10' N u  = 1 + 0.272Reo.j8 

Mass transfer at hlgh Sc (Sc > 200)-Fig. 5.21 

(C) 100 < Re I 2000 Sh = 1 + 0.724 Reo 4 8  Scl 

(D) 2 x lo3 < Re I 1 x 10' Sh = 1 + 0.425Reo j5Sc1 

All data 

(E) 100 < Re 1 2000 (Sh - 1) Q Sc' ' = 0 752 Reo 4 q 2  

(F) 2 x 10' < R e  < 1 x l o 5  (Sh - 1) QSc' = 044Re12 + 0034Reo* '  

where Q = 1 + - ( R~'sJ' 
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Table 5.4. so that these equations are recommended for general use. The *-power 
term in Eq. (F) can be viewed as the contribution from the portion of the sphere 
ai th  a laminar boundarq layer foruard of separation, while the 0.71-power 
term corresponds to the section aft of separation. Justification for the latter 
poner is found from local Sh kalues as discussed in the next chapter. 

4. Spheres irz Free Fall or Free Rise  

Figures 5.22 and 5.23 present the result of combining the equations in 
Table 5.4 with the correlations of Table 5.3 to predict heat transfer for spheres 
falling in air at 20 C and mass transfer for spheres in water at 20 C with Sc = lo3. 
The decrease in terminal velocity due to secondary motion has not been taken 
into account because the transfer rate depends on the overall relative velocity 
between the sphere and the fluid. not the vertical velocity component alone. 

10+1 I I I , I  I I 1 1  
10 l o 2  l o3  10% 

Part tc le  Dtameter ,  d ipml 

lo-': - I I I I 1 1  I ' ' I 1 ' 1  I I I -  

FIG. 5.22 Mass transfer coefficients for a sphere in free rise (p, < p )  or free fall (p ,  > p )  in water 
at 20-C with Sc = lo3.  

- 
V1 - 
5 - 

FIG. 5.23 Heat transfer coefficients for a sphere in free fall in air a t  20-C 

- - 
- Water  a t  20°C - 

; sc=1o3 
- 
1 
7 
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The straight line for Ap = 0 represents diffusion in a stagnant medium [Eq. 
(3-44)]. In air spheres with diameters less than about 30 pm have transfer rates 
essentially equal to those in a stagnant medium, while in water the diameter 
for this to occur must be less than about 3 pm. In water the mass transfer 
coefficient is only weakly dependent on diameter, a prediction which has been 
verified experimentally (C2). For free fall in air, the transfer coefficient exhibits 
a larger decrease with diameter. The following expressions fit the predictions 
of Figs. 5.22 and 5.23 over the ranges indicated: 

for free fall or rise in water with d > 100 pm: 

for free fall in air with d > 300 pm: 

111. FLUID SPHERES 

As noted in Chapter 2. bubbles and drops remain nearly spherical at moder- 
ate Reynolds numbers (e.g., at Re = 500) if surface tension forces are sufficiently 
strong. For drops and bubbles rising or falling freely in systems of practical 
importance, significant deformations from the spherical occur for all Re 5 600 
(see Fig. 2.5). Hence the range of Re covered in this section, roughly 1 < Re < 
600, is more restricted than that considered in Section I1 for solid spheres. 
Steady motion of deformed drops and bubbles at all Re is treated in Chapters 7 
and 8. 

When a fluid sphere exhibits little internal circulation, either because of high 
K = pp ,p  or because of surface contaminants, the external flow is indistinguish- 
able from that around a solid sphere at the same Re. For example, for water 
drops in air, a plot of C, versus Re follows closely the curve for rigid spheres 
up to a Reynolds number of 200, corresponding to a particle diameter of 
approximately 0.85 mm (B5). In fact, many of the experimental points used in 
Section I1 to determine the "standard drag curve" refer to spherical drops in 
gas streams. where high values of K ensure negligible internal circulation. 

Here we consider three theoretical approaches. As for rigid spheres, numeri- 
cal solutions of the complete Navier-Stokes and transfer equations provide use- 
ful quantitative and qualitative information at intermediate Reynolds numbers 
(typically Re -? 300). More limited success has been achieved with approximate 
techniques based on Galerkin's method. Boundary layer solutions have also 
been devised for Re 5 50. Numerical solutions give the most complete and 

These equations can be used for heat transfer bq replacing Sc bq Pr and k bq it pC, 
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probably- the most reliable results, but Galerkin's method has the advantage 
of giving analytic expressions. The boundary layer theories also lead to analytic 
forms for the drag coefficient and Sherwood (or Nusselt) number. 

Numerical solutions of the flow around and inside fluid spheres are again 
based on the finite difference forms of Eqs. (5-1) and (5-2) (B10, H6, L5, L9). 
The necessity of solving for both internal and external flows introduces com- 
plications not present for rigid spheres. The boundary conditions are those 
described in Chapter 3 for the Hadamard-Rybczynski solution; i.e., the internal 
and external tangential fluid velocities and shear stresses are matched at R = 1 
(18  = a), while Eq. (5-6) applies as R -. x. Most reported results refer to the 
limits in which K is either very small (B10, H5. H7, L7) or large (L9). For inter- 
mediate K ,  solution is more difficult because of the coupling between internal 
and external flows required by the surface boundary conditions, and only 
limited results have been published (Al,  R7). Details of the numerical techniques 
themselves are available (L5, R7). 

The major qualitative results of the numerical work are as follows: 

a. Wake Formation Internal circulation delays the onset of flow separa- 
tion and wake formation in the external fluid. This is not surprising, since a 
well-known (if rarely used) method of delaying boundary layer separation on 
solid bodies is to cause the surface to move in the same direction as the passing 
fluid (Sla). Table 5.5 shows the increase in wake angle, measured from the 
front stagnation point, by comparison with rigid spheres for the special case 
of spherical raindrops in air ( K  = 5 5 , ~  = 790). A curious feature of such wakes 
is that the recirculating eddy may be completely detached from the sphere 
surface (L5); for example, this condition occurs for water drops in air in the 

TABLE 5.5 

Wake Characteristics of a Spherical Raindrop 
Compared with a Rigid Sphere" 

Raindrop Rigid sphere 

" From LeClair et ai. (L9). 
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range 20 i: Re i: 100. Thus separation of flow outside the sphere does not 
necessarily imply formation of a secondary internal vortex iS13). Two different 
angles are required to characterize the wake and both appear in Table 5.5. 
The position on the surface at which separation occurs is indicated as O,,, 
whereas O,, is measured to the furthest upstream extension of the recirculating 
eddy. The wake length, measured from the rear of the sphere, is slightly less for 
the water drop than for a corresponding rigid sphere. For a gas bubble in a 
liquid, and for a droplet ( K  = 1, ;, = 0.5) uncontaminated with surfactants? no 
separation is predicted even for Reynolds numbers as high as 200 (HI,  H5, R9). 

Figure 5.24 shows predicted surface vorticity distributions at Re = 100 and 
for K = 0 (gas bubble), K = 1 (liquid drop in liquid of equal viscosity), and 
K = 55 (water drop in air), and for a rigid sphere. The results for the raindrop 
are very close to those for a rigid sphere. The bubble shows much lower surface 
vorticity due to higher velocity at the interface, while the K = 1 drop is inter- 
mediate. The absence of separation for the bubble and K = 1 drop is indicated 
by the fact that vorticity does not change sign. 

FIG. 5.24 Vorticit! distribution at surface of spherc [or Re = 100 (numerical rcsultsl: ( A )  R i ~ i d  
sphere iL5): ( B )  ti ater drop in air: i i  = 55. ;, = 790 (L5, L'i): ( C )  Liquid drop: I; = 1. ;. = 0.5 (R9):  
(D) Gas bubble: I< = ;, = 0 (H6). 

b. Irzterrznl Circulation As discussed in Chapter 3. creeping flow around a 
fluid sphere is symmetrical about the equatorial plane. At higher Re, the 
stagnation ring in the internal fluid shifts forward of the equator.' Under some 
circumstances, e.g., Re > 300 for water drops in air (L9). a small secondary 
internal vortex of opposite sense may occur inside the fluid sphere near the 
rear stagnation point. Experimental evidence for this secondary vortex is scant, 
but positive (P6). 

' Experimenters a.ho havc observed asymmetr! of internal circulation patterns ha\ e generalib 
attributed this to accumulatio~l of surface-activc materials a t  the rear. causing a stagnant cap 
(see Chapter 3). It seems likely that at least part of the asymmetry results from the forward shift 
of the internal Lortex at nonzero Re, as predicted numericall). 
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FIG. 5.25 Dimensionless fluid velocities for water drops in air (K = 55. 7 = 790). Numerical 
predictions of LeClair et 01. (L9). 

Figure 5.25 shows surface velocities for water drops in air with Re in the 
range 10 to 300, together with the Hadamard-Rybczinski solution for the 
same K.  Increasing asymmetry and a progressive increase in surface velocity 
with Re are evident. Experimental measurements (G4, H15, P6) generally give 
significantly lower velocities, presumably due to surface contamination. Internal 
and external streamlines and vorticity contours are shown in Figs. 5.26 and 
5.27 for Re = 100 and K = 55 (corresponding to a 0.6 mm diameter raindrop 

FIG, 5.26 Streamlines and vorticit) contours inside a water drop in air at Re = 100 (K = 55, 
,, , - - 790). Numerical predictions of LeClair (L5). 
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FIG. 5.27 Streamlines and ~or t ic i ty  contours outside a water drop in air at Re = 100 ( K  = 55, 
1, = 7901. Numerical predictions of LeClair (L5). 

at its terminal helocity in air). Note that both internal and external flows show 
asymmetry and regions of negative vorticit) near the rear of the sphere. 

c. Siirface Preasi1r.e atzd Drag Figure 5.28 shows numerical results for sur- 
face pressure distributions at Re = 100. together with those for the reference 
cases of potential flow and of a rigid sphere at the same Re. The curve for the 

F I G  5.28 Distribution of dimensionless modified pressure at surface of sphcres at Re = 100, 
compared a ith potential f l o ~  distribution. ( A )  Potential f l o ~  : (p, - p, ) )pL2 = 1 - 2.25 sin2 0 
(Bj Rigid sphere iL5); (C) Water drop in air; K = 55. ;I = 790 (L9): (D) Gas bubble; K = 7 = 0 (H6). 



130 5. Spheres at Higher Reynolds Numbers 

water drop (ti = 55) lies close to that for a rigid sphere. The pressure distribu- 
tion for a bubble ( K  = 0) follows the potential flow distribution very closely 
up to about 130. from the front stagnation point, much further than for a 
rigid sphere. 

Values of C,,, C,,: and C ,  are presented in Table 5.6 for bubbles in liquids 
(B10: H6: L7) and for water drops in air (L5, L9), with corresponding results 
for rigid spheres (L9). The viscous sphere ( K  = 55) has essentially the same drag 
as a rigid sphere. The bubble (ti = 0) has much lower values of both form drag 
and skin friction. However; the ratio of form drag to skin friction is insensitive 
to K .  An equation which gives a good fit to numerical predictions of drag 011 
spherical bubbles (HI)  is: 

2. E~.ror Distribution Solutioi~s 

Error distribution (or Galerkin) methods are based on choosing a polynomial 
for the stream function which is made to satisfy all the boundary conditions 
together with an integral form of the Navier-Stokes equation. Snyder et a/ .  
(S11) surveyed the application of this technique in fluid mechanics. Its success 
depends strongly on the form of polynomial chosen (H4). Kawaguti (K4. K5) 
applied this technique to flow around a rigid sphere, but the results are of 
limited interest since even the total drag predictions are inaccurate. Hamielec 
et al. (H3. H5, H7) applied Galerkin's method to fluid spheres up to Re = 500. 
Since inertia terms for the internal fluid were neglected, their solutions are 
restricted to small Re,. For 4 < Re < 100, the following correlation was 
suggested for the total drag: 

Nakano and Tien (N2) investigated the effect of increasing Re, by including 
inertia terms for both phases. Changes in Re, had little effect on the external 
streamlines or on overall drag. On the other hand, internal circulation velocities 
increased significantly as Re, increased, and the internal vortex was displaced 
forward. These results are in qualitative agreement with the numerical treat- 
ments and with experimental observations. However, there are substantial 
quantitative discrepancies, especially in the wake region and in local values 
of surface pressure (H4). 

3. Botlndary Laj.er Theories 

Consider a circulating spherical bubble (K << 1, ;, << 1) for which Re >> 1, and 
compare this with a rigid sphere at Re >> 1. For the latter case. the boundary 
layer is perceived as a thin layer at the particle surface where viscous forces 



Drag Coellicic~lts for Rigid and Iluid Spheres" 

0.1 80.91 3 63.3 163.16 128.5 244.07 191.8 
1 .0 9.066 6.33 6.14 18.25 12.87 12.23 27.31 5 10.20 18.3 
5.0 2.412 2.4" 1.63 1 .69h 4.617 4.60" 3.18 3.0" 7.029 7.0 4.8 1 4.69 

10.0 1.52 1.51 0.99 0.98 2.77 2.71 1.90 1.67 4.29 4.23 2.80 2.64 
20 1.008 I .Oh 0.54'' 1.703 1.09'' 0.8bh 2.7 1 I 2.60 1.40" 
30 0.81 0.81 0.4 1 " 0.42" 1.30 1.29 0.79" 0.65" 2.1 1 2.10 1.20 1.07" 
40 0.72" 0.7Ih 0.33" 1.08" 1.07" 0.50" 1 .80h 1.78" 0.83" 
50 0.65" 0.64'' 0.28'' 0.288 0.92" 0.92'' 0.58'' 0.435 1.57' 1.56 0.86" 0.723 
57 0.63" 0.63 0.27h 0.88" 0.88 0.37" 1.51'' 1.51 0.64'' 

100 0.51 0.49 0.181 0.59 0.50 0.224 1.096 I .OX 0.405 
200 0.40 0.30" 0.134 0.372 0.37'' 0.132 0.772 0.7hh 0.266 
300 0.35 0.34 0 . 1  1'' 0.28 0.29 0.094" 0.632 0.63 0.204" 
400 0.320 0.31" 0.09'' 0.233 0.23" 0.075" 0.552 0.54h 0.1 6Sh 
500 0.068 0.057 0.555' 0.1 25 

1000 0.062 0.03 1 0.471' 0.003 

" From Abdcl-Alim and Hamielcc (Al) ,  Brabston and Kellcr (BlO), Hamiclec c.1 ul. (H6), 1,eClair (LS), I>cClair and Ilamielcc (1,7), and Lec'lair c.1 ( 11 .  (1.0). 
Interpolated or extrapolated. 
' 1;rom standard drag relationships, Table 5.2 
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play a dominant role and across which the velocity variation is of order C'; 
outside this layer, the flow departs little from the irrotational pattern. For the 
bubble on the other hand, it is not necessary for the outer fluid to come to rest 
at the sphere surface. Flow deviates significantly less from irrotational motion. 
At first sight it might appear that potential flow could be a valid solution for 
the entire external flow field about a circulating bubble. However, the velccity 
derivatives in that case would not satisfy the tangential stress boundary con- 
dition. Thus a boundary layer must still exist on the surface, but it is of a rather 
different kind from that on a rigid body. In particular, the velocity variation 
across the boundary layer is only of order UIRel 2 .  Moreover, the boundary 
layer is much thinner, and remains attached to the surface longer than on a 
comparable rigid body. These features are discussed at length by Levich (LI I), 
Batchelor (B4), and Harper (H8). Harper has given a particularly thorough 
review of boundary layer solutions for circulating particles, and has pointed 
out a number of errors and misconceptions in the literature. 

Since the flow is only slightly perturbed from irrotational, a first approxima- 
tion for the drag on a spherical bubble may be obtained by calculating the 
viscous energy dissipation for potential flow past a sphere. This gives (L11): 

Moore (M12) extended Eq. (5-30) by solving the boundary layer equations 
analytically, except in the vicinity of the rear of the bubble where the velocity 
and pressure fields were found to have singularities. The drag on the bubble 
was calculated using a momentum argument (Ll)  and by extending the energy 
dissipation calculation to include the contribution from the boundary layer 
and wake. Moore's improved drag estimate is: 

Equations (5-30) and (5-31) are plotted in Fig. 5.29. In agreement with numerical 
predictions (B10, HI ,  H6), no boundary layer separation is predicted when 
there are no gradients of surface tension at the surface (HX). 

Treatment of liquid drops is considerably more complex than bubbles, since 
the internal motion must be considered and internal boundary layers are 
difficult to handle. Early attempts to deal with boundary layers on liquid drops 
were made by Conkie and Savic (C8), McDonald (M9), and Chao (C4, W7). 
More useful results have been obtained by Harper and Moore (H10) and 
Parlange (PI). The unperturbed internal flow field is given by Hill's spherical 
vortex (H13) which. coupled with irrotational flow of the external fluid, leads 
to a first estimate of drag for a spherical droplet for Re >> 1 and Re, >> 1. The 
internal flow field is then modified to account for convection of vorticity by 
the internal fluid to the front of the drop from the rear. The drag coefficient, 
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Stokes' Law. Eq. ( 3  -17) 

v\ 

Bubbles 

v ..... ,. ....... R 6  
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FIG, 5.29 Drag coefficients for bubbles in pure systems: predictions of numerical. Galerkin, and 
boundary laqer theories compared with selected experimental results. 

to terms of order ReC3 ', may then be written as 

where B ,  and B2 are functions of ti;. with specific values presented in Table 
5.7. In the limit as ti + 0 and ;: + 0. Eq. (5-32) reduces to Eq. (5-31). The inter- 
nal circulation relative to that for an unperturbed Hill's spherical vortex is 
approximately 

TABLE 5.7 

Values of B ,  and B2 for Eq. (5-32)" 

" Calculated from Table 3 of Harper and Moore (H10) 
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Equations (5-32) and (5-33) are on11 expected to be valid at relative11 low K- 

(S14), typicall) IC < 2, and for Re 5 50 (H8). The) should not be used when r 
predicted b~ Eq. (5-33) is less than 0.5, or when C ,  from Eq. (5-32) exceeds the 
\slue from the standard drag curve for rigid spheres at the same Re. In these 
cases, the true drag will be close to the rigid sphere value, provided that the 
drop is near11 spherical. 

4. Conzyuriso~z of tlze Tlzeoretical Predictioizs hvitlz Esperil?~erzt 

All the work discussed in the preceding sections is subject to the assumptions 
that the fluid particles remain perfectly spherical and that surfactants play a 
negligible role. Deformation from a spherical shape tends to increase the drag 
on a bubble or drop (see Chapter 7). Likewise, any retardation at the interface 
leads to an increase in drag as discussed in Chapter 3. Hence the theories 
presented above provide lower limits for the drag and upper limits for the 
internal circulation of fluid particles at intermediate and high Re, just as the 
Hadamard-Rybzcynski solution does at low Re. 

In practice few systems approach the drag coefficient values predicted by 
the theoretical treatments. Since the theories provide lower limits on drag. it 
is reasonable to compare their predictions with the lowest available experi- 
mental values. From the restrictions noted, these will be systems of (i) low 
Morton number (M < 10W8) and (ii) low surface pressure (i.e., free of sur- 
factants). Figure 5.29 compares selected C, data on bubbles in very pure 
systems with theoretical predictions. The different theoretical approaches are 
in good agreement with each other and drag is predicted to be less than for 
rigid spheres. There is reasonable agreement with the experimental results. 
For drops, agreement with the boundary layer and Galerkin treatments is 
generally less favorable. although some of the results of Winnikow and Chao 
(W7) fall within 10% of the predictions of Eq. (5-32) (H8, H10). Excellent agree- 
ment has been obtained between numerical predictions and experimental 
results for raindrops in air (L9), where K is sufficiently high that internal cir- 
culation does not influence C, even in the absence of surface contaminants. 
and for water drops in cyclohexanol and in n-butyl lactate (Al). 

Unfortunately there is little quantitative data. e.g., concerning internal and 
external velocity profiles. w ~ t h  which to test other aspects of the theories. On 
the other hand, the theories are supported by the agreement between the 
numerical and boundary layer approaches in their common ranges and by 
such qualitative features as secondary internal vortices (P6), forward displace- 
ment of the internal stagnation ring (H15, P6), delayed boundary layer separa- 
tion with increasing system purity (E2, W7), and increasing dimensionless 
internal fluid velocities with increasing Re (G4. L9. P6). 

5. Effect oj Surfactants 

Since the Schmidt number Sc tends to be much greater than unity for sur- 
factants in solution, Re > 1 generally implies high Peclet numbers. This case 
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has been considered by only a fek investigators (D8. H9. L14, L16). The differ- 
ence between the drag coefficients for rigid and fluid spheres becomes con- 
siderably wider as Re increases (see Fig. 5.29). Hence the influence of surfactants 
can be even more marked than at lo@ Re. Unfortunately, accurate experimental 
data with known surfactant concentrations do not appear to be available. Thus 
theories cannot be tested except by fitting the contaminant concentration to 
match the data. Moreover, the conditions which must be satisfied for the 
theories to hold are so stringent that theories are of little practical importance 
(H9). 

1. External Resistance 

The external resistance has been evaluated under steady-state conditions 
using the assumption of a thin concentration boundary layer on the outer 
surface of a fluid sphere. Surface velocities calculated by each of the three 
methods described in Section B above have been used in conjunction with 
Eq. (3-51). 

An asymptotic formula for Re -, x is easily derived by substitution of the 
potential flow surface velocity, 

(u0/ CTJy = a = 3 sin 0, 
into Eq. (3-51) to yield 

7 

Sh = (2 n)Pel  2 .  

A first-order correction for finite Pe (W2) adds a constant term of 0.88 to 
the right-hand side of Eq. (5-35). This constant term is nearly the same for 
potential flow as for creeping flow [cf. Eq. (3-4811, and this fact has already been 
used in designing the mass transfer correlations for rigid spheres. Modifying 
the constant slightly to unity, we write 

- 
(Sh - l ) /Pel  = 2 ,  71 = 1.13 (5-36) 

as an approximate limiting condition for large Re. The expression on the left 
is now in a convenient form for bringing together numerical results for finite 
Re, both for Sc -+ x (L7) and for finite Sc (01).  The results are shown by the 
solid curves in Fig. 5.30. 

The thin concentration boundary layer approximation, Eq. (3-51), has also 
been solved for bubbles ( K  = 0) using surface velocities from the Galerkin 
method (B3) and from boundary layer theory (L15, W8). The Galerkin method 
agrees with the numerical calculations only over a small range of Re (L7). 
Boundary layer theory yields 

This result is within 7;); of the numerical solution shown in Fig. 5.30 for Re > 70. 
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--rC---- , ,o -.-. 1." 
Eq.(3-52) 

0.4 I 1 1 1 1 1 1 1  1 1 l 1 1 1 I l  1 I I I I I  

01 1 0  10 lo2 r o3 
REYNOLDS NUMBER, Re 

FIG. 5.30 Mass transfer factor as a function of Reqnolds number for spherical fluid particles: 
.- numerical solutions for K = 0 (L7, 0 1 ) ;  - -  asymptotic solutions (Sc, Pe -+ x): ----- Eq. 

(5-39). Data for transfer of water to isobutanol ( K  = 0.39. ;, = 1.2: Sc = 12.000) from ((32, (312, 
H 12). 

For liquid drops Eq. (3-51) has been solved (W3) using the boundary layer 
velocities of Harper and Moore (H10). The resulting solution is valid for K < 2. 
The Sherwood number was only weakly dependent upon ;I with the results 
well approximated by 

Based on the result for bubbles. this should be accurate for Re > 70. 
The surface velocities of Abdel-Alim and Hamielec (Al) can be used to obtain 

Shernood numbers at intermediate K and Re. An equation which fits these 
calculated values, the numerical results for Sc + cr,, and the asymptotic solu- 
tions for K < 2 is 
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where 

The predictions of Eq. (5-39) are shown in Fig. 5.30 for K = 0.25, 0.5, and 1.0. 
Experimental data for mass transfer from freely circulating fluid spheres 

are difficult to obtain because of deformation and because of the presence of 
surface-active agents which reduce circulation. Shown in Fig. 5.30 are data 
from three studies on water droplets in isobutanol where the droplets were 
nearly spherical and were observed to be circulating. The data are in fair agree- 
ment with each other and with Eq. (5-39). The effects of shape changes and 
surface-active agents are discussed in Chapter 7. 

The case of a fluid sphere moving at constant velocity and suddenly exposed 
to a step change in the composition of the continuous phase has been treated 
by solving Eq. 13-56), with Eqs. (3-40), (3-41), (3-421, and (3-57) as boundary 
conditions for potential flow (R14). The transient external resistance is given 
within 3% by 

2. Transfer with Variable Particle Concetztratiotz 

The only situation with variable concentration inside the particle and finite 
internal resistance for which a theoretical treatment is available is for Pep + x. 
In this case the diffusion time is long compared to the time for circulation of 
the fluid within the sphere. Thus the concentration contours are identical to 
the streamlines of the Hill's spherical vortex except in thin boundary layers 
near the particle surface. As Re + x the rate of diffusion normal to the stream- 
lines in the bulk of the drop determines the rate of mass transfer (B12). Since 
the streamlines of Hill's spherical vortex are identical in form to the Hadamard- 
Rybczynski solution in creeping flow, the rate of extraction is identical to that 
shown in Fig. 3.22. This conclusion has been supported by experimental studies 
[e.g., (B13. Kl ) ]  which have shown that the Kronig-Brink solution gives a good 
prediction of mass transfer at Reynolds numbers well above those corresponding 
to creeping flow. For negligible resistance within the particle, a situation which 
occurs for gas bubbles, it has been shown (Dl) that a quasi-steady treatment, 
i.e., substitution of Eq. (5-35) in Eq. (3-89), is valid. 
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Chapter 6 

Nonspherical Rigid Particles 
at Higher Reynolds Numbers 

I. INTRODUCTION 

Nonspherical particles are more difficult to treat than spheres because of the 
influence of particle orientation and the lack of a single unambiguous dimen- 
sion upon which to base dimensionless groups. In this chapter we treat rigid 
nonspherical particles at higher Reynolds numbers than were covered in 
Chapter 4. We begin by reviewing spheroids, disks. and finite cylinders,+ shapes 
for which considerable work has been reported. General correlations for arbi- 
trary shapes are discussed in Section IV. The fall of other specific shapes or 
specific types of particles is covered very briefly in Section V. There are no 
data nor numerical calculations for heat or mass transfer with variable particle 
concentration and finite resistance in each phase corresponding to the non- 
spherical particles considered. Hence, only the external resistance is treated in 
this chapter. 

It is convenient to distinguish two regimes for freely falling nonspherical 
bodies. In the interfnelliclte regime, particles adopt preferred orientations and 
C ,  varies with Re although less strongly than at low Re. Particles usually align 
themselves with their maximum cross section normal to the direction of relative 
motion (K7, K10). In this regime there is no appreciable secondary motion so 
that results for flow past fixed objects of the same shape can be used if the 
orientation corresponds to a preferred orientation. In the Newton's law regime, 
on the other hand, C, is insensitive to Re and secondary motion occurs, 

' Two-dimensional flow past infinite cylinders is not treated in dctail since such bodies do not 
meet our definition of a particle (see Chapter I ) .  
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general13 associated with wake shedding. In this regime the density ratio ;$ plays 
an important role in determining the type of motion, the mean terminal velocit) 
and the transfer rate. Freely faliing isometric particles generally begin to show 
pitching motion for Re (based on d,) in the range 70 -2 Re 2 300 (P4). 

11. SPHEROlDS AND DISKS 

Spheroids are of special interest, since they represent the shape of such 
naturally occurring particles as large hailstones (C2. L2. R4) and water-worn 
gravel or pebbles. The shape is also described in a relatively simple coordinate 
system. A number of workers have therefore examined rigid spheroids. Disks 
are obtained in the limit for oblate spheroids as E -t 0. The sphere is a special 
case where E = 1. Throughout the following discussion, Re is based on the 
equatorial diameter d = 2a (Fig. 4.2). 

1. Flou: Patterns 

As shown in Chapters 3 and 4, creeping flow analyses have little value for 
Re 5 1. A number of workers (M4, M7, M11. P5, R3) have obtained numerical 
solutions for intermediate Reynolds numbers with motion parallel to the axis 
of a spheroid. The most reliable results are those of Masliqah and Epstein 
(M4, M7) and Pitter et al. (P5). Flow visualization has been reported for disks 
(K2, W5) and oblate spheroids (M5). 

At intermediate Re, phenomena are similar to those described for spheres in 
Chapter 5. Figure 6.1 shows streamlines calculated by Masliyah (M4) for steady 
flow past spheroids at Re = 100. As the body becomes more "streamlined" (i.e., 
as E increases). the wake volume decreases. Figure 6.2 shows predicted and 
observed wake lengths. The Reynolds number at which separation first occurs 
decreases with aspect ratio to less than 2 for a disk. The calculations do not 
show clearly whether separation first occurs at the edge of a disk, but separa- 
tion is certainly at the edge for Re 2 10 (R3). For spheroids with E 2 0.2, 
separation is still aft of the equator for Re = 100 (M4). Flow visualization gen- 
erally confirms these predictions (M5). although numerical calculations tend 
to overpredict the wake length as for spheres due to difficulty in defining pre- 
cisely the wake "tail." Disk wakes start to oscillate at Re = 100 (W5), while 
spheroids with E 2 0.2 have steady wakes to higher Re (M5). At high Re. flow 
patterns continue to be qualitatively similar to those around a sphere (S5, W5), 
except that disks show nothing equivalent to the critical transition because the 
separation circle is fixed by the body shape. For spheroids of finite aspect ratio. 
the critical Reynolds number decreases slightly with increasing E (L4), and the 
drop in C, at the critical transition becomes more marked (Rl). 
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FIG. 6.1 Streamlines for flow past spheroids at Re = 100. After Maslipah (M4). Flow from right 
to left. Values of a Z C  indicated. 

Reynolds Number, Re 

FIG. 6.2 Wake lengths for spheroids and disks. Numerical predictions for spheroids (M4, P5): 
flow cisualization for disks (K2). 
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FIG 6 3 Drag coefficient and values of (C,,Re2)' for spheroids and disks 

A number of authors have measured the drag on disks (J l ,  K1, L5, P5. R5, 
S2, S5. S8, W4, W5). For supported disks with steady motion parallel to the 
axis, numerical and experimental results at low and intermediate Re are well 
correlated (P5) by: 

C ,  = (64 , '~  Re)[l + lox] (0.01 < Re I IS),  (6- 1) 
where 

x = - 0.883 + 0.906 log,, Re - 0.025(log1, Re)2 (6-2) 
andT 

C ,  = (64,n Re)(l + 0.138 (1.5 < Re 4 133). (6-3) 

At lower Re, the Oseen result can be used (see Chapter 4) 

C ,  = ( 6 4 1 ~  Re)[l + (Re 2n)] (Re 4 0.01). (6-4) 

Once wake shedding occurs, C ,  is insensitive to Re. and is constant at 1.17 for 
Re 5 1000 (H5). There is some indication that C ,  passes through a minimum 
of about 1.03 for Re 1. 400 (L5, W5), but most data are correlated within 100; 
by Eq. (6-3). with C ,  = 1.17 for Re > 133. Figure 6.3 compares the drag curve 

Pitter et a1 (P5) applied Eq ( 6 - 3 )  onl> to Re = 100 Hohe\e!. the~r  correlat~on applies to fieel) 
falliilg disks for Re > 100 
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for disks with the corresponding curie for spheres. Some authors have shown 
C, for disks passing through a maximum at Re 300. but this is almost cer- 
tainly a misinterpretation (R5). 

Data are scant for spheroids other than disks and spheres. Experimental 
results for axisymmetric flow outside the Stokes range appear to be limited to 

Reynolds Number, Re 

FIG. 6.4 Drag coefficients for axial flow past spheroids. Kumerical predictions of Masliyah (M4). 

Reynolds Number, Re 

FIG. 6.5 Ratio of skin friction to form drag for spheroids in axial flou. Numerical predictions 
of Masliyah (M4). 
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oblate spheriods for which this is the preferred orientation (L3. L4. P5. S8). 
For Re up to 100, numerical results of Masliyah and Epstein (M4: M7) agree 
closely with experimental data (see Fig. 4.6). Figure 6.4 shows the dependence 
of CD on Re predicted by Masliyah, and Fig. 6.5 shows the ratio of skin friction 
to form drag. For Re < 10: this ratio is only weakly dependent on Re, and 
drag on a spheroid can be estimated closely by multiplying the sphere drag by 
the drag ratio for Stokes flow, A, (see Chapter 4). At higher Re, the dependence 
of C, on E is more complex: for Re > 37, spheroids with aspect ratio close to 
unity have less drag than either very oblate or very prolate shapes. In this 
range, the drag on a spheroid with E = 0.2 is almost indistinguishable from 
that on a disk. 

For 100 < Re < lo3, the only data on spheroids appear to be those of 
Stringham et ul. (S8) for E = 0.5.t Figure 6.3 shows an equation fitted to these 
results: 

log,, C, = 2.0351 - 1.660)~ + 0 .3958 )~~  - 0.0306tv3 

(E = 0.5; 40 < Re < lo4), (6-5) 

where \V = log,, Re. 

Symbol Ref. 

S8 

0 0.5 1 
Aspect Rat i ,E  

FIG. 6.6 Ratio A, of drag on oblate spheroid or disk to drag on sphere of same equatorial radius. 

For Re 5 lo3. C, is essentially constant at its "Newton's law" value. Avail- 
able data are shown in Fig. 6.6. In view of the scatter in the data, it is reasonable 
to use the "Newton's law" value C, = 0.445 for spheres (see Chapter 5). i.e.. 

Hence A, = 2.63 for a disk. The results of List and Dussault (L3) are interpo- 
lated from wind-tunnel measurements on approximately spheroidal hailstone 
models (L2) while those of List et (11.  (L4) are for true spheroids in a wind 

I Wall effects are significant for these results, and have been corrected using the correlations in 
Chapter 9. 
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tunnel. If all the data are reliable. the difference between these sets of results 
can on11 be ascribed to an effect of Re. For near-critical conditions. the results 
of List et 01. (L4) suggest that 

A, = 1 + 1.6311 - E) (Re > 4 x lo4). (6-7) 

For lower Re. Charlton and List (C2) suggest 

The data are approximated equally well (see Fig. 6.6) by 

which has the advantage of giving the correct limit at E = 0. but its reliability 
for 0 < E < 0.5 is untested. 

1. Disks 

As for spheres, it is convenient to express drag in terms of CDReT2. which 
contains a dimension or dimensions of the particle, but not the velocity. For a 
disk of thickness 6 at its terminal velocity, 

where E = 6 d. For 0.1 < Re, < 100 [i.e., 1.3 < (C, ReT2)' < 23.41 a disk in 
free motion moves steadily with its axis vertical (M9) and the drag is identical to 
that on a fixed disk at the same relative velocity. The terminal Re can then be 
calculated from the relationship between C, and Re given by Eqs. (6-1) to (6-3). 
Figure 6.3 gives the resulting relationship between (C, ReT2)' and Re, together 
with the curve for spheres (see Chapter 5). For (C, ReT2)' > 2. i t . .  Re, > 0.5, 
C, and the terminal velocity for given c , R ~ , ~  are independent of E (Jl). 

Willmarth et al. (W5) showed that secondarq motion of a freely falling disk 
depends on a dimensionless moment of inertia. 

The upper bound of the region of stable steady motion is shown in Fig. 6.7 as 
a function of (CDReT2)' and I*. For large I*,  secondary motion starts at 
Re, = 100, i.e., (C, ReT2)' = 23.4. At lower I* ,  steady motion persists to higher 
Re,: the boundary shows a maximum at Re, = 172, (C, ReT2)' = 32.6 for I* = 

8 x Three kinds of secondarq motion have been observed (S8). although 
the distinctions between them are not sharp. Immediately above the transition 
to unsteady motion. a disk shows regular oscillatioi?.~ about a diameter: the 
amplitude of oscillation and of the associated horizontal motion increases with 



11. Spheroids and Disks 

FIG. 6.7 Regimes of motion for disks in free fall or rise. Contours of constant Strouhal number 
Sr and constant Reynolds number are also shown. 

(C, ReT2)' and decreases with I*. At higher (C, ReT2)' 3. the amplitude of the 
oscillation increases so much that the disk "flies" in a succession of curLed 
arcs: at the end of each arc. the axis of the disk is inclined at a large angle to 
the vertical, and a vortex is shed from the wake. Stringham et trl. (S8) termed 
this regime glide-tunzhle. At higher IY and (C, ReT2)' 3. a disk shows a turnbling 
motion, rotating continually about a diameter and folloming a trajectory which 
is approximately rectilinear. but not vertical. Figure 6.7 shows approximate 
boundaries between these regimes. The Strouhal number of oscillation. Sr = 

fd U,. decreases with I*, and increases with (c,ReT2)' close to the boundary 
of unsteady motion. Figure 6.7 shous Sr contours, from Willmarth el ill. (W5). 
For I* > 0.01. the data of Stringham et ill. (S8) show Sr < 0.3 but are too 
scattered for contours to be drawn. Once free fall motion becomes unsteady. 
the mean drag can differ significantlj from that on a fixed disk with steady 
relative velocity. Generally, a disk with low I* experiences higher drag and 
correspondingly lower mean vertical velocity. However. the data of Willmarth 
et ill. (W5) and Stringham et ill. (S8) indicate that drag is significantly lower 
near transition from glide-tumble to tumbling. Figure 6.3 shows curves for two 
values of I*, and contours of terminal Re are indicated in Figure 6.7. The data 
on which these curves are based show considerable scatter. Apparently the 
velocity of a given particle may even vary between experiments (S8). Hence the 
curves must be interpreted as approximate.? 

' Jayawcera and Cottis ( J l )  and Pitter er ul. (P51 h a ~ e  given C,, and (C,,Rer2)'  as functions of 
Rc, Tor 100 < Re, < 600. H o w e ~ c r .  thcir curve ~iegiects the effect of I*. which varied o \ e r  a wide 
rangc in the original experiments, and its general validit! is therefore uncertain. 
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For an oblate spheroid moving at its terminal velocity: 

For spheroids with E = 0.5, Stringham et (11. (S8) showed that steady motion 
with the axis vertical persists over a much wider range of Re, than for thin disks. 
Secondary motion started at Re, 4 x lo4, (C,ReT2)' = lo3. On increasing 
I,, steady motion persisted to higher Re, but the data are too scant to show 
whether the transition can be correlated by a dimensionless moment of inertia. 
The limit of steady motion must decrease on reducing E. but quantitative data 
are lacking. Two types of secondary motion have been observed for oblate 
spheroids (K6, K9, S8): o,scillnrio~z with the minor axis rotating to trace out a 
cone, and continuous rotation or t~lnzbling about a horizontal axis. List el nl. 
iK8. K9: L4) explained this behavior qualitatively, based on measurements for 
spheroids at steady inclination, but it is not possible to predict which kind of 
motion will occur. 

Figure 6.3 shows the relationship between (C,ReT2)' and Re, for E = 0.5, 
fitted to the data of Stringham et nl. (S8): 

log,, Re, = - 1.7239 + 3.8068W - 0.9477W2 + 0.1277W3 
(6- 13) 

(E = 0.5 ; 15 < (C, ReT2)' < 400: 40 < Re, < lo4). 

where W = l~g,,[(C,Re,~)' 3]. For other aspect ratios and lo3 < Re, < lo4, 
C, ma] be estimated from Eqs. (6-6) and (6-9), giving: 

The mechanism of mass transfer to the external flow is essentially the same 
as for spheres in Chapter 5. Figure 6.8 shows numerically computed streamlines 
and concentration contours with Sc = 0.7 for axisymmetric flow past an oblate 
spheroid (E = 0.2) and a prolate spheroid (E = 5) at Re = 100. Local Sherwood 
numbers are shown for these conditions in Figs. 6.9 and 6.10. Figure 6.9 shows 
that the minimum transfer rate occurs aft of separation as for a sphere. Transfer 
rates are highest at the edge of the oblate ellipsoid and at the front stagnation 
point of the prolate ellipsoid. 

A number of computations of average Sherwood number have been made 
(A3, M6) for Re < 100, 0.2 5 E I 5. and 0.7 < Sc < 2.4. Some values are also 
available at E = 0.05 and Sc = 0.7 for Re s 20 (P5) and for higher Sc with 
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(a) E.0.2 

FIG. 6.8 Concentration contours for floa past spheroids at Re = 100 and Sc = 0.7. Flow from 
right to left. Dashed lines are streamlines as in Fig. 6.1 with values of i a2 L' indicated. Dime~lsionless 
concentration values are marked on the solid lines which trace lines of constant concentration (M6). 

0 90  180 
Spheroidal Angular Coordinate,? 

F I G  6.9 Local Sherwood number for an oblate (E = 0.2) spheroid with Sc = 0.7. .4fter Masliyah 
and Epstein (M61. Axial flow. 
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Spheroidal Angular Coordinate,q 

FIG. 6.10 Local Sherwood number for a prolate ( E  = 5) spheroid with Sc = 0.7. After Masliyah 
and Epstein (M6). Axial flow. 

0.4 I E I 1 and Re < 10 (A3). The calculated values are correlated within 
5% by 

where Sh and Sh, are based on the equatorial diameter, Sh, is given in Table 
4.2, and Sh,,,,,, is for a sphere at the same Re given by Eq. (5-25). 

For axisymmetric flow at higher Re the most reliable data are those of Beg 
for the sublimation of oblate naphthalene spheroids (B4) (0.25 < E < 1) and 
disks (B3). His correlations are in terms of the characteristic length L' defined 
in Eq. (4-67). For spheroids 

Sh' = 0.62(Re')0,50 Scl (200 < Re' I2000), (6- 16) 

Sh' = 0.26(Re')0,61 Scl (2000 < Re' 1 3 . 2  x lo4), (6- 17) 

while for disks 

Sh' = 0.266(Re')0,60 Scl (270 < Re' 5 3.5 x lo4). (6-1 8) 

These equations are shown in Fig. 6.1 1. The correlations overlap with numerical 
calculations only for spheres (E = 1) and show a reasonable match with these 
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lo2! ' " " # 4 1  I I 4 . Sc-0.7 - 
Oblate Spheroids Eq.(6-17) 

C 
V ) .  
L* Eq.16-16) 

n - 
5 
z 

- 

V ) .  

Symbol ~ e f , ~  & 1 - -  
3 M 6  5 

</ Numerical Solutions 4 

Reynolds Number, ~ e '  

FIG. 6.1 1 Correlations and numerical calculatiol~s for heat transfer to  spheroids and disks with 
Pr  = 0.7. 

values. At lower Re', calculated values of Sh' are well correlated by an expression 
similar to that for spheres: 

Sh' - Sh0':2 (K')3 - 1 (Sh0'/2)3 
SC' = [l + (Re.)' 8 

(1 I Re' < 400). 

Equation (6-19) matches Eq. (4-70) at Re' = 1 and is plotted in Fig. 6.11. Note 
the decreasing dependence of Sh' on E as Re' increases. There is reasonable 
matching between Eqs. (6-16) and (6-19) in their common range of application. 

No data are available for heat and mass transfer to or from disks or spheroids 
in free fall. When there is no secondary motion the correlations given above 
should apply to oblate spheroids and disks. For larger Re where secondary 
motion occurs, the equations given below for particles of arbitrary shape in 
free fall are recommended. 

111. CYLINDERS 

1. Steady :Motion 

In the following discussion, cylinders are characterized by the length diameter 
ratio E and Re is based on the cylinder diameter.+ As noted in Section 11, drag 
on a disk in steady free motion is relatively insensitive to its thickness: cylinders 

' Other definitions are often used. For  example. Stringham er (11. (S8) based Re on the area- 
equ i~a len t  diameter ti,%. ~ \ h i l e  Christiansen and Barker iC3) used c>liilder length. 
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with E < 1 can therefore be treated as disks. For Re 5 0.01, a cylinder with 
E > 1 falls with its axis horizontal. Steady motion with this orientation persists 
up to Re of order 100 (52: M3, S8). The upper bound of steady motion increases 
with decreasing ;,, and increases sharply for E 5 20 (J2), but data are too scant 
to enable reliable prediction of the onset of secondary motion. 

Steady flow normal to the axis of a long cylinder has been investigated 
even more thoroughly than flow past a sphere [e.g., see (A4, J2> K4. P8: TI)]. 
Qualitatively, the flow pattern shows features similar to those described for 
spheres in Chapter 5. Separation occurs for Re > 5 (D2: U1); wake oscillation 
is apparent for Re 5 30: and wake shedding for Re 5 40 (H6, R6, TI). Shedding 
from a cylinder gives a regular succession of vortices, termed the "von Karman 
vortex street," recognizable over the range 70 < Re 2 2.5 x lo3. Above Re = lo5, 
the critical region is entered, with flow transitions similar to those described 
for a sphere in Chapter 5 (Al, R7, S6). For cylinders of finite length, flow past 
the ends sets up a three-dimensional circulation pattern, and the wake adopts 
a pyramidal shape (52). 

Figure 6.12 shows a curve fitted by Pruppacher et a/.  (P8) to the many 
determinations of C, for steady crossflow past long cylinders in the Re range 
applicable to free motion. We have approximated this curve by the following 
expressions : 

where 

C,' = 9.689 Re-0.78. (6-23) 

The junctions between these expressions correspond to changes in flow pattern. 
For lower Re, see Chapter 4. 

For a cylinder with E > 1 in free motion, 

where C ,  is based on the area projected normal to the axis. In the range where 
motion is steady with the axis horizontal. Eqs. (6-20) to (6-22) can be used to 
obtain relationships between Re, and (CDReT2)' for a long cylinder: the re- 
sulting curve is shown in Fig. 6.12. Jayaweera and Cottis (Jl) have given simi- 
lar curves for cylinders of finite lengtht based on data of Ja) aweera and Mason 
(52). Expressions fitted to these curves are given in Table 6.1. Corresponding 

' Their curve for a long cylinder corresponds to drag coefficients 10-2O0,, lower than those 
g i ~ e n  by Pruppacher er (11.  IP8). The Pruppacher values are preferred. since they are based on a more 
extensive data compilation. 
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10 100 
Reynolds Number, Re 

FIG. 6.12 Drag coefficient and (C,Rc21' "or c)lindc.rs in crossfloi\: -E = cc: - E = 2 :  
- - -  E = 1 .  

TABLE 6.1 

Correlations for Terminal Reynolds Number of Cylindrical Particles 

l og , ,  R e ,  = a,  + u,\+ + a , ~ . ~  + a 3 ~ t 3  
where 

a,  = - 0 81824 - 0.55689 E 

a, = 2 41277 + 1 54674 E - 0 53872 EZ 

a ,  = -020560 - 1.34714 E + 0 65696 EZ 

values for E = 1 and E = 2 appear in Fig. 6.12. For a long cylinder (E + x) 
these expressions agree within 3.5':; with Eqs. (6-20) to (6-22). 

2. Motion at Higher Reyrzolds iVunzbers 

As noted above. for Re, greater than a value of order 100. a cylinder in free 
motion has a secondary oscillatory motion superimposed on its steady fall 
or rise. For cylinders with E > 1, the axis oscillates in a vertical plane about 
the mean (horizontal) orientation, and the trajectory oscillates about the mean 
path in the same plane as the cylinder "sideslips" when its axis is not horizontal 
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(C3. 12, J2> M3, S8). The amplitude of angular oscillations decreases as E in- 
creases, and a very long cylinder falls steadily to high Re,(I2: 52). If Re, 5 3500 
(SX), motion also occurs in a horizontal plane. For relatively low the cylinder 
oscillates about a vertical axis (12, S8): while for dense particles in liquids or 
particles in gases the cylinder rotates continuously about a vertical axis (C3,12). 
A cylinder with E = 1 follows a trajectory inclined to the vertical, and "tumbles" 
in the direction of horizontal travel (12). For E < 1, the axis oscillates and 
rotates about a vertical line, so that the secondary motion resembles the final 
stages of motion of a coin spinning on a flat surface (12). 

As for disks and spheroids, the terminal velocity in this regime depends upon 
7 as well as on particle shape. Table 6.2 summarizes correlations (12) which 
may be used for j, typical of particles in liquids. The correlations do not extra- 
polate to the high ?-values typical of particles in gases, and comparison with 
available data (C3) shows that predicted terminal velocities are 25 to 35y: too 
high.+ We therefore propose that terminal velocities for cylinders in gases in 
the "Newton's law" range be estimated for E > 1 by multiplying the values given 
by Table 6.2 by 0.77. For E < 1, particles are best treated as disks. 

TABLE 6.2 

Drag Coefficients and Terminal Velocities 
for Cylinders with Secondary Motion" 

" After Isaacs and Thodos (12). The area used In definlng C, IS d2E 
for E > 1 and nd2 4 for E < 1, 

Marchildon et al. (M3) related oscillation of a falling cylinder to movement 
of the front stagnation point, and obtained an expression for the frequency: 

This result agrees closely with their own data and those of Stringham et al. 
(SB). However, its validity for particles in gases appears to be untested. 

Mass transfer rates in steady two-dimensional flow normal to the axis of a 
long cylinder have been computed numerically over a range of Re (D3, M8, W6). 

+ Christiansen and Barker (C3) correlated the drag on cylinders falling thro~igh gases. Hobever. 
the) indicate anomalously high dependence on ;, and E. Moreo~er ,  we have been unable to interpret 
these correlations in a Ray which is consistent ~ ~ i t h  either their oRn data or that of Isaacs and 
Thodos 112) and Marchildon er ul. iM3). 
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These results. which are expected to be reliable for Re < 40. are correlated 
within 10% by the expression 

Sh 
- = 0.68 ( 1 + -- Risc)l 'Reo4' (Re > 0.1). (6-26) 
Sc' 

Figure 6.13 compares Eq. (6-26) with available numerical solutions and ex- 
perimental data of Hilpert (F1, H4) for heat transfer to air. Agreement is good 
even for Re as high as lo3. The review of Morgan (M12) should be consulted 
for additional data and discussion on transfer to cylinders in crossflow. 

1 10 1 o2 
Reynolds Number, Re 

Experimental: o Pr = 0.71 (FI,H4) 

Numerical: . P r =  0.73 (D3,MB,W6) 
r Pr = 8 (D3) 

Pr = 64 (D3) 

FLG 6.1 3 Heat transfer factors for long cylinders in steady crossflow 

Although there are no data for cylinders in free fall, the following suggestions 
are offered for calculating transfer rates. For cylinders with E > 1 falling with 
axis horizontal and without secondary motion, Eq. (6-26) should be used with 
the transfer coefficient over the flat ends of the cylinder taken as equal to that 
over the curved surface. Cylinders with E < 1 falling without secondary motion 
can be treated as oblate spheroids of the same E. For higher Re, the recom- 
mendations given below for particles of arbitrary shape in free fall at high Re 
should be followed. 

IV. PARTICLES O F  ARBITRARY SHAPE 

As shown in Chapter 4, the terminal velocity of a particle of arbitrary shape 
cannot be predicted with complete confidence. even at low Re. In this chapter, 
we have shown that the behavior of particles with well-characterized shapes is 
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not well understood at higher Re. especially when secondary motion occurs. 
In view of these factors and the difficulties noted in Chapter 2 in charac- 
terizing the shape of irregular particles, it is not surprising that there are no 
fully successful methods for predicting the behavior of particles of arbitrary 
shape. Torobin and Gauvin (T2) reviewed various correlations which have 
been proposed. 

For calculating terminal velocities. it is convenient to use groups like those 
defined in Chapter 5:  

N A  = [4Ap g x (equivalent diameter), (6-27) 

where the equivalent diameter to be used depends on the correlation to be 
applied. The velocity correction factor for an arbitrary particle is defined as: 

K = CT, C,,,,,, . (6-29) 

where C,,,,,, . the terminal velocity of a spherical particle of equivalent diameter. 
can be found from the Re, or N t  vs. correlations in Chapter 5 and the 
Appendices. 

Wadell (Wl ,  W2) proposed that the sphericity $, defined in Chapter 2: could 
be used to correlate drag on irregular particles. The appropriate dimension 
for definition of Re and Nk is then d,, the diameter of the sphere with the 
same volume as the particle. Figure 6.14 shows velocity correction factors 
calculated on this basis (G5). This approach has found widespread acceptance, 
although there is experimental evidence that terminal velocity does not correlate 
well with sphericity (B8, S8). 

FIG. 6.14 Ratio K c  of terminal velocit~ of particle of arbitrarq shape to that of sphere having the 
same volume. Based on Wadell (W2) and Govier and Aziz ((35). 
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Some indication of the validity of this correlation can be obtained by com- 
paring it with results for specific shapes. For oblate spheroids with an aspect 
ratio of 0.5, predicted values of R'L- agree with available data within 10%. 
For more oblate spheroids, the Wadell correlation predicts terminal velocities 
as much as 20°;, too low. For cylinders, agreement is even worse, with Wadell's 
correlation underpredicting C', by up to 40:). except for aspect ratios oforder 10. 
Combining these results with the inherent difficulty in measuring IC/ for an 
irregular particle, we conclude that sphericity is not a good basis for predicting 
terminal velocities: even in the "intermediate" range, except for oblate shapes 
with $ approaching unity. 

Heywood's "volumetric shape factor" k, defined in Chapter 2, can be estimated 
rapidly, even for irregular particles, using Eq. (2-2). Table 6.3 gives values for 
regular shapes and some natural particles. Heywood (H2. H3) suggested that 
k be employed to correlate drag and terminal velocit). using d, and the projected 

TABLE 6.3 

Values for He!wood's Volumetric Shape Factor 

Regular shapes: 
Sphere 
Cube 
Tetrahedron 
Cqlinder with E = 1 : 

~ i e w e d  along axis 
viewed normal to axis 

Spheroids: E = 0.5 
E = 2  

Approximate values for isometric irregular shapes. h , ( H 2 ~ :  
Rounded 0.56 
Subangular 0.5 1 
Angular 

tending to prismoidal 0.47 
tcnding to a tetrahedron 0.38 

Selected natural particles (Dl 1: 
Sand 
Bituminous coal 
Blast furnace slag 
Limestone 
Talc 
Gqpsum 
Flake graphite 
Mica 
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area to define Re and C,; respectively. There are justifications for this approach 
because many natural particles have an oblate shape, with one dimension 
much smaller than the other two. Over large Re, ranges in the "intermediate" 
regime, such particles present their maximum area to the direction of motion, 
and this is the area characterized by d,. There is also evidence that the shape 
of this projected area? which does not influence k, has little effect on drag; for 
example, Jayaweera and Cottis (J l )  found essentially the same C, vs. Re 
relationship for hexagonal and circular disks. 

Heywood gave drag curves for various values of k (H3), and tabulated the 
velocity correction factor K ,  (H2). Figure 6.15 shows K ,  plotted from 
Heywood's table. There is empirical evidence for the validity of this approach 
(Dl).  As with sphericity, comparison for specific shapes is informative. For 
oblate spheroids (for which d, is the equatorial diameter) and Re, < 100, 

FIG. 6.15 Ratio K ,  of terminal Xelocity of particle of arbitrary shape to that of a sphere having 
the same projected area. After Heywood (H2). 

1 10 100 
Dimensionless Particle Equivalent Diameter, N$ 

FIG. 6.16 Comparison of Heywood correlation with experimental results for cylinders of E = 2. 
4 and 10. S,' and Re are based on d,. Dashed lines are calculated from the correlations of experi- 
mental data given in Table 6.1. Light solid lines are the corresponding Heywood predictions. 
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predicted values of N:, are within 100; of available data. At higher Re, where 
Eq. (6-13): limited to E = 0.5; is the only available result, Heywood's correlation 
underpredicts the terminal velocity by up to 20'6. For cylinders, the comparison 
with the correlation in Table 6.1 is shown in Fig. 6.16. For E = 2, agreement 
is within 102, over the range of Re,. based on d,: from 10 to 200. but at lower 
Re, the Heywood correlation underpredicts the terminal velocity by up to 25%. 
For E = 4. agreement is within lo;, down to Re, = 0.5, while for E = 10, C-, 
is overpredicted over the whole range. 

Since most irregular particles of practical concern tend to be oblate, lenticular, 
or rod-like with moderate aspect ratio, these comparisons generally support 
Heywood's approach. Combining this observation with the fact that the volu- 
metric shape factor is more readily determined than sphericity, we conclude 
that Heywood's approach is preferred for the '-intermediaten range. For con.. 
venience in estimating U,, Table 6.4 gives correlations, fitted to Heywood's 
values, for 0.1 < k < 0.4 at specific values of I\::, 3 .  Since K ,  is relatively insensi- 
tive to li; 3 ,  interpolation for K A  at other values of 1Yh is straightforward. 
In common with Heywood's tabulated values; the correlations in Table 6.4 
do not extrapolate to K A  = 1 for a sphere (k = 0.524). 

TABLE 6.4 

Correlat~ons for Velocity Correction Factor 
(0.1 5 I( s 0.4) 

,VA K ,  = Veloclt) correction factor 

Since the motion of particles of simple shapes in free fall or rise is poorly 
understood when secondary motion occurs, it is not surprising that the behavior 
of particles with more complex or irregular shapes in this range cannot be 
predicted with certainty. As for the regular shapes. G, is only weakly dependent 
on Re, but depends on 7 (T2). The correlation developed by Wadell (Fig. 6.14) 
is not recommended since it shows dependence on Re but not on ;) and has 
dread;\ been shown to be unreliable in the intermediate range. 

Pettyjohn and Christiansen (P4) reported extensive data for isometric par- 
ticles. He;\ wood's volumetric shape factor %as not a good basis for correlation 
in the "Newton's  la^" range, but sphericity &as found suitable. Subsequently, 
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Barker (Bl. T2) showed that the data included a significant densit) effect, and 
gave a modified correlation, 

C, = ;-' 18(5.96 - 5.511)) (1.1 < ;' < 8.6), (6-30) 

where C ,  is based on the cross-sectional area of the I olume-equivalent sphere, 
nde2 4. The terminal velocity is then 

The dependerlce on 7 is compatible with results for short cylinders (see Table 6.2). 
Data are too scant for these equations to be recast in a form analogous to 
Eqs. (5-17) and (5-18) and to extrapolate to high ;.. 

For other particles, Christiaiisen and Barker (C3) proposed that shapes be 
classified according to the ratio of maximum to minimum lengths on sections 
through the centroid. If this ratio is less than 1.7: the particle should be treated 
as isometric, and Eqs. (6-30) and (6-31) can then be applied. Otherwise: the 
particle should be classified as rod-like or disk-like, and results given for these 
shapes in earlier sections should be applied. For irregular particles which do 
not approximate a shape for which data are available, there are no very satis- 
factory methods available. The situation is complicated by the fact that particles 
with high 7 can maintain nonpreferred orientations over large distances (M2). 
The state of affairs is such that if one wishes to estimate the terminal velocities 
of irregular particles in the Newton's law range one should measure them 
whenever possible. 

C.  HEAT AND MASS TRANSFER 

For particles at high Re, the total heat or mass transfer is made up of a 
contribution from the front part of the body forward of separation and a con- 
tribution from the wake region aft of separation. The two regions should be 
treated differently to correlate transfer rates.+ Over a broad Re range and for 
nonstreamlined shapes, separation can be considered, to a first approximation, 
to occur at the locus of the maximum perimeter normal to flow. Figure 6.17 
shows mass- and heat-transfer data for the aft portion of a number of different 
shapes. supported rigidly from the rear. Since transfer in the separated region 
is particularly sensitive to wall effects and turbulence (11, P3), data have been 
included only when tunnel area blockage and turbulence intensity were less 
than 10% and 37,, respectivel>. The characteristic length for both the ordinate 
and abscissa in Fig. 6.17 is 

surface area aft of maximum perimeter 
Lif, = 

maximum perimeter normal to the flow 

' This idea was first used by Van der Hegge Zijnen i V l i  and Douglas and Churchill iD4) in 
de~eloping correlations for cylinders in crossflou. 
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Different correlations are required for three-dimensional bodies (spheres, disks, 
and spheroids) than for the two-dimensional shapes (cylinders and wedges). 
For three-dimensional shapes transfer in the aft region is correlated by 
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u here Shb .,, is the Sherwood number based on L;,, for diffusion to a stagnant 
medium. For the forward portion, we assume transfer to be proportional to the 
square root of the Reynolds number and adjust the proportionality constant to 
fit the sphere data presented in Chapter 5. The overall correlation for three- 
dimensional shapes is then 

Aft Reynolds Number, Re& 

FIG. 6.17 Wake region transfer for two- and three-dimensional fixed bodies at high Reynolds 
number. 

Sh' - Sh'' 2 
-- = 0.62(1 - x ) '  '(Re')' + 0.056(r Re')' " ( lo3  -2 Re' < lo5), 

Sc' 

where r is the fraction of the total particle area which is aft of the maximum 
perimeter and Sh', Sh,', and Re' are all based on L', the characteristic length 
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introduced by Pasternak and Gauvin (PI)  [see Eq. (4-67)]. If only part of the 
surface is active, the active area and maximum perimeter of the active area 
should be used. For bodies with fore-and-aft symmetry, 2 = 0.5 and Eq. (6-34) 
becomes : 

Sh' - ShO1/2 
pp = 0.44(Re1)l i- 0.034(Re1)0 -'. 

Sc' 

Equation (6-35) appeared already for spheres in Table 5.4. 
For two-dimensional shapes, the equations corresponding to Eqs. (6-33) to 

(6-35) are 

Shi,,,/Scl = 0.038(Reif,)o -'. (6-36) 
Sh' Scl = 0.62(1 - x)' 2Re' + 0.038(a Re')' 7 8 ,  (6-37) 

Sh'/Scl = 0.44(Re1)' + 0.022(Re1)' " (x = 0.5). (6-38) 

The exponents on Re' for the wake contribution terms in Eqs. (6-33) to (6-38) 
fall within the range 5 to 1 proposed by earlier investigators (D4, R2, Vl). The 
Shof term does not appear in Eqs. (6-36) to (6-38) since Sh,' = 0 for a truly 
two-dimensional body. 

Although there are few data to compare with these equations, they are in 
accord with the results of Pasternak and Gauvin (PI)  who found that use of 
L' as characteristic length brought together their data for spheres, cylinders, 
cubes, prisms, and hemispheres for 500 < Re' < 5000. Unfortunately. the tur- 
bulence intensity in their wind tunnel was too high for their data to be used 
to test the equations directly. When compared with heat transfer data from 
cylinders in crossflow, the errors were within 10% for circular cylinders (F l ,  H4), 
15% for square and hexagonal cylinders (H4). and 25% for elliptic cylinders 
with 2: l  axis ratios (K3). In using Eq. (6-37) for the square and hexagonal 
cylinders, the aft area was taken to include the area of sides parallel to the flow. 

For particles of arbitrary shape held in a flow, Eqs. (6-34) and (6-37) should 
be used for Re' 5 1000. For particles in free fall the only data available (P2) 
show that the transfer is little affected by particle rotation with rotational 
velocities less than 502, of the particle velocity. The correlation for fixed particles 
was adequate provided that the equivalent diameter d, was used in place of L'. 
For particles of arbitrary shape falling in the Newton's law regime, Eq. (6-35) 
should be used with d, replacing L' and 5'11,' taken as 2. 

For particles with rough surfaces, e.g., with roughness elements of height 
less than 20% of tl,, the mass transfer coefficient is usually larger than predicted 
here (A5, 54, S3, S4). but at most by about 50%). Roughness is treated in more 
detail in Chapter 10. For a particle made up of a small number of particles 
in a cluster, the use of d, in Eq. (6-35) gives good results (S4). 

In the intermediate regime it is recommended that the particle be treated 
as an oblate spheroid with major and minor axes determined from the particle 
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kolume and the projected area of the particle lying in its orientation ofmaximum 
stability on a horizontal surface; both parameters are required in any case 
for the determination of the volumetric shape factor k. The aspect ratio E is then 

E = (6, ~ ) k ,  (6-39) 

and the equatorial diameter d is given by 

If k > 0.524, E should be taken as unity. 

V. FREE FALL O F  OTHER SPECIFIC SHAPES 
OR TYPES O F  PARTICLE 

Excellent reviews of work on other specific shapes have been prepared by 
Hoerner (H5) and Torobin and Gauvin (T2). Some more recent references are 
listed in Table 6.5. Particles of special shapes often show interesting preferred 
orientations in the "intermediate regime." For example, a freely falling cone of 
uniform density falls with its base horizontal for Re, (defined with basal diameter 
as characteristic length) 5 0.05; the apex points up if the apex angle is less 
than 45' and down if the angle is greater than 45' (J2). Cubes and isometric 
tetrahedra adopt an orientation with a flat face perpendicular to the direction of 
motion for Re, > 10, while octahedra show similar behavior for Re, 5- 20 (P4). 

Work has also been done on specific types of particles encountered in agri- 
cultural, meteorological, and other applications. Some relevant references are 
listed in Table 6.5. When data for the specific shape or the specific type of 

TABLE 6.5 

Sources of Data on Drag and Free Fall Behavior of 
Some Nonspherical Particles 

Shape or type of particle References 

Noncircular plates 
Cones 
Prisms 
Straws and stems 
Grain, seeds, kernels 
Soybeans 
Blueberries 
Walnuts 
Hail. ice crystals 
Snow crystals 
Sand 
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particles of interest are available, these data often p ro~ ide  a more accurate 
basis for predicting free fall behavior than the general and approximate methods 
outlined previously in Section IV. 
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Chapter 7 

Ellipsoidal Fluid Particles 

I. INTRODUCTION 

The conditions under which fluid particles adopt an ellipsoidal shape are 
outlined in Chapter 2 (see Fig. 2.5). In most systems, bubbles and drops in the 
intermediate size range (d ,  typically between 1 and 15 mm) lie in this regime. 
However. bubbles and drops in systems of high Morton number are never 
ellipsoidal. Ellipsoidal fluid particles can often be approximated as oblate 
spheroids with vertical axes of symmetry. but this approximation is not always 
reliable. Bubbles and drops in this regime often lack fore-and-aft symmetry. 
and show shape oscillations. 

11. FLUID DYNAMICS 

Because of their practical importance, water drops in air and air bubbles in 
water have received more attention than other systems. The properties of water 
drops and air bubbles illustrate many of the important features of the ellip- 
soidal regime. 

1. Wtrter Drops in Air 

Numerous determinations of the terminal velocities of water drops have been 
reported. The most careful measurements are those by Gunn and Kinzer (G13) 
and Beard and Pruppacher (B4). Figure 7.1. derived from these results,' shows 

Results for Re < 300 were included in the data used to derive the "standard drag curve" in 
Chapter 5. Numerical results for spherical raindrops (valid for Re < 200) are also discussed in 
Chapter 5. 
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FIG. 7.1 Terminal velocity and aspect ratio of water drops falling freely in air at 20',C and 1 bar 
(B4, G13, P5). 

terminal velocity and corresponding Reynolds number as a function of volume- 
equivalent diameter for water drops in air. Berry and Pranger (B7) and Beard 
(B3) give empirical polynomials describing the terminal velocity of drops in 
air, with Beard's equations covering a wider range of atmospheric conditions 
than the others. For water drops in air under normal atmospheric conditions 
at sea level, the simplest fit (B7), accurate within about 3%, gives 

where &, is defined by Eq. (5-15). For d, -2 1 mm (Re -2 300). deviations from 
a spherical shape and internal circulation are so small that the correlations for 
rigid spheres in Chapter 5 may be used to predict terminal velocities. For d, 
20 pm (B3), correction for noncontinuum effects must be made (see Chapter 10). 
Pitter and Pruppacher (P4) studied the motion of 200 to 350 Lim water drops 
undergoing freezing. 

Drops larger than about 1 mm in diameter are significantly nonspherical; 
the mean height to width ratio is approximated (P5) by: 

E = 1.030 - 0.062d, (1 < d, < 9 mm), (7-2) 

with d, in mm. This ratio is plotted in Fig. 7.1. Figure 7.2 shows that deforma- 
tion increases the drag coefficient above the value for a rigid sphere if C, and 
Re are based on the volume-equivalent diameter d,. The flattening of water 
drops at the front (lower) surface results from the increased hydrodynamic 
pressure there, while the rear has a more uniform hydrodynamic pressure and 
is therefore more rounded (M6). Blanchard (B9) discusses the popular mis- 
conception that raindrops fall with a teardrop shape. Figure 2.4(a) shows a 
photograph of a water drop in air. Shapes are discussed in detail in Section D. 
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FIG. 7.2 Drag coefficient as function of Reynolds number for water drops in air and air bubbles 
in  nater, compared with standard drag curve for rigid spheres. 

Water drops become unstable and tend to break up before they reach 1 cm in 
diameter (see Chapter 12). Drops approaching this size show periodic shape 
fluctuations of relatively low amplitude (J3. M4). 

As for other types of fluid particle. the internal circulation of water drops in 
air depends on the accumulation of surface-active impurities at the interface 
(H9). Observed internal velocities are of order 1:'; of the terminal velocity (G4. 
P5), too small to affect drag detectably. Ryan (R6) examined the effect of surface 
tension reduction by surface-active agents on falling water drops. 

2. Air Biibbles in Water 

Experimental terminal velocities for air bubbles rising in water are presented 
in Fig. 7.3 for the ellipsoidal regime and adjacent parts of the spherical and 
spherical-cap regimes. Some of the spread in the data results from experimental 
scatter, but the greatest cause is surface contamination. For water drops in air. 
described in the previous section, surfactants have negligible effect on drag 
since ic is so high that internal circulation is small even in pure systems. For 
air bubbles in water. K is so small that there is little viscous resistance to inter- 
nal circulation. and hence the drag and terminal velocity are sensitive to the 
presence of surfactants. 

The two curves in Fig. 7.3 are based on those given by Gaudin (G9) for dis- 
tilled water and for water with surfactant added. The curves converge for small 
(spherical) bubbles, since even distilled water tends to contain sufficient sur- 
factant to prevent circulation in this range (see Chapter 3), and fo,r large 
(spherical-cap) bubbles. where surface tension forces cease to be important. 
Surface-active contaminants affect the rise velocity most strongly in the ellip- 
soidal range. Drag coefficients corresponding to these two curves appear in 
Fig. 7.2. and show that C, for bubbles lies below the rigid sphere curve when 
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FIG. 7.3 Terminal velocity of air bubbles in water at 20 C. 

internal circulation is present, but above if there is no internal circulation and 
the drag is dominated by deformation. For d, > 1.3 mm, the uppermost (pure 
system) curve in Fig. 7.3 is approximated closely by 

U ,  = C(2.14~7 pd,) + 0.505gde] ' 2. 17-3) 

which is of the form suggested by a wave analogy (C2. M7). 
Aybers and Tapucu (A4. A5) measured trajectories of air bubbles in water. 

When surface-active agents continue to accumulate during rise, the terminal 
velocity may never reach steady state (A4. B1) and may pass through a maxi- 
mum (W4). Five types of motion were observed, listed in Table 7.1 with Re 
based on the maximum instantaneous velocity. Secondary motion of fluid par- 

TABLE 7.1 

Motion of Intermediate Size .Air Bubbles Through Water at 28.5 C" 

(1, (mm) Rc E Path 

< 1.3 1 5 6 5  > 0.8 Rectilinear 
1.3 to 2.0 565 to 880 0.8 to 0.5 Helical 
2.0 to 3.6 880 to 1350 0.5 to 0.36 Plane (zigzag) then helical 
3.6 to 4.2 1350 to 1510 0.36 to 0.28 Plane (zig-zag) 
4.2 to 17 1510 to 4700 0.28 to 0.23 Rectilinear but with rocking 

" After Aybers and Tapucu iA5). 
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ticles. associated m ith wake phenomena. is discussed in greater detail in Section 
F. Lindt and De Groot (L8) give values of the Strouhal number for helical 
T ortex shedding behind air bubbles in \i ater. 

The generalized graphical correlation presented in Fig. 2.5 gives one method 
of estimating terminal velocities of drops and bubbles in infinite liquid media. 
For more accurate predictions. it is useful to have terminal velocities correlated 
explicitly in terms of system variables. To obtain such a correlation is especiallq 
difficult for the ellipsoidal regime where surface-active contaminants are im- 
portant and where secondary motion car. be marked. 

1. Effect of Viscositj. Ratio K 

It is geceral practice to ignore the effect of the viscosity of the internal fluid 
in correlations of terminal velocities. We recall from Chapter 3 that decreasing 
pp,  all other factors remaining fixed, can at most cause a 50°/, change in U ,  at 
low Re, and this change is seldom realized in practice due to the effect of sur- 
factants. Hamielec (H2) showed that varying K over a tenfold range had a small 
but noticeable effect for cyclohexanol drops in water with Re up to about 10. 
Figure 7.4 shows Re (Eo) for eight systems, all having virtually the same Morton 

10 
SYMBOL REF 

K3 2.2 0.42 

K5 2.3 19.8 
T5 2.0 1.11 

FIG. 7.4 Reynolds number as a function of Eottos number for slstems with essentially identical 
.2.1 studicd b! different workers. 
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Number (2.0 to 2.3 x but widely different values of ti (0.35 to 20). While 
the data exhibit some scatter, the observed dimensionless terminal velocities 
do not lary systematically with ti: but appear to reflect differences in system 
puritl. Thorsen and coworkers (T4, T5) took greater care to purify their systems 
than the other authors and this is reflected in higher velocities. The internal 
fluid viscosity can be considered to be of secondary importance for systems in 
which no particular care has been taken to eliminate surfactants. 

2. Effect of burface-~ctice Contamirzants 

We may illustrate the effect of surfactants by comparing terminal velocities 
measured by different workers using the same system. Results for air bubbles 
in water have already been shown in Figs. 7.2 and 7.3. Results from six different 
studies on carbon tetrachloride drops falling through water are plotted in 
Fig. 7.5. The measured terminal velocities differ widely among different inves- 
tigators, and one can only attribute these differences to differences in system 
purity. A number of workers have noted a strong influence of system purity on 
the drag or terminal velocity of ellipsoidal fluid particles [e.g. (E3. R1. S9, TI ,  
T4, Zl)]. In a very careful study, Edge and Grant (E3) examined the effects of 
low concentrations of a surfactant, sodium lauryl sulphate, on the motion of 
dichloroethane drops descending through water. At very low surfactant con- 
centrations gmlliter or less) there was no observable effect. As the con- 
centration was increased, a marked decrease in terminal velocity was observed 
for drops of equivalent diameter between 2 and 6 mm and this was usually 
accompanied by earlier boundary layer separation and irregular drop 

- 
U1 - 
E - 
9 2  

i 
6 
4 SYMBOL REF. -- 
> . (7-5) and (7-6) 0 Bn 

< H12 
A K5 

g 0.1 A L3 
K T4 
I- 8 T5 

0 S4 

0 2 4 D M 1 U 
EQUIVALENT DIAMETER , de (rnrn) 

FIG. 7.5 Terminal velocity of carbon tetrachloride drops falling through water. measured by 
different workers. with varying s ~ s t e m  purity. 
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oscillations. At relatively high surfactant concentrations gm;liter or 
greater) the systems were said to be "grossly contaminated." The drop terminal 
velocities again became independent of surfactant concentration while the 
interface remained rigid, and oscillations became more regular. 

Very few workers have succeeded in eliminating all surface-active contami- 
nants from their systems. Moreover, the type and concentration ofcontaminants 
present have seldom been characterized. Based on the available evidence, one 
may draw the following conclusions. 

(i) Surfactants tend to damp out internal motion by rendering the inter- 
face rigid as discussed in Chapter 3. The influence of surfactants is most sig- 
nificant for low values of IC, since at large IC the viscous resistance of the internal 
fluid limits internal motion even for pure systems. 

(ii) Surfactants have the greatest influence on terminal velocity near the 
point of transition from rectilinear to oscillating motion. This is presumably 
because internal circulation can drastically alter the wake structure of a fluid 
particle (see below) leading to delayed boundary layer separation, smaller 
wakes, and delayed vortex shedding. 

(iii) Surfactants play a particularly important role in high o systems (e.g., 
air~water) since surface tension reductions are largest for these systems (see 
Chapter 3). 

(iv) Most of the experimental results in the literature are for "grossly con- 
taminated" bubbles and drops. Since it is so difficult to eliminate surface-active 
contaminants in systems of practical importance, this is not a serious limitation. 

3. Correlation for Contaminated Drops and Bubbles 

There is a substantial body of data in the literature on the terminal velocities 
of bubbles and drops. In view of the influence of system purity discussed above, 
a separation of this data has been made. Cases where there is evidence that 
considerable care was taken to eliminate surfactants and where a sharp peak 
in the C ,  vs. d, curve at low M and IC is apparent (as for the pure systems in 
Figs. 7.3 and 7.5) are discussed in Section 4. 

Grace et a/. (G12) applied three types of correlation to a large body of 
experimental data: the form proposed by Klee and Treybal (K3); that proposed 
by Hu and Kintner (H12) and its extension by Johnson and Braida (J2): and 
a wave analogy suggested for bubbles by Mendelson (M7) and extended to 
drops by Marrucci et al. (M5). The second of these forms gave smaller residuals, 
especially as IVI is increased. Even so, it was necessary to eliminate high 
systems from the resulting correlation. Cases where wall effects were too sig- 
nificant were also eliminated from the data treated. The criteria which the data 
had to meet were then Eqs. (9-33) or (9-34) and 
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The indices in the original Johnson and Braida correlation and the point of 
intersection between the two linear regions were adjusted to improve the agree- 
ment with all the data meeting the above criteria. The resulting correlation 
(G12) is: 

and 

where 

and p ,  is the viscosity of water in Braida's experiments, which may be taken 
as 0.0009 kg, ms (0.9 cp). 

A plot of every fourth data point and the lines given by Eqs. (7-5) and (7-6) 
appears in Fig. 7.6. The gradient discontinuity corresponds approximately to 
the transition between nonoscillating and oscillating bubbles and drops. In the 
above correlation, the terminal velocity appears only in the dimensionless 
group J, and may be expressed explicitly as: 

The r.m.s. deviation between measured and predicted terminal velocities is 
about 15% for the 774 points with H 5 59.3 and 11% for the 709 points with 
H > 59.3. This correlation is recommended for calculations of bubble and drop 
terminal velocities when the criteria outlined above are satisfied and where 
some surface-active contamination is inevitable. The predictions from this 
correlation for carbon tetrachloride drops in water are shown on Fig. 7.5. 

Many other correlations for calculating the terminal velocity of bubbles and 
drops are available [e.g. (H12, J2, K3, TI ,  V1, W2)]. None covers such a broad 
range of data as Eqs. (7-5) and (7-6). Moreover, a number of the earlier corre- 
lations require that values be read from graphs or that iterative procedures be 
used to determine LTT. 

4. Correlatio~zfor Pure Sj.srems 

In view of the limited data available for pure systems. Grace et ul. (G12) 
modified the correlation given in the previous section rather than proposing 
an entirely different correlation. A correction of somewhat similar form to that 
suggested in Chapter 3 for low Re is employed; i.e.. 
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o Liquid Drops 

0 Gas Bubbles 

3 

FIG. 7.6 Data (showing one point in four) used to obtain general correlation for terminal velocity 
of drops and bubbles in contaminated liquids. compared with Eqs. (7-5) and (7-6) (B11. B17. D2. 
E3. E4. G9. G10, G14. HI,  H12. 54. K2. K3. K5. L3. LI1. P3. TI. W3. Y4). 

where I- is to be obtained experimentally and C', is predicted using Eqs. (7-5) 
to (7-9). Since the contiiluous fluid was water for all the pure systems for which 
data are available. p and !W cover very restricted ranges. Experimental values 
of I- are plotted in Fig. 7.7 as a function of Eo(1 + 0 . 1 5 ~ )  (1 i- K), where the 
function of K was chosen to reduce the spread in the resulting points. 

Careful purification of a system has little effect for small and large drops and 
bubbles. Hence l- reaches a maximum for a particular value of the abscissa 
and decreases to zero at large and small values of the abscissa. An envelope 
has been drawn to provide an estimate of the maximum increase in terminal 
velocity for bubbles and drops in pure systems over that for contaminated 
systems. This envelope, together with Eq. (7-10) and the correlation of the 
prevlous section, have been used to obtain the upper curve In Fig. 7.5 for 
carbon tetrachloride drops in water. The curve gives a good representation of 
the higher velocities obser~  ed for carefully purified systems. 
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FIG. 7.7 Correction factor. T, relating terminal velocity in pure systems to value in correspond- 
ing contaminated sqstcms iE2. E3, G9. T4). 

The envelope in Fig. 7.5 is for the maximum increase in terminal velocity 
obtainable by eliminating surface-active contaminants. For systems of inter- 
mediate purity, may be assigned a value between zero and that given by the 
envelope. Since the envelope has been derived solely from experiments for 
aqueous systems, it should be used with caution for noilaqueous systems. 

As indicated in Chapter 2. liquid drops falling through gases have such 
extreme values of ;' and x that they must be treated separately from bubbles 
and drops in liquids. Few systems have been investigated aside from water 
drops in air, discussed above, and what data are available for other systems 
(Fl. G5. L5, V2) shou wide scatter. Rarely have gases other than air been used. 
and some data for these cases [e.g. (L.5, N2)] cannot be iilterpreted easily be- 
cause of evaporation and combustion effects. Results for drops in air at other 
than room temperature (S8) differ so radically from results of other workers 
that they cannot be used with confidence. 

For Eo i 0.15, drops are closely spherical and terminal belocities may be 
calculated using correlations given in Chapter 5 fdr rigid spheres. For larger 
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drops. data of Flnlaq (F l )  and Van der Leeden et nl. (V2) can be correlated 
with the best data for water drops in air (B4. G13) by the equations 

Re = 1.62 EO' - j 5  .w-O l5 (0.5 I EO I 1.84). (7-11) 

Re = 2.0 Eo0.' ,14-0.25 (€0 2 5.0). (7- 1 3) 

Equation (7-13) predicts that the terminal velocity approaches an upper limit. 

independent of the drop size and the viscosity of the gas. 
An alternative correlation given by Garner and Lihou (G5) based on data 

for different liquids in air may be written: 

Re = 0.776EoO.~~ lL!-O 2 8  (Eo I 164,V1 6),  (7-15) 

Re = 1.37 E ~ ~ . ~ ~  M - ~ . ~ ~  (Eo > 164M1 6 ) .  (7- 1 6) 

This form of correlation was used by Beard (B3) to suggest a correlation for 
water drops in air under different atmospheric conditions. It should be used 
with caution for gases with properties widely different from air under atmo- 
spheric conditions, but the range of liquid properties covered is broad. 

It is an open question whether small quantities of surfactants. too small to 
influence the gross properties. affect the terminal velocity of liquid drops in 
air. This appears unlikely in view of the large values of K ,  but Buzzard and 
Nedderman (B18) have claimed such an influence. Acceleration may have 
contributed to this observation. Quantities of surfactant large enough to lower 
G appreciably can lead to significantly increased deformation and hence to an 
increase in drag and a reduction in terminal velocity (R6). 

General criteria for determining the shape regimes of bubbles and drops are 
presented in Chapter 2. where it is noted that the boundaries between the 
different regions are not sharp and that the term "ellipsoidal" covers a variety 
of shapes. many of which are far from true ellipsoids. Many bubbles and drops 
in this regime undergo marked shape oscillations. considered in Section F. 
Where oscillations do occur. we consider a shape averaged over a small number 
of cycles. 

As noted in Chapters 2 and 3, deformation of fluid particles is due to inertia 
effects. For low Re and small deformations. Taylor and Acrivos (T3) used a 
matched asymptotic expansion to obtain. to terms of order We2 Re, 
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where 

P2  and P, are the second- and third-order Legendre polqnomials. For small 
We, the deformed bubble or drop is predicted to be exactly spheroidal. In 
principle, the spheroid may be either prolate or oblate, but for cases of physical 
significance oblate shapes are predicted. If Re, >> 1, droplet shapes are predicted 
to differ only slightly from the case where both Re and Re, are small (PI). 
Brignell (B14) extended the series expansion to terms of order We Re2. Since 
deformation at low Re is only observable for high systems. this approach 
is of little practical value. 

At larger Re and for more marked deformation, theoretical approaches have 
had limited success. There have been no numerical solutions to the full Navier- 
Stokes equation for steady flow problems in which the shape, as well as the 
flow. has been an unknown. Savic (S3) suggested a procedure whereby the 
shape of a drop is determined by a balance of normal stresses at the interface. 
This approach has been extended by Pruppacher and Pitter (P6) for water 
drops falling through air and by Wairegi (Wl)  for drops and bubbles in liquids. 
The drop or bubble adopts a shape where surface tension pressure increments, 
hydrostatic pressures, and hydrodynamic pressures are in balance at every 
point. Thus 

Ap9.1. + ~ [ ( l  R1) + (1 R2) - ( ~ / R o ) ]  + PHD - (PHD)~ = 0, (7-19) 

where y is measured vertically upwards from the lowest point. 0, of the drop; 
R1 and R2 are the principal radii of curvature at a general point on the surface 
(R1 = R2 = Ro at 0): and pH, and (p,,), are the pressures due to the external 
and internal fluid motions, respectively, less the stagnation pressures. It is 
usual practice to assume that (pH,), << pH,, although this has been criticized by 
Foote (F2). With this assumption, drop shapes can be determined if the dis- 
tribution of pH, is known. Savic assumed that the pressure distribution was the 
same as that about a rigid sphere at the same value of Re; Pruppacher and 
Pitter used the same approach, with more recent and reliable pressure data. 
Deformations were assumed small and the shape represented by a cosine series 
(P6, S3) or by Legendre polynomials (Wl). The general procedure is the reverse 
of that employed by McDonald (M6) to calculate surface dynamic pressure 
distributions from observed drop shapes. The predictions become less realistic 
with increasing particle size and deformation because of increasing error in 
the assumed pressure distribution. 

A reasonable approximation to the observed profile of many drops and 
bubbles is a combination of two half oblate spheroids with a common major 
axis and different minor axes (B8. Fl). This observation has been used (Wl)  
to propose a model from which bubble and drop shapes can be estimated at 
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high Re. The pressure distribution over the front surface is assumed to be the 
potential flow pressure distribution over a complete spheroid of the same 
eccentricity, while the dynamic pressure over the rear is assumed uniform so 
that the rear deforms like a sessile drop or bubble of the same size in the same 
sqs tem.The  theory correctly predicts that drops in air deform most at the 
front. while some systems (e.g., bubbles in water) begin by flattening more at 
the front, then deforming more at the rear with increasing d,. 

2. Experitnental Results,for Bubbles and Drops ilz Liquids 

It is possible to prepare a generalized plot of mean aspect ratio E,  here E = 

maximum vertical dimension maximum horizontal dimension. In  the literature, 
both We and Eo are commonly used as independent variables for correlating 
shape parameters for fluid particles. The Eotkos number gives a better oberall 
representation (G12). As in Section B. it is necessary to separate data for liquid 
drops falling through air (see Section 4) and for very pure systems (see Section 3). 
The generalized graphical correlation for bubbles and drops in contaminated 
liquid media is given in Fig. 7.8. Wall effects have been eliminated using the 
same criteria as for terminal velocities. i.e., Eqs. (9-33) and (9-34). 

EOTVOS NUMBER.  Eo 

FIG. 7.8 Correlation for mean aspect ratio i!? of drops and bubbles in contaminated systcms 
iB10. H7. K2, K3, K4, T6, W1; W6. Y4). 

From Fig. 7.8 it is clear that deformation depends not only on Eo but also 
on M, higher M giving rise to less deformation at the same Eo. For low M ,  
it is reasonable to correlate the data by a single line: 

E = 1 (1 + 0.163 Eo'.-~') (Eo < 40. .I4 5 (7-20) 

given by Wellek et ul. (W6). For higher .M. Fig. 7.8 can be used to estimate the 
height-to-width ratio of bubbles and drops in liquids. An alternatibe correlation 

Previous workers ha le  also made use of potential flow pressure distributions about spheroids, 
but no allowance was made for lack of fore-and-aft sqmmetrq, while the constant pressure condition 
was satisfied onl!. near the front stagnation point (Sl)  or at the equator and poles (H6, M11). 
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obtained bq Tadaki and Maeda (TI) for air bubbles with ,M < expresses 
d, 2a = E1 (where 2a is the maximum horizontal dimension) as a function 
of a dimensionless group Ta = Re M0.23. Vakrushev and Efremo~ (Vl) extended 
this approach to gibe: 

E = 1  (Ta I 1). (7-21) 

E = [0.81 + 0.206 tanh /2(0.8 - log,, Ta))13, (1 I Ta I 39.8), (7-22) 

E = 0.24 (Ta 2 39.8) (7-23) 
Equation (7-23) implies a spherical-cap shape with an included angle of about 
50" (see Chapter 8). 

3. Experi~zental Resultsfor Pure Sjstems 

Drops and bubbles in highly purified systems are significantly more deformed 
than corresponding fluid particles in contaminated systems. Increased flattening 
of fluid particles in pure systems results from increased inertia forces related 
to the increased terminal velocities discussed above. Some experimental results 
for drops and bubbles in water (low M systems) are shown in Fig. 7.9. The 

FIG. 7.9 Deformation of drops and bubbles in pure water. 
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aspect ratios lie significantly below the predictions of Eq. (7-20). The abscissa 
used in Fig. 7.7 brings the data together for [Eo(l + 0.151;) (1  + I;)] i: 0.5: but 
there is considerable scatter beyond this point. Once again the greatest effect 
of system purity is in the ellipsoidal regime, small bubbles and drops being 
spherical (E = 1) and large ones approaching E = 0.24 no matter how pure 
the system. In addition, system purity has the greatest effect at low K .  

3. Espei-inzelztal Results,foi- Drops in Aii- 

The shapes of liquid drops falling through air can be conveniently represented 
by two oblate semispheroids with a common semimajor axis a and minor 
semiaxes b, and b2 (B8. Fl) .  Several workers have reported measurements of 
the aspect ratio. (b, + b,), 2a, and these are shown as a function of Eo in Fig. 
7.10. The data can be represented by the relationships 

(Eo 1 0.4), (7-24) 

The shape factor. l~,,'(b, + b,). is also plotted in Fig. 7.10 based on data given 
by Finlay (Fl).  The relationships 

(Eo 1 0.5), (7-26) 

give an adequate fit to the data. Equations (7-25) and (7-27) are plotted in 
Fig. 7.10. 

A good approximation to the shape of deformed drops in air may therefore 
be obtained from kilowledge of the system properties and drop size. The ratios 
(b, + b,)/2a and bl,(b, + b2) are calculated from Eo using Eqs. (7-25) and 
(7-27). From geometric considerations 

so that the semiminor axes can then be calculated. The surface area may be 
estimated by again assuming that the drop is composed of two half spheroids.i.e., 

where el = (1 - b121a2)1 and e2 = (1 - b22 a2)' are the eccentricities of the 
front and rear sections. 
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The formation of an attached wake and the subsequent onset of wake shed- 
ding tend to be promoted by increasing oblateness (see Chapter 6) and by the 
tendency of surface-active contaminants to damp out internal circulation (see 
Chapter 5). Experiments have been conducted with dyes added to enable 
attached wakes and shedding phenomena to be visualized (Ha, MI ,  M2, S2) 
and wake volumes to be measured (H8. Y4) for drops and bubbles. Since dyes 
tend to be surface ac t i~e .  the results of these experiments are probably relevant 
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to grossly contaminated systems. Other tracers have also been used in wake 
visualization studies (L8, L9). The appearance of an attached wake for impure 
systems and the onset of wake shedding occur at Re values of about 20 and 
200, respectively. as for rigid spheres, or somewhat lower values (e.g.. 5 and 
100) if significant deformation has already taken place before these values of 
Re are achieved (G6, G8. H8, S2: W6, Y4). Magarvey and co-workers (M 1. M2. 
M3) have given an excellent series of photographs sho\ving bvakes of slightly 
deformed drops in liquid-liquid systems and have identified six different classes 
of wake. 

For carefully purified systems: interfacial mobility can significantly delay 
both the formation of an attached eddy and wake shedding, especially for fluid 
particles of low K. For example, wake shedding which began at Re = 200 for 
a contaminated system was delayed to Re = 800 for a carefully purified system 
of virtually identical properties (W8). Moreover, at a given Re, the wake volume 
is smaller for pure systems (E3, E4, W8). Winnikow and Chao (W8) distin- 
guished two main classes of wake for purified drops: (a) steady vortex threads 
(accompanied by an attached toroidal vortex for larger K): (b) wakes which 
periodically discharge vorticity, typically with convoluted geometry, initially 
axisymmetric but eventually becoming unsteady and asymmetric with the onset 
of a turbulent wake. The latter type is closely associated with shape oscillations 
as noted in the next section. Some photographs given by Winnikow and Chao 
are reproduced in Fig. 7.1 1. 

Few observations have been reported on wakes of ellipsoidal bubbles and 
drops at Re > 1000. Yeheskel and Kehat (Y4) characterized shedding in this 
case as random. However, Lindt (L7, L8) studied air bubbles in water and 
distinguished a regular periodic component of drag associated with an open 
helical vortex wake structure. Strouhal numbers (defined as 2nfiL',, where f is 
the frequency and 2n is the maximum horizontal dimension) increase with 
Re, to level off at about 0.3 as bubbles approach the transition between the 
ellipsoidal and spherical-cap regimes. 

Bubbles and drops of intermediate size show two types of secondary motion: 

(i) "Rigid body" type, e.g., rocking from side to side, or following a zig-zag 
or spiral trajectory (cf. spheres and disks in Chapters 5 and 6). 

(ii) Shape dilations, usually referred to as "oscillations." 

These two types of motion are often superimposed. so that the motion of 
intermediate size fluid particles can be particularly complex. 

While other explanations have been proposed [e.g. (B6. El .  H6)], secondary 
motions are most plausibly related to wake shedding. The onset of oscillations 
coincides with the onset of vortex shedding from the wake (El.  E2. S5. W8). 
For high K or contaminated drops and bubbles, the onset of oscillations 
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FIG. 7.11 Wake configurations for drops in water (highly purified slstems). reproduced from 
Winnikow and Chao (W8) uith permission. (a) nonoscillating nitrobenzene drop: d, = 0.280 c n ~ .  
Re = 515; steady thread-like laminar wake; (b) nonoscillating m-nitrotoluene drop: (1, = 0.380 cm. 
Re = 688; steady thread accompanied by attached toroidal vortex wake: (c) oscillating nitrobenzene 
drop: d, = 0.380 cm. Re = 686; central thread plus axisymmetric outer vortex sheet rolled inward 
to give inverted bottle shape of wake; (d) oscillating nitrobenzene drop: d ,  = 0.454 cm. Re = 775; 
vortex sheet in c has broken down to form vortex rings: (e) oscillating nitrobenzene drop: d ,  = 

0.490 cm, Re = 804: vortex rings in d now shed as)mmetrically and the drop exhibits a rocking 
motion. 

therefore occurs at a Reynolds number of about 200 iG8. H6, S5), while for 
pure systems at relatively low K. the onset of oscillations is delayed (H6. W8), 
but seldom beyond Re = 1000. In viscous liquids where Re never reaches 200 
over the range of practical interest (see Fig. 2.5), no oscillations occur (K4, T2). 
While a critical Weber number has often been suggested for the onset of oscil- 
lations in pure. low K systems. no agreement has been reached on what the 
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critical value shou!d be (E2, H6, W8), and the value of Re and purity of the 
system appear to be better indicators of the likelihood of secondary motion. 

While wake shedding appears to provide the excitation for shape oscillations. 
the frequency of the two phenomena may differ. For example, Winnikow and 
Chao (W8) measured oscillation frequencies between about 60 amd 80% 
of wake shedding frequencies for nitrobenzene drops in water, while Edge 
et al. (El) found the two frequencies to be identical. To obtain a simple physical 
understanding of shape oscillations, consider forced vibration of a single- 
degree-of-freedom damped system [see, e.g., Anderson (A2)]. Suppose that the 
wake shedding provides a harmonic excitation of frequency f,? while the 
natural frequency of the drop is given (Ll)  by 

If we define 

and 

Af = ( f r y  - fx,  2, 

and if Aj' << f ,  then the motion is approximately 

7 .  E - E x - sin(2n Aft) cos (27ift). 
4f 

(7-33) 

As illustrated in Fig. 7.12, the drop then oscillates at frequency f with the 
amplitude modulated at frequency 4f. 

FIG. 7.12 Simple model to show nature of shape oscillations for bubbles and drops in free 
motion. 
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In practice, this model is oversimplified since the exciting wake shedding is 
by no means harmonic and is itself coupled with the shape oscillations and 
since Eq. (7-30) is strictly valid only for small oscillations and stationary fluid 
particles. However, this simple model provides a conceptual basis to explain 
certain features of the oscillatory motion. For example: the period of oscilla- 
tion, after an initial transient (El),  becomes quite regular while the amplitude 
is highly irregular (E3. S4, S5). "Beats" have also been observed in drop oscilla- 
tions (D4). If ,f,- and f, are of equal magnitude. one would expect resonance 
to occur, and this is one proposed mechanism for breakage of drops and bubbles 
(Chapter 12). 

Equation (7-30) gives the natural frequency of the fundamental mode for 
stationary fluid particles undergoing small oscillations with viscous forces 
neglected. It has been modified to account for viscous effects (L4, M10, SlO), 
surface impurities (M10). finite amplitudes (S5, Yl), and translation (S10). 
Observed oscillation frequencies are generally less than those given by Eq. 
(7-30), typically by 10-209;) for drops in free motion in impure systems (S4) 
and by 20-409;) for pure systems (El, E3, W8, Yl). The amplitude tends to be 
larger for pure systems (E3) and this explains the reduction in frequency. 

In general, oscillations may be oblate-prolate (H8, S5), oblate-spherical, or 
oblate-less oblate (E2, F1, H8, R3, R4, S5). Correlations of the amplitude of 
fluctuation have been given (R3, S5), but these are at best approximate since 
the amplitude varies erratically as noted above. For low :W systems, secondary 
motion may become marked, leading to what has been described as "random 
wobbling" (E2, S4, W1). There appears to have been little systematic work on 
oscillations of liquid drops in gases. Such oscillations have been observed (F l ,  
M4) and undoubtedly influence drag as noted earlier in this chapter. Measure- 
ments iY3) for 3-6 mm water drops in air show that the amplitude of oscillation 
increases with d,, while the frequency is initially close to the Lamb value 
(Eq. 7-30) but decays with distance of fall. 

Oscillating bubbles and drops may travel along zig-zag or spiral (helical) 
paths. Some authors have observed only one of these modes while others have 
observed both. There is some evidence that the type of secondary motion is 
affected by the mode of release iM8). Saffman (Sl) performed a careful series 
of experiments on air bubbles in water. Rectilinear motion was found to 
become unstable. and gave rise to zig-zag motion which in turn gave way to 
spiral motion for larger bubbles.' The paths followed by fluid particles under- 
going secondary motion are no doubt associated with the type of wake. Details 
of the paths, orientation, and periods of spiralling and zig-zagging drops and 
bubbles are presented by Mercies and Rocha (M9) and Tsuge and Hibino (T6). 

Secondary motion plays an important role in increasing drag (L7) and in 
promoting heat and mass transfer from bubbles or drops. The onset of oscilla- 
tions corresponds approximately to the maximum in C,(d,) and minimum in 

See also Table 7.1 
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C,(Re) curves for drops and bubbles (B11. El .  € 2 ,  T4). The influence of oscilla- 
tions on heat and mass transfer is discussed in Section 111. 

Surface-active contaminants play an important role in damping out internal 
circulation in deformed bubbles and drops. as in spherical fluid particles (see 
Chapters 3 and 5). No systematic visualization of internal motion in ellipsoidal 
bubbles and drops has been reported. Howeker. there are indications that 
deformations tend to decrease internal circulation velocities significantly (M12). 
while shape oscillations tend to disrupt the internal circulation pattern of 
droplets and promote rapid mixing (R3). No secondary vortex of opposite 
sense to the prime internal vortex has been observed, even when the external 
boundary layer was found to separate 6 1  1). 

Attempts to obtain theoretical solutions for deformed bubbles and drops are 
limited. while no numerical solutions have been reported. A simplifying as- 
sumption adopted is that the bubble or drop is perfectly spheroidal. Saffman 
(Sl) considered flow at the front of a spheroidal bubble in spiral or zig-zag 
motion. Results are in fair agreement with experiment. Harper (H4) tabulated 
energy dissipation values for potential flow past a true spheroid. Moore (MI 1) 
applied a boundary layer approach to a spheroidal bubble analogous to that 
for spherical bubbles described in Chapter 5. The interface is again assumed to 
be completely free of contaminants. The drag is given by 

where the first term results from the viscous energy dissipation for irrotational 
flow past an oblate spheroid, and the second arises from dissipation in the 
boundary layer and wake. Harper (H5) tabulated values of f,(E) and f ,(E) and 
plotted drag curves for four values of .V. The curves show minima and are in 
qualitative agreement with observed &(Re) curves for bubbles. No attempt 
has been reported to extend this treatment to deformed drops of low K. 

111. HEAT AND MASS TRANSFER 

The flow and shape transitions for small and intermediate size bubbles and 
drops are summarized in Fig. 7.13. In pure systems, bubbles and drops circulate 
freely. with internal velocity decreasing with increasing K .  With increasing size 
they deform to ellipsoids. finally oscillating in shape when Re exceeds a value 
of order lo3. In contaminated systems spherical and nonoscillating ellipsoidal 
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FIG. 7.13 Flow transitions for bubbles and drops in liquids (schematic). 

bubbles and drops are effectively rigid but, for Re 5 200, wake shedding and 
shape oscillations occur with associated motion of the internal fluid. In systems 
of intermediate purity, small bubbles and drops are rigid but, with increasing 
size. they become deformed and partially circulating. Circulation increases 
with increasing size, and shape oscillations occur at Re 5- 200. The Reynolds 
number marking the transition from rigid to circulating behavior depends on 
system purity. 

These flow transitions lead to a complex dependence of transfer rate on Re 
and system purity. Deliberate addition of surface-active material to a system 
with low to moderate K. causes several different transitions. If Re 2 200, addition 
of surfactant slows internal circulation and reduces transfer rates to those 
for rigid particles, generally a reduction by a factor of 2-4 (S6). If Re 5 200 
and the drop is not oscillating, addition of surfactant to a pure system decreases 
internal circulation and reduces transfer rates. Further additions reduce cir- 
culation to such an extent that shape oscillations occur and transfer rates are 
increased. Addition of yet more surfactant may reduce the amplitude of the 
oscillation and reduce the transfer rates again. Although these transitions have 
been observed (G7. S6. T5), additional data on the effect of surface active 
materials are needed. 

The internal resistance is always decreased substantially when a bubble or 
drop oscillates, but the external resistance may be unaffected if the Reynolds 
number is high enough. A rough criterion can be obtained from Eq. (11-63) 
for vibration of a particle in an axial stream. Oscillation has negligible effect 
on the external resistance if 
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where a' is the amplitude of the oscillation. Re, = 4a'fd I* is the vibration 
Reynolds number. and f is the frequency. Rearranging Eq. (7-35) yields: 

Assuming spherical-oblate oscillations with amplitude 2n' = (1 - E)d,, taking 
E = 0.5 as a rough approximation and replacing d by d, and j by f, from 
Eq. (7-30), we find no effect of oscillation on the external resistance if 

d, f, C', < 0.15. (7-37) 

For liquid drops in gases the terminal velocity is so large that the inequality 
is obeyed and oscillation has essentially no effect on transfer. For drops and 
bubbles in liquids, the effect of oscillation on transfer is significant. 

Mass transfer rates from drops are obtained by measuring the concentration 
change in either or both ofthe phases after passage of one or more drops through 
a reservoir of the continuous phase. This method yields the average transfer 
rate over the time of drop rise or fall, but not instantaneous values. For measure- 
ments of the resistance external to the drop this is no drawback, because this 
resistance is nearly constant, but the resistance within the drop frequently 
varies with time. The fractional approach to equilibrium, F, is calculated from 
the compositions and is then related to the product of the overall mass transfer 
coefficient and the surface area: 

(KA), = -(nde3 6t)ln(l - F), (7-38) 

where t is the time of free rise or fall and (m), is the time-average coefficient- 
area product based on dispersed phase concentrations. If the resistance in each 
phase may be added, 

1 
-- 

H -- - - -  
1 + ---. 

(KA), kA (KA), 

If the resistance external to the drop is negligible, 
- 

(kA), = -(7cde3/6t)ln(l - F). (7-40) 

Many investigators base mass transfer coefficients upon the area of the volume- 
equivalent sphere, especially for oscillating drops: 

(la), A ,  = - (de16t) ln(1 - F). (7-41) 

The Sherwood number based on this coefficient is 

Sh,, = [(a), Ae]d, 8,. 
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A similar defin~tion is frequently used for the continuous phase Sherwood 
number 

She = [la 4,]de 8 (7-43) 

In some studies the surface area of the particle is measured and area-free 
Sherwood numbers are reported 

Sh, = kpde 8,. (7-44) 

Sh=Ed,  2. (7-45) 

Careful reading of papers is required to determine which definition has been 
used. Measurements of the continuous phase resistance around bubbles fre- 
quently use photographic, volumetric, or pressure change techniques to yield 
instantaneous rates of mass transfer, and thus k A .  Here too, both definitions 
of the Sherwood number, Eqs. (7-43) and (7-45). have been used. 

Figure 7.14 gives area-free Sherwood numbers for organic drops in water. In 
the furfural-water system (ti = 1.7), the transition from circulation at low Re 
to circulation at high Re agrees well with the treatment of Chapter 5, i.e., 
deformation has little effect on the area-free Sherwood number. For this value 
of K, however, it is not clear whether the drops were circulating for Re < 10. 
For the diol-water system ( K  = 80), circulation is so slow. that Sh agrees with 
the result for rigid spheres up to Re = 200 where oscillation begins. At this 
Reynolds number, d,f,/C, = 0.6 and oscillations are expected to affect the 
Sherwood number; see Eq. (7-37). The chlorobenzenebenzene drop system 
(K = 0.7) shows the effect of addition of surfactant. Without surfactant, Sh 
departs from the line for solids at Re = 20 and deviation increases with Re as 
circulation becomes stronger. The data with added surfactant follow the line 
for solids up to Re = 50 and remain below the pure system values at higher Re. 
Even the system without surfactant was contaminated, since the data should 
lie above those for ti = 1.7. The presence of surface-active materials acts in the 
same way as an increase in the drop viscosity with respect to terminal velocity. 
Transition from a stagnant drop to a drop with circulation may occur at any 
Re below 200. The data for aniline drops (ti = 4.4) lie between the systems 
with K = 1.7 and 80, and show reasonable agreement with Eq. (5-39). Oscillation 
in contaminated systems and circulation in less contaminated systems both 
cause Sh to rise more rapidly than Re112. 

1. Particles without Shape Oscillations 

For nonspherical particles the only theoretical treatment available is for 
potential flow around a spheroid (L10). For an oblate spheroid the area-free 
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Symbol I< Sc Ref 

80 0.95 1660 (G8) 
4.4 1.02 1100 ( H l l )  
1.7 1.16 975 (G8, H11) 
0.7 1.02 1020 (T5) 

same as A. but contaminated with gm liter 
sodium oleyl-p-anisidine sulfonatc 
Eq. (5-39) 
Rigid sphere. Eq. (5-25),  Table 5.4E 
Spherc in polcntial flow. Eq. (5-35) 

- 
FIG. 7.14 Arca-frcc mass transfer factors. Sh , Sc. for drops 

Sherwood number is 

where Pe is based on d, and 

e = (1 - E2)' 

Since the area ratio is given by 

then 
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Comparison of these equations shows that the area-free Sherwood number is 
only slightly affected by eccentricity; e.g. S h P e l  ' for a spheroid with E = 0.4 
is only S.5";, larger than that for the equivalent sphere while the area ratio 
A.'A, is 17':; larger. Therefore; we expect little effect of deformation on the area- 
free Sherwood number for bubbles and drops at high Re. This is borne out 
by the agreement of the data in Fig. 7.14 with Eq. (5-39). derived for fluid spheres. 

a. Drops in Gases For liquid drops in gases at low pressure the equations 
for solid particles in Chapter 6 can be used to predict heat and mass transfer 
rates. Figure 7.10 shows the area ratio x and the ratio L' d, as functions of 
Eo, to facilitate use of Eq. (6-34), while areas may be calculated from Eq. (7-29) 
or from Eq. (7-48). Surface-active materials should have little effect. For drops 
in high-pressure gases, oscillations may become important if Re > 200 and 
the terminal velocity is small enough that d,,f;, C ,  > 0.1. 

Near the point of drop release, transfer coefficients can be much different 
from those predicted, due to large amplitude oscillation and internal circulation 
induced by departure from the nozzle or tip (Al, G4, Y3). 

b. Drops in Liquids For drops in pure liquid systems, the area-free Sher- 
wood number may be taken as the larger of the values calculated from the 
equations for solid spheres in Chapter 5 or Eq. (5-39) for fluid spheres. This 
provides a transition from the lines for solids in Fig. 7.14 to the potential 
flow line with increasing Re. For impure systems, surface-active materials may 
immobilize the drop surface and reduce the coefficients to those for solid par- 
ticles. The area-free Sherwood number should be equal to or above that for 
a solid sphere, yet below that for a fluid sphere given by Eq. (5-39). If the system 
is grossly contaminated, oscillations occur if Re > 200. 

c. Bubbles in Wuter Water is the only continuous fluid for which reliable 
mass transfer data are available at low .M. Figure 7.15 presents the mass transfer 
factor ( k 4  .4e):81'2 for bubbles in water including only data in which wall 
effects are small (d,!D < 0.12) and for which the water had been degassed. 
Dissolved gases can transfer into the bubble and reduce the driving force 
appreciably (B13, L6, W5). The scatter in the figure is due to different methods 
of bubble release (Z2), different techniques of measuring the mass transfer rate 
(GI,  W7), and different system purities (Rl).  Figure 7.15 also shows the mass 
transfer factor for a rigid spheroid with its aspect ratio given by Eq. (7-20), its 
velocity by the lower curve in Fig. 7.3; and its Sherwood number calculated 
from Eqs. (6-16) and (6-17) with Sc = 500. Predictions for potential flow from 
Eq. (7-46) are also shown, based on the properties of water at 25°C with terminal 
velocity from the upper curve in Fig. 7.3. Curve 1 corresponds to pure systems, 
with bubble shape from Fig. 7.9: while curve 2 corresponds to the shape in 
a contaminated system given by Eq. (7-20). 

For cl, > 0.5 cm, the data agree closely with the potential flow solution with 
the shape appropriate to a contaminated system. For d, < 0.5 cm, system purity 
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FIG 7 15 Mass transfer factor (LA  A , )  , 9 for gas bubbles in uater 

has a pronounced effect, just as on terminal velocity (see Fig. 7.3). In carefully 
purified sjstems [e.g.. ( Z 2 ) ] ,  the mass transfer coefficient increases sharply with 
decreasing d,. but contaminated systems do not show such a sharp increase. 
With 1.2 ppm n-nonanol added, the coefficient decreases towards the value 
for a rigid spheroid. Garner and Hammerton (G3) and Weiner (W4) apparently 
used systems of intermediate purity. Weiner also found that the mass transfer 
coefficient and terminal velocity decreased with bubble age due to accumulation 
of surfactants. The data for pure systems with d, < 0.5 cm are better predicted 
by the potential flow solution with shape given by Fig. 7.9, but the predicted 
mass transfer factors increase less rapidly with decreasing bubble size than the 
data. The failure of the prediction results from zig-zag and helical motion in 
the range 0.2 cm < d, < 0.4 cm (see Table 7.1). 
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A reasonable upper limit on the mass transfer factor from bubbles to well- 
purified water at room temperature is given by: 

with d ,  in cm and the left side in s- '  2. For contaminated systems, the data 
for d, > 0.5 cm are well represented by taking ( m , A , ) , g l  = 6.5 s- '  2 .  

2. Particles vvitlz S l~upe  Oscillations 

When the shape of a particle oscillates, the surface area changes with time. 
This situation has been modeled by neglecting the motion adjacent to the surface 
due to the terminal velocity of the particle, i.e., by considering the particle to 
be oscillating but stationary, with material transferred by transient molecular 
diffusion over a time equal to the period of oscillation. For Sc >> 1 the thin 
concentration boundary layer assumptions are invoked (see Chapter 1). 

Two alternative assumptions have been made for the manner in which the 
area variation occurs. The more realistic postulates that all elements of the 
surface remain in the surface throughout an oscillation cycle. Increasing surface 
area stretches the surface (A3, B5) and causes a velocity normal to the surface 
which increases the diffusion rate. For a surface of area A,  suddenly exposed 
at t = 0, the mass transfer product averaged over time is given by 

where the bracketed term represents the effect of the area variation. The value 
of is proportional to the r.m.s. interfacial area, so that the transfer rate is 
larger when the area oscillates. 

The alternate assumption is that new elements are brought to the surface 
as the area increases. and the oldest elements are removed from the surface 
when the area decreases (B16). For a surface of area A, exposed at t = 0, the 
time-averaged mass transfer product is then 

The first term on the right-hand side represents transfer to the elements of 
surface present over the entire time period t, while the second represents transfer 
to appearing or disappearing elements. The fresh surface model, Eq. (7-52), 
predicts larger coefficients than the surface stretch model, Eq. (7-51). 

Given the time variation of the area of a fluid particle, the kA product is 
easily calculated. For oscillating droplets, Angelo et a / .  (A3) showed that the 
time variation of area is given closely by: 

A 'A, = 1 + E sin2 (rift'), (7-53) 
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n here 1 + E is the ratio of maximum area to minimum area, A,. Assuming 
that the averaging time is the period of oscillation, f - I ,  and that the oscillation 
is spherical-oblate. we obtain from Eqs. (7-51) and (7-53) for the surface stretch 
model : 

while from Eqs. (7-52) and (7-53) the fresh surface model yields 

These results are remarkably close to each other; e.g., for an extreme value of 
E = 0.5 the fresh surface prediction is only 6% larger than the surface stretch 
prediction. The amplitude of the area oscillation, E, has a relatively small effect 
since E = 0.3 in many systems (R3, Yl). 

Mass transfer data for oscillating liquid drops have been obtained in several 
studies in liquids (G2, G8, Y2) and a single study in gases (L5). Comparison 
with Eqs. (7-54) and (7-55) is difficult due to uncertainty in predicting the fre- 
quency j', and the lack of data on the amplitude factor E. As noted earlier, the 
frequency of oscillation is generally less than the natural frequency given by 
Eq. (7-30). The following empirical equation applies to the liquid-liquid data 
with an average deviation of 6%: 

Data for drops in gases show an average deviation of about 30% from Eq. (7-56). 

For circulating fluid particles without shape oscillations the internal resis- 
tance varies with time in a way similar to that discussed in Chapter 5 for fluid 
spheres. The occurrence of oscillation, with associated internal circulation, 
always has a strong effect on the internal resistance. If the oscillations are 
sufficiently strong to promote vigorous internal mixing, the resistance within 
the particle becomes constant. 

1 .  Particles \vitlzout Shape Oscillatio~zs 

Although there are no solutions for circulating ellipsoidal fluid particles 
sirllilar to the Kronig-Brink model for spheres, Fig. 3.22. which includes the 
external resistance, should be a good approximation with d = d, and k taken 
to be the area-free external mass transfer coefficient. This procedure is sup- 
ported by the work on freely suspended drops in gases by Garner and Lane 
(G4), who found that the Kronig-Brink model applied up to Re = 3000 after 
decay of strong initial circulation. caused during drop formation. Some of their 
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data are shown in Fig. 7.16. The ethylene glycol and monoethanolamine drops 
did not oscillate. The data from these experiments, in which there was a small 
external resistance, agree well with the curve for Bi = 50 from Fig. 3.22. Similar 
agreement with the Kronig-Brink model has been found for drops in liquids 
(B15, K1) as noted in Chapter 5. Although their data for nonoscillating drops 
in liquids were in fair agreement with the Kronig-Brink model, Skelland and 
Wellek (S7) proposed an empirical equation which is widely used. In impure 
systems, where surface-active materials make the particle effectively rigid, the 
drop may approach equilibrium at rates given by Fig. 3.21. 

Co~ltrolling 
Sqmbol 4,  cm Drop resistance Re 

0 0.58 water internal 3500 
3 0.46 dekalin internal 3000 
A 0.29 glycol external 1500 
V 0.53 ethanolamine external 3500 

FIG. 7.16 Fractional approach to equilibrium for circulatiilg and oscillating drops in gases. 
Data of Garner and Lane ((34). 

2. Particles with Shape Oscillatiorzs 

If a fluid particle oscillates violently enough to mix its contents in each 
oscillation cycle, the average internal resistance is constant if the driving force 
is based upon the mixed mean concentration within the drop. The fractional 
approach to equilibrium is then given by Eq. (7-40) or (7-41). 

A model of transfer within an oscillating droplet was proposed by Handlos 
and Baron (H3). They assumed that transfer within the drop was entirely by 
turbulent motion, random radial movement, superimposed upon toroidal cir- 
culation streamlines. No allowance was made for the variation of shape or 
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surface area. The results of the model are expressed in terms of a series solution 
for the fractional approach to equilibrium. For long times, only the first term 
1s required. yielding a constant internal resistance: 

- 
k, = 0.00375UT (1 + K). (7-57) 

Calculations valid for short times and including external resistance are avail- 
able (P2). Equation (7-57) gives a rough estimate of (n), A, for organic-water 
S )  stems. 

The assumption of transfer by a purely turbulent mechanism in the Handlos- 
Baron model leads to the prediction that the internal resistance is independent 
of molecular diffusivity. However, such independence has not been found ex- 
perimentally, even for transfer in well-stirred cells or submerged turbulent jets 
(D4). In view of this fact and the neglect of shape and area oscillations, models 
based upon the surface stretch or fresh surface mechanism appear more realis- 
tic. For rapid oscillations in systems with Sc >> 1, mass transfer rates are de- 
scribed by identical equations on either side of the drop surface, so that the 
mass transfer results embodied in Eqs. (7-54) and (7-55) are valid for the internal 
resistance if 9 is replaced by 8,. Measurements of the internal resistance of 
oscillating drops show that the surface stretch model predicts the internal 
resistance with an average error of about 20y0 (B16, Yl). Agreement of the 
data for drops in liquids with Eq. (7-56) considerably improves if the constant 
is increased to 1.4, i.e., 

( ~ ^ A ) , I A ,  = 1 . 4 , R .  (7-58) 

Figure 7.16 shows the fractional approach to equilibrium of an oscillating 
5.8 mm water drop in a C0,-air mixture, predicted from Eqs. (7-41) and (7-58). 
The large decrease in internal resistance with shape oscillation is readily appar- 
ent by comparison with the Kronig-Brink lines. The prediction is a good 
approximation of the rapid approach to equilibrium found by Garner and 
Lane (G4) for oscillating water droplets with negligible external resistance. 
Their data for dekalin are intermediate between the oscillating droplet predic- 
tion and the Kronig-Brink model, possibly because oscillation was not vigor- 
ous enough to mix the contents of the drop fully. Brunson and Wellek (B16) 
review other models for oscillating drops. 

REFERENCES 

A l .  Ahmadzadeh; J. and Harker, J. H.. Trans. Inst. Chem. Eng. 52, 108-111 (1974). 
42 .  Anderson, R. A, ,  "Fundamentals of Vibrations." Macmillan, New York, 1967. 
A3. Angelo, J.  B.: Lightfoot, E. N. and Howard, D.  W., AICiiE J .  12. 751 7 6 0  (1966) 
A4. Aybers. N .  M., and Tapucu, A.. CVci'ime-StoJJiibe1'1ruy.2, 118-128 (1969). 
A5. Akbers; N. M., and Tapucu. A, ,  Wuin?e-S~ofiiberti'ag.2. 171 -177 (1969). 
E l .  Bachhuber, C.. and Sanford, C., J. Appl. Plljs. 45, 2567L2569 (1974). 
E2. Baird, M. H. I., and Davidson. J. F., Chern. Etzg. Sci. 17, 87-93 (1962). 



7.  Ellipsoidal Fluid Particles 

D4. 
D5. 
E l .  

Beard, K. V.. J .  Ainzos. Sci. 33, 851-864 (1976). 
Beard. K. V., and Pruppacher, H. R., J .  Atmos. Sci. 26. 1066-1072 (1969). 
Beek, W. J., and Kramers, H., Cllenz. Eizg. Sci. 17, 909-921 (1962). 
Berghmans, J . ,  Cizenz. Eng. Sci. 28, 2005-2011 (1973). 
Berrq, E. X.. and Pranger. IM. R.; J. Appl. .Meieorol. 13. 108-1 13 (1974). 
Best, A. C., ~Weteorol. Res. Paj). No. 277 (1946); No. 330 (1947). 
Blanchard, D. C., "From Raindrops to Volcanoes." Doubleday, Garden City. New York, 
1967. 
Bonato. L. M..  Teinzotec. Ric. 20, 1 I --I8 (1971). 
Braida. L., M.A.Sc. Thesis. Univ, of Toronto, 1956. 
Brian. P. L. T.. and Hales, H. B., AICliE J.  15. 419-425 (1969). 
Bridgwater, J., and McNab. G.  S., Chem. Eny. Sci. 27. 837-840 (1972). 
Brignell, A. S.:  Q.  J'. .Mech. Appl. !Math. 26, 99-107 (1973). 
Brounshtein, B. I.: Zheleznyak, A. S., and Fishbein. G.  A., Inr. J .  Heat .Mass Transfer 
13, 963-973 (1970). 
Brunson. R. J., and Wellek. R. M., Can. J. Chenz. Eng. 48, 267-274 (1970). 
Bryn; T., David Taylor Model Basin Transl. No. 132 (1949). 
Buzzard. J. F., and Nedderman. R. M., Clzem. Eng. Sci. 22, 1577-1586 (1967). 
Calderbank. P. H.; Johnson, D. S. L.: and Loudon, J., Cliem. Eny. Sci. 25, 235-256 (1970). 
Comolet, R., C .  R. Acad. Sci.. Ser. A 272: 1213-1216 (1971). 
Datta. R. L., Napier, D. H., and Newitt. D. M., Trans. Inst. Ckeni. Eng. 28, 14-26 (1950). 
Davenport, W. G., Ph.D. Thesis, Imperial College. London; 1964. 
Davenport, W. G., Richardson. F. D., and Bradshaw: A. V.: Chenz. Eng. Sci. 22,1221 -1235 
(1967). 
Davies. J. T.: "Turbulence Phenomena." Academic Press. New York, 1972. 
Davies, R. M., and Taylor. Sir G. I., Proc. Roy. Soc.. Ser. A 200, 375-390 (1950). 
Edge. R. M., Flatman, A. T., Grant, C. D.. and Kalafatoglu, I. E., Symp. ~Multiphase Flow 
Sj.st.. Inst. Chern. E I I ~ . .  Lon~lon Pap. C3 (1974). 
Edge, R. M., and Grant, C. D.. Ckem. Eng. Sci. 26. 1001-1012 (1971). 
Edge, R. M., and Grant, C. D., Chem. Eng. Sci. 27, 1709-1721 (1972). 
Elzinga. E. R., and Banchero, J. T., AIChE J .  7. 394-399 (1961). 
Finlay, B. A.. Ph.D. Thesis, Univ. of Birmingham. 1957. 
Foote. G.  B., J. Atmos. Sci. 26. 179-181 (1969). 
Garbarini, G.  R.. and Tien, C.. Can. J. Ckem. Eny. 47, 35-41 (1969). 
Garner, F. H., Foord, A,,  and Tayeban, M.. J.  Appi. Chem. 9, 315-323 (1959). 
Garner, F. H., and Hammerton, D., Trans. Inst. Chenz. Eny. 32, 518-524 (1954). 
Garner, F. H., and Lane, J. J.. Trans. Inst. Clzem. Eny. 37, 162-172 (1959). 
Garner, F. H., and Lihou, D. A,. DECHEMA-:Monogr. 55, 155-178 (1965). 
Garner; F. H., and Skelland. A. H. P., Chem. Eng. Sci. 4. 149-158 (1955). 
Garner. F. H., and Skelland, A. H. P., Ind. Eng. Clzem. 48. 51-58 (1956). 
Garner, F. H., and Taleban. M.. An. Fis. Quin?. LVI-B 479-498 (1960). 
Gaudin, A. M., "Flotation," 2nd ed. McGraw-Hill. New York. 1957. 
Gibbons, J .  H.. Houghton. G.. and Coull. J.. AIChE J. 8, 274-276 (1962). 
Gorodetskaya, A,,  Zlz. Fiz. Khim. 23, 71-77 (1949). 
Grace, J. R., Wairegi. T., and Nguyen, T. H., Trans. Inst. Cliem. Eizg. 54: 167-173 (1976). 
Gunn, R., and Kinzer, G. D.. J. Meteoroi. 6 ,  243-248 (1949). 
Guthrie, R. I. L.. Ph.D. Thesis. Imperial College, London. 1967. 
Guthrie, R. I. L., and Bradshaw, A. V.; Clzem. Eng. Sci. 28, 191-203 (1973). 
Haberman, W. L.. and Morton. R. K., Danid Taylor !Model Basin Rep. No. 802 (1953). 
Hamielec, A. E., Ph.D. Thesis, Univ. of Toronto. 1961. 
Handlos, A. E., and Baron, T.. AIChE J. 3, 127-136 (1957). 
Harper, J .  F., Chem. Eng. Sci. 25. 342-343 (1970). 



1-15, 
H6. 
H7. 
H8. 
H9. 
H10. 
H11. 
H12. 
J l .  
52. 
J3. 
54. 
K1. 

Harper. J.  F.. Adc. Appl. Mecli. 12. 59-129 (1972). 
Hartunian, R .  A,. and Sears, W. R.; J. fluid Mech. 3, 27-47 (1957). 
Hayashi, S.. and Matunobu, Y.: J. Pliys. Soc. Jprz. 22. 905-910 (1967). 
Hendrix. C. D.. Dal-e. S.  B.. and Johnson, H.  F.. AIChE J. 13. lo?-1077 (1967). 
Horton. T. J.. Fritsch. T. R.. and Kintner. R. C., Can J. Clii,rii. EII<]. 43, 1 4 3 1 4 6  (1965). 
Houghton, G., Ritchie. P. D. ,  and Thomson, J .  A., Chenr. Eng. Sci. 7.  11 1-1 12 (1957). 
Hozawa, M.. Tadaki, T. ,  and Maeda, S., Kagalc~i Kogaku 34, 315-320 (1970). 
Hu. S.. and Kintner, R. C.. AIChE J. 1. 42--50 (1955). 
Johnson, A. I., Besik, F., and Hamielec. A. E., Can. J. Chern. Eng. 47, 559-564 (1969). 
Johnson. A. I., and Braida, L., Can. J .  Chern. Eng. 35. 165-172 (1957). 
Jones. D .  M., J. ~lleteorol. 16, 504-510 (1959). 
Jones, D.  R. M., Ph.D. Thesis. Cambridge Univ.. 1965. 
Kadenskaya, N. I., Zheleznyak, A. S., and Brounshtein, B. I., 211. Prikl. Kl~im. (Leningrari) 
38, 1156-1159 (1965). 
Keith, F. W., and Hixson, A. N.. Ind. Eng. Client. 47. 258-267 (1955). 
Klee, A. J.,  and Treybal, R .  E.. AIChE J. 2: 444-447 (1956). 
Kojima. E.. Akehata: T.. and Shirai. T., J .  Clzent. Eny. Jpn. 1;  45-50 (1968). 
Krishna. P. M.. Venkateswarlu, D.. and Narasimhamurty, G.  S. R. ,  J. Chenr. Eny. Data 
4, 336-343 (1959). 
Lamb. H.,  "HJ-drodynamics," 6th ed. Cambridge Univ. Press. London, 1932. 
Lessard. R. R., and Zieminski. S. A., Ind. Eng. Chem., Fundam. 10, 260-269 (1971). 
Licht, W.: and Narasimhamurty. G. S. R., AIChE J .  1, 366-373 (1955). 
Lihou, D.  A,. Trans. Inst. Chent. Eny. 50, 392-393 (1972). 
Lihou. D.  A.. Lowe, W. D.,  and Hattangady, K.  S.. Trans. Inst. Chem. Eng. 50, 217-223 
(1972). 
Lindt, J. T., Dissertation. Technische Hogeschool, Delft. (Bronder- Offset N .  V.: Rotter- 
dam, 1971.) 
Lindt. J .  7.: Chent. Eng. Sci. 27, 1775-1781 (1972). 
Lindt, J .  7.; and De Groot, R .  G., Chern. Eng. Sci. 29, 957-962 (1974). 
List. R., and Hand. M. J., Plrys. Fluirls 14. 1648-1655 (1971). 
Lochiel, A. C.. and Calderbank. P. H., Ckent. Eng. Sci. 19; 471 -484 (1964). 
Loutaty. R., and Vignes, A,: Chem. Eng. Sci. 25, 201-217 (1970). 
Magarvey, R. H. ,  and Bishop, R. L.: Phys. Fluids 4. 800-805 (1961). 
Magarvey, R .  H.. and Bishop. R. L., Can. J. Plzjs. 39, 1418-1422 (1961). 
Magarvey, R. H.. and Blackford, B. L., Can. J. Phys. 40. 1036-1040 (1962). 
Magono. C., J. Meteorol. 11. 77-79 (1954). 
Marrucci, G. ,  Apuzzo, G. ,  and Astarita, G.. AIChE J. 16, 538-541 (1970). 
McDonald, J .  E., J .  ~Meteorol. 11,478-494 (1954). 
Mendelson, H .  D.. AICIzE J. 13. 250-252 (1967). 
Mercier, J.,  and Anciaes. W., Houille Blanche No. 5, 421-425 (1972). 
Mercier, J.,  and Rocha, A, ,  Chem. Eng. Sci. 24. 1179-1183 (1969). 
 miller, C. A, ,  and Scriven. L. E.: J. Fluid ~Meck. 32, 417-435 (1968). 
Moore, D.  W.. J. Fluid .Meclr. 23, 749-766 (1965). 
Moore, F. K., lVASA Contract. Rep. NASA CR-1368 (1972). 
Napier, D .  H., Newitt, D .  M.,  and Datta. R .  L.. Trans. It~st. Chem. Eng. 28, 14-31 (1950). 
Natarajan, R., Combust. Flame 20. 199-209 (1973). 
Pan, F. Y., and Acrivos, A, ,  hd. Eny. Chew.: Fundarn. 7, 227-232 (1968). 
Patel, J .  M.: and Wellek. R. M., AIChE J. 13, 384-386 (1967). 
Peebles. F. N., and Garber, H. J., Cllem. Eng. Prog. 49(2), 88-97 (1953). 
Pitter, R. L., and Pruppacher, H. R.; Q. J. R. .Weteorol. Soc. 99, 540-550 (1973). 
Pruppacher. H. R., and Beard, K. V., Q. J. R. 1Meteorol. Soc. 96, 247-256 (1970). 
Pruppacher; H .  R., and Pitter. R. L.. J. Atmos. Sci. 28, 86-94 (1971). 



7.  Ellipsoidal Fluid Particles 

RI.  
R2. 
R3. 
R4. 
R5. 
R6. 
S l .  
S2. 
S3. 
S4. 
S5. 
S6. 
S7. 
SX. 
S9. 
S10. 
S11. 
T1. 
T2. 
T3. 
T4. 
T5. 
T6. 
VI. 

Raymond, D.  R.. and Zieminski. S. A , .  AIC1:E J. 17, 57-65 (1971). 
Reinhart. A, ,  CIieil7.-Iiig.-Tecii. 36. 740-746 (1964). 
Rose. P. ?1., Ph.D. Thesis. Illinois lnst. of Techno]., Chicago. 1965. 
Rose. P. M. .  and Kintner, R. C.. AIC1:E J. 12. 530-534 (1966). 
Rosenberg. B.. Dacid T~ij,lor .Mode/ Ba.~iii Re!]. No. 727 (1950). 
Ryan, R. T.. J. Ap.1j1. .Mereoiol, 15. 1 5 7  165 (1976). 
Saffman. P. G.. J. Fl~iid .CIecli. 1, 2 4 9 2 7 5  (1956). 
Satapathq. R., and Smith. W.. J. Fluid .Wee/:. 10. 561 -570 (1961). 
S a ~ i c ,  P.. ~Vut l .  Re.7. Counc. Can., Re[,. Ko. MT-22 (1953). 
Schroeder. R.  R., Ph.D. Thesis. Illinois Inst. of Techno].. Chicago. 1964. 
Schroeder. R. R. .  and Kintner. R. C.. AICIiE J .  11, 5-8 (1965). 
Skelland. A. H. P.. and Caenepeel, C. L., AICliE J. 18. 1154-1 163 (1972). 
Skelland. A. H. P.. and Wellek, R. M., AICliE J. 10, 491 -496 (1964). 
Srikrishna. M.. and Narasimhamurty. G.  S. R.. Indian Cltcm. Eiig. 13. 4-1 1 (1971). 
Stuke, B., 2urtlr11,issenschajien 39. 3255326 (1952). 
Subramanyam. S. V.. J. Fluid .Weell. 37, 715-725 (1969). 
Sumner. B. S.. and Moore, F. K.. .VASA Confiaci. Rep. SAS.4 CR-1669 (1970). 
Tadaki. T. .  and Maeda. S.. Kcigak~i Kogak~c 25. 254-264 (1961). 
Tapucu, A, .  Document IGN-87. Ecole Polytechnique, Montreal. 1974. 
Taylor. J. D.. and Acrivos, A. J.. J. Fluid .Mech. 18. 466-476 (1964). 
Thorsen. G.. Stordalen. R. M., and Terjesen, S. G.. Ci~eni. Eng. Sci. 23, 413-426 (1968). 
Thorsen. G.. and Terjesen. S. G.. Cltem. Eitg. Sci. 17, 137-148 (1962). 
Tsuge, H.. and Hibino. S.. Kaguktl Koguk~i 35. 65--71 (1971). 
Vakhrushev, I .  A, .  and Efremov. G .  I.. Clleni. Tecltiiol. Fuels Oil.\ (C'SSR) 5 6. 376-379 
(1970). 
Van der Leeden. P.. Nio, L. D. ,  and Suratman. P. C., Appl. Sci. Res.. Sect. A 5 ,  338 -348 
(I 956). 
Vog~linder.  J .  G.. and Meijboom. F. W.. Cllem. Eng. Sci. 29. 799-803 (1974). 
Wairegi. T.. Ph.D. Thesis, McGill Univ.. Montreal. 1974. 
Wallis, G. B., In?. J .  Mttlripl7use Flo\v I,  491-511 (1974). 
Warshay, M., Bogusz, E., Johnson. M.. and Kintner, R. C . ,  Cart. J. Chem. E~tg.  37. 29-36 
(1959). 
Weiner, A,:  Ph.D. Thesis, Unis. of Pennsql~ania. Philadelphia, 1974. 
Wellek, R. M.,  Andoe. W. V., and Brunson. R.  J., Can. J. Chem. Eng. 48, 645-655 (1970). 
Wellek, R.  M.. Agrawal. A. K . ,  and Skelland, A. H.  P., AICliE J. 12, 854-862 (1966). 
Weller, I<. R.. Can. J. Client. Eng. 50. 49-58 (1972). 
Winnikow. S., and Chao. B. T., PIIJ-s. Fluids 9, 50-61 (1966). 
Yamaguchi. M.. Fujimoto. T., and Katayama. T.. J. Cllem. Eng. Jpn. 8, 361-366 (1975). 
Yamaguchi, M.. Watanabe, S.. and Kataqarna. T., J. Chem. Eng. Jpn. 8, 415-417 (1975). 
Yao. S.-C., and Schrock. V. E.. J. Heat Transfer 98, 120- 125 (1976). 
Yeheskel. J.,  and Kehat, E.. Cliem. Eng. Sci. 26. 1223-1233 (1971). 
Zabel. T.. Hanson. C.. and Inghan~.  J.. Trans. Insr. Client. Eng. 51. 162-164 (1973). 
Zieminski. S. A,. and Raymond. D .  R.. Clzeni. Eng. Sci. 23. 17 2 8  (1968). 



Chapter 8 

Deformed Fluid Particles of Large Size 

I. INTRODUCTION 

This chapter is devoted to bubbles and drops with Eo > 40 and Re > 1.2 
(see Chapter 2). These inequalities are generally satisfied by bubbles and drops 
~vith volumes greater than about 3 cm3 (i.e., d, > 1.8 cm). Considerable work 
has been carried out for large gas bubbles, primarily in connection with under- 
water explosions, fluidized beds, and processing of liquid metals, and reviews 
have been prepared by Wegener and Parlange (W5) and Harper (H2). Relatively 
little attention has been devoted to large drops. Drops falling in gases almost 
always break up before an Eotvos number of 40 is reached (see Chapter 12) 
so that the present chapter is restricted to cases where the continuous phase 
is a liquid. 

In the present chapter, we neglect wall effects and unsteady motion including 
splitting. These factors are considered in Chapters 9, 11, and 12, respectively. 
The fluid mechanics of large bubbles and drops are discussed before turning 
to mass transfer. 

11. FLUID MECHANICS 

Over most of the range covered by this chapter, the shape of bubbles and 
drops can be closely approximated as a segment of a sphere (see Fig. 2.4). 
Hence. most of the fluid particles under discussion are said to be "spherical- 
caps." For Re 5 150, the rear or base is quite flat, though sometimes irregular, 
and the wake angle very nearly 50-. At lower Re, the wake angle is larger (G4), 
as shown in Fig. 8.1. For Re 2 40, the leading edge tends to be oblate ellipsoidal 
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FIG. 8.1 Wake angle 0 ,  for spherical-cap bubbles as a function of bubble Re>nolds number. 

(B3, W3) while the rear is indented or dimpled. Skirt formation may also occur, 
as discussed in Section D. The wake angle for spherical-caps (expressed in 
degrees) is well represented by the empirical equation 

0, = 50 + 190 exp[- 0.62 ~ e ' . ~ ]  (Eo 2 40, Re > 1.2). (8-1) 

This equation is shown in Fig. 8.1 together with available data. Somewhat 
different angles are obtained for Re < 40 if the angle is measured from the 
center of an enclosing ellipsoid rather than from the center of a sphere which 
fits the front portion of the bubble (B3). Attempts to predict wake angles 
theoretically for spherical-cap (C5, M3, R4) or two-dimensional circular-cap 
(B2) fluid particles have met with only limited success. The volume of continuous 
phase material, VR, contained in the indentation at the rear of ellipsoidal- and 
spherical-cap bubbles has also been measured (B3, H5) by subtracting the true 
bubble volume from the apparent volume assuming a flat base. Results indicate 
that the fractional indentation volume, VR/V, increases from zero at Re = 1 to 
about 0.35 at Re = 50, decreasing to essentially zero again for Re > 150. 

While the shape of a large fluid particle cannot be predicted accurately from 
first principles, the terminal velocity can be obtained from the observed shape. 
Interfacial tension forces are ignored. Flow is considered only in the neighbor- 
hood of the nose. where the external fluid is assumed'to flow as an inviscid 
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fluid oher a complete sphere or spheroid of which the fluid particle forms the 
cap. The surface pressure distribution in the continuous fluid may then be 
calculated using Bernoulli's theorem. For a spherical-cap, this gives 

pa - po = i yap(1 - cos 0) - SpCT2 sin2 0, (8-2) 

lvhere p ,  is the pressure at the nose ( 0  = 0) and the (+) and ( - )  signs apply 
to upward and downward moving caps, respectively. The pressure distribution 
at the surface in the dispersed phase is assumed to be the hydrostatic pressure 
distribution. This will apply if Re, = p,if,C', p, is sufficiently large, e.g., of 
order 100 or greater, so that there is a thin interior boundary laler across which 
the pressure distribution is impressed by the slow moving interior fluid (W3). 
For a spherical-cap, the pressure distribution is then 

p\ - po = I ppya(l - cos 0). (8-3) 

Equating the two expressions for (p, - p,) and solving for the terminal velocity 
C, we obtain 

Equation (8-4) cannot be satisfied over the entire spherical-cap surface, but if 
it is satisfied for 8 -t 0 to terms of order 02, the terminal velocitl reduces to 

C - 2  
T -  3\ SQAP P. (8-5) 

which is the celebrated Davies and Taylor (D9) equation.' For spheroidal-cap 
drops or bubbles of eccentricity e and hertical semiaxis h. an analogous pro- 
cedure yields 

- 

c, = f ie)  \ yh Ap p. (8-6) 

M here for oblate spheroidal-caps (W3) 
------ 

fie) = (1 e3){sin-' e - r ,  1 - e2j,  (8-7) 

while for prolate spheroidal-caps (G5) 
7---- 

fie) = (\ 1 - e2 e3){e - (1 - e2) tanh- ' ej.  (8-8) 

Collins (C5) obtained a second approximation to the velocity of a large 
bubble using a perturbation analysis to balance the pressures along the inter- 
face. The result, in generalized form. is 

------ 
C', = 0.652, grAp  p. (8-9) 

!A here Zi is the aherage radius of curvature over the surface from 0 = 0 to O = 

37.5'. Experimental results obtained by various workers are shown in Fig. 8.2. 

+ This result also applies to the rise under gravit) of a large mass of hot gas in a colder gas (S2, TI ). 
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15 2 3 4 5 6 7 8 9 1 0  
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FIG. 8.2 Rise velocitj of spherical-cap bubbles as a function of the radius of curvature of the 
leading surface. 

It is clear that there is no reason to prefer Eq. (8-9) over Eq. (8-5). Therefore 
Eq. (8-5) is usually adopted for simplicity and is recommended for Re 5 40. 
Agreement with Eq. (8-6) has also been found to be good (B3, G5, W3) and 
Eqs. (8-6) and (8-7) are recommended for 1.2 < Re < 40. 

As shown in Fig. 8.1, spherical-cap fluid particles are geometrically similar 
with a wake angle 8, of approximately 50 once Re is greater than about 150. 
The radius of curvature may then be related directly to either V or d, yielding 

C-, = 0.71 1 gli, Ap p (Re 5 150, Eo 2 40). (8-1 1) 

(Re 5 150, Eo 2 40). (8- 12) 

Equations (8-10) to (8-12) have been confirmed many times [e.g. (D4. W7)]. 
For .V 5 lo2, bubbles and drops change directly from spherical to spherical- 
cap, as noted in Chapter 2. The drag coefficient is then closely approximated by 

8 ( 2 + 3 ~ )  8 c,=-- + - (M > lo2, all Re). 
Re (1 + K) 3 

the generalized form of an equation suggested by Darton and Harrison (Dl).  
To solve for C ,  over the entire range of Re, it is more convenient to rewrite 
Eq. (8-13) as a quadratic equation in Re: 

where Ar = Eo3 >\.1-l = yp  Ap de3 p2 is an Archimedes number analogous 
to .ID = C ,  Re2 introduced in Chapter 5. 
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x alr bubble (G3)  - 
- 
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7 
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- 

FIG. 8.3 Surface modified pressure distribution for spherical-caps at high Re. derived using the 
method of McDonald (M2). Experimental protiles obtained from photographs of bubbles in water. 

-1.0- 

Large "two-dimensional" or plane bubbles give results analogous to those 
presented a b o ~  e, and have been considered by Collins (C4), Grace and Harrison 
(G5), and Hills (H4). 

The method developed by McDonald (M2) to calculate surface dynamic 
pressure distributions for falling drops (see Chapter 7) ma) also be applied to 
large fluid particles. Equation (7-19) may therefore be applied. For a perfect 
spherical-cap whose terminal velocity C', is given by Eq. (8-5), the modified 
pressure over the leading surface is given by 

0 20 40 60 80 

ANGLE FROM NOSE. €+,degrees 

7 

R l r r  < 
I I 1 I 

(p, - yo),(~pC',2) = 4 . 5 ~ 0 ~ 0  - 3.5 (0 5 0  < 8,). (8-1 5) 

O - 

0 - 
I I 1 

For 0 ,  = 50- and a flat rear, the pressure on the rear surface is 

( p S  - p0)/(~PC'T2) = -0.61 + (4 We,) (rear surface. 0, = 50 ), (8-16) 

where We, = pC,2u a. Since We, is generallj greater than 20 for the large 
fluid particles considered in this section. s plays a relatively minor role except 
at the rim where the spherical-cap surface intersects the base.' 

Actual shapes of fluid particles deviate from the idealized shape which leads 
to Eqs. (8-15) and (8-16). Surface pressure distributions derived from observed 
shapes (W2) are shown in Fig. 8.3 for spherical-cap bubbles at high Re. I t  is 
seen that the pressure lariation is well described by Eq. (8-15) for 0 I 0 < 8,  
while the potential flow pressure distribution. Eq. (1-32), gives good agreement 
up to about 30' from the nose. 

' The rim cannot be sharp. as it often appears, or the capillary pressure component would be 
infinite. 
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Large bubbles and drops in high M systems at Re of order 10 to 50 conlmonly 
trail thin annular films of the dispersed fluid as shown in Fig. 2.4g and 2.4h. These 
thin films are usually referred to as "skirts." Sqstems in which skirts are observed 
have Morton numbers greater than about 0.1: hence the continuous fluid must 
have a rather high viscosity: generally greater than 1 poise. Approximate 
boundaries for the occurrence of skirts are shown in the Re vs. Eo diagram, 
Fig. 2.5. Experimentally, it has been found that trailing skirts have a negligible 
influence on the terminal velocity of bubbles and drops (B3, Wl),  although 
they affect the nature of the wake as discussed below. This lends further support 
to the theory above, where the terminal velocity of large bubbles and drops is 
derived considering only the shape and motion near the nose. 

For systems in which skirt formation can occur and d, is slightly less than 
required for skirt formation, large bubbles or drops tend to be indented at 
the rear. Skirt formation occurs when viscous forces acting at the rim or corner 
of the dimpled bubble or drop are strong enough to overcome interfacial 
tension forces and pull the rim out into a thin sheet (B3, H5, W1, W5). The 
onset of skirts is dependent both on the ratio We:'Re = pL,a, sometimes 
called a capillary or skirt number, and on Re. Figure 8.4 shows data for the 
transition from unskirted to skirted bubbles or drops. For bubbles, skirts exist 
for Re 5 9 and 

We Re > 2.32 + [I1 (Re - 9)0.7]. (8- 17) 

For drops, skirt formation occurs for We 'Re 5 2.3 and Re 5 4. It is possible 
that some upper bound on Re exists above which skirts are no longer observed. 
but this has not been determined precisely. The highest Re for which skirts 
have been reported is 500 (H5). 

Once skirts are formed, they may be steady and axisymmetric, growing with 
time. or asymmetric with finite amplitude waves traveling towards the rear 
(W3). Wairegi (W2) classified skirt configurations into: 

(i) smooth skirts curled inwards; 
(ii) straight skirts perpendicular to the base of the bubble or drop: 

(iii) wavy skirts: 
(iv) exfoliating skirts : 
(v) fluttering skirts. 

Transitions between these categories are not abrupt. Bhaga (B3) delineated the 
conditions under which wavy skirts are found. 

The skirt thickness A may be predicted from an approach suggested by 
Guthrie and Bradshaw (G8) which in extended form (W2) yields 
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Eq. (8-17) 

b- m 

L m 
I - A 

NO SKIRTS 
P 

0 I I I I I I  I I I I I I l l  I I I t  

3 
lo REYNOLDS NUMBER, Re 

100 600 

FIG 8 4 Onset of skirt format~on open s! mbols refer to bubbles and closed s) mbols to drops 

Experimental measurements of skirt thickness (B3, B5. G8, W2) show reason- 
able agreement with Eq. (8-18). In practice, skirts become thinner with in- 
creasing distance from the rear of the bubble or drop (B3, H5). Skirts behind 
bubbles are of order 50 pm thick, while the thickness of liquid skirts behind 
drops is of order 1 mm. 

Steady skirt lengths increase with Re (B3, H5, W2). Wairegi (W2) and Bhaga 
(B3) also reported skirt lengths which increased with time. The length of steady 
skirts is controlled by a balance of viscous and capillary forces at the rim of 
the skirt (B3), whereas the length of wav) skirts appears to be determined by 
growth of Helmholtz instability waves (H5). 

The dispersed phase fluid must circulate for large fluid particles in qualita- 
tively the same manner as for small fluid particles. Because of the large values 
of Eo, surface-active contaminants are not expected to damp out internal fluid 
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motion entire13 (see Chapter 3), although interfacial motion may be impeded 
o\er part of the leading surface of a spherical-cap away from the nose (W4). 

Internal circulation measurements are very difficult to obtain for gas bubbles 
(D8). Some results have been obtained for large liquid skirted drops using tracer 
particles (W2), and probide a qualitative picture of the internal motion as 
shown in Fig. 8.5. It is not clear whether there is a reverse vortex motion in 
the interior of a large fluid particle (as indicated by the dotted lines). Such a 
secondary vortex would appear to be necessary to satisfy velocity and stress 
continuity. but experimental evidence is inconclusive. 

/ 
Axis of symmetry 

Outer streamline relative to 
drop or bubble 

FIG. 8 .5  Schematic diagram of internal and external flow patterns for a skirted bubble or drop. 

At lon Re. wakes behind large bubbles and drops are closed (B3, H5, S5. W2. 
W6), whereas at high Re open turbulent wakes are formed (H5, MI ,  W6). The 
value of Re for transition between these two types of wake has been determined 
as 110 1 2 (B3) for skirtless bubbles. There is some evidence (H5) that the 
transition Reynolds number may be increased if skirts are present. 

Closed wakes have been modeled as completing the sphere or spheroid of 
which the particle forms the cap [e.g. (C5, P2)]. However, the wake is smaller 
than that required to complete a spheroid for Re 2 5 and greater for larger 
Re (B3). The wake becomes more nearly spherical as Re + 100. but is still 
somewhat "egg-shaped" (B3, H5). Wake volumes, normalized with respect to 
the volume of the fluid particle, are shown in Fig. 8.6 for Re up to 110. Note 
the close agreement with results (K l )  for solid spherical caps of the same aspect 
ratio. This is not surprising since separation necessarily occurs at the rim of the 
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Solid Spherical Caps 
( K l , B 3 )  

/ 

Eq. (8-19) 0/b 

SYMBOL REF 
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FIG. 8.6 Dimensionless wake volumes for ellipsoidal-cap and spherical-cap bubbles and drops. 
con~pared with solid spherical-caps. 

spherical-cap whether it is rigid or circulating, even if the boundary layers over 
the curved portion of the cap differ in the two cases. The wake volume is well 
represented by 

Bhaga (B3) determined the fluid motion in wakes using hydrogen bubble 
tracers. Closed wakes were shown to contain a toroidal vortex with its core 
in the horizontal plane where the wake has its widest cross section. The core 
diameter is about 70:, of the maximum wake diameter. similar to a Hill's 
spherical vortex. When the base of the fluid particle is indented. the toroidal 
motion extends into the indentation. Liquid within the closed wake moves 
considerably more slowly relative to the drop or bubble than the terminal 
velocity C,. If a skirt forms, the basic toroidal motion in the wake is still 
present (see Fig. 8.5), but the strength of the vortex is reduced. Momentum 
considerations require that there be a velocity defect behind closed wakes and 
this accounts for the "tail" observed by some workers (S.5). Crabtree and 
Bridgwater (C8) and Bhaga (B3) measured the velocity decay and drift in the 
far wake region. 

There has been considerabl) less work on open turbulent wakes, although 
some excellent photographs have been published (B3. MI ,  W5, W6). Wake 
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shedding appears to be responsible for the wobbling motion often shown by 
spherical-cap bubbles with Re 5 150; and for erratic motion of trailing satellite 
bubbles. Wakes for large two-dimensional bubbles have received some attention 
(C3, C7. L1, L2). 

G. EXTERNAL FLOW FIELD 

Bhaga (B3) determined streamlines relative to rising ellipsoidal and spherical- 
cap bubbles in high ~Lif systems using hydrogen bubbles as tracers. Results for 
Re = 29 and 82 are shown in Fig. 8.7. As the external liquid moves past the 
bubble and wake boundary, its velocity decreases, especially at low Re. Thus 
the motion deviates from the potential flow field used in deriving L', (see above), 
but the deviation decreases as Re increases and is very small at distances from 
the bubble of the order of the radius of curvature. The value of u, C ,  at the 
equator increases from about 0.56 to 0.81 as Re increases from 2.5 to 42, whereas 
a value of 1.5 is expected for potential flow; see Eq. (1-31). At higher Re, the 
modification to Hill's spherical vortex proposed by Harper and Moore (H3), 
applied to the spherical region approximately containing the spherical-cap and 
its closed wake, gives a reasonable description of the flow field both outside 
and inside this region. 

Re=21  I Re = 82 

FIG. 8.7 Streamlines in  the outer fluid relative to an ellipsoidal-cap and a spherical-cap bubble. 
aftcr Bhaga (B3). Points on streamlines show positions at intervals of 0.03 sec. 
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111. MASS TRANSFER I N  THE CONTINUOUS PHASE 

Transfer from large bubbles and drops may be estimated b j  assuming that the 
front surface is a segment of a sphere uith the surrounding fluid in potential 
fow. Although bubbles are oblate ellipsoidal for Re 2 40, less error should 
result from assumption of a spherical shape than from the assumption of 
potential flow. 

Transfer from a spherical segment in potential flow is described (B l ,  B4, J2, 
L4) by 

where a is the radius of the spherical-cap, 0 ,  is the maximum angle of the 
segment measured from the stagnation point. and 

g(0,) = 2 - 3 cos 0, + C O S ~  t), . (8-21) 

For a spherical cap with a flat base: 

and Eq. (8-20) for transfer over the forward portion can be rewritten 

regardless of the wake angle. Equation (8-24) is the so-called Higbie equation, 
Eq. (5-35), written in terms of the equivalent diameter, and represents transfer 
from the entire particle if there is negligible transfer through the base. Many 
investigations have shown that Eq. (8-24) provides a fair estimate of the contin- 
uous phase resistance regardless of bubble size as long as Re is large [e.g., (Cl)]. 

At high Re the transfer through the base is not negligible. Weber (W4) 
showed that basal transfer may be estimated using the penetration theory, 
assuming complete renewal each time vortices are shed. He obtained 

where Sr = f - ~  CT is the Strouhal number for eddy shedding based on the 
maximum width of the bubble, w. For Re 3 150,0, = 50 as discussed earlier. 
For Sr = 0.3 (L3) 
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Assuming that base and frontal transfer are independent. we obtain 

(El) (/\'4)F + 
- (8-27) 

A,  '4 c 

Use of Eq. (8-1 1) leads to the final recommended relationship: 

Equation (8-28) gi1.e~ good agreement for spherical-cap bubbles in liquids at 
Re > 100 (W4) as shonn in Fig. 8.8. No data are available for large drops. 
For bubbles in liquids. Ap = 1 and Eq. (8-28) becomes 

[(kA), A,] $2' ' = 6.94di1 4. (8-29) 

with d, in cm and the left side in s - '  2.  This form was used for bubbles in water 
in Eq. (7-50). Surfactants reduce transfer rates from spherical-cap bubbles in 
10%-viscosity liquids (Bl). and this effect has been analyzed by Weber (W4). 
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FIG 8 8 Mass transfer factor k 4  4, for d~sso lu t~on  of CO, bubbles in aqueous solut~ons 

B. Low REYNOLDS NUMBER 

For Re < 110 the wake is closed and laminar as discussed above. Transfer 
over the front portion of the cap is again described by Eq. (8-20). Transfer 
from the base occurs by diffusion into the wake fluid as it moves along the 
bubble base. producing a concentration boundary layer. The solute in this 
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boundary layer then diffuses both into the interior of the wake and into the 
continuous phase as the wake fluid circulates (B4). 

Figure 8.9 shows a model of a large indented or dimpled fluid particle at 
low Re composed of two spherical segments. The front surface has radius n 
and angle Q,., while the rear surface or base has radius a, and angle OR. Brignell 
(B4) showed that if 0 ,  is small: the wake large, and (1 = tiR, the transfer 
coefficient from the rear segment is equal to that from the front segment, both 
being given by Eq. (8-20). In reality these assumptions are not valid. The 
velocity in the n-ake is less than the velocity over the forward segment. These 
considerations suggest that transfer rates may be bounded. The lower bound 
is given by neglecting transfer from the rear surface. 

FIG. 8.9 T u o  spherical-segment model of an indented f lu~d particle 

For the geometry of Fig. 8.9, the volume of the fluid particle is 

where 

= ( m R 3  3)g(dR) (8-31) 

is the volume of the rear spherical-cap and y(0) is given by Eq. (8-21). The 
frontal radius is given by: 

LI tie = [2g(QI$,) (1 + (VR I/))]- 3 .  (8-32) 

This value of a with Q,, from Eq. (8-1)  is used with Eqs. (8-20) and (8-23) to 
obtain the lower bound. 

The upper bound is found bq. adding to the lower bound the transfer from the 
rear segment given by Eq. (8-20) written with a, and 0 ,  in place of u and Q\, . 
Application of Eq. (8-20) to the front and rear surfaces gives 
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Combination of Eqs. (8-30), (8-31): and (8-33) yields 

If the front and rear transfer rates are independent, 

The upper bound is then calculated from Eqs. (8-35)> (8-34), and (8-20). 
Although VR/V, the fractional indentation, varies with Re for Re > 2 as dis- 

cussed above, a reasonable average is VR/V = 0.2. Using this approximation 
and measured bubble terminal velocities, we have calculated the upper and 
lower bounds shown in Fig. 8.8. In all cases agreement with the experimental 
data is good. 

Mass transfer rates for skirted bubbles in polyvinyl alcohol solutions have 
been measured by Guthrie and Bradshaw (G9) and Davenport et 01. (D4). 
When a skirt is present the transfer rate increases, but not in proportion to 
the increase in surface area. Davenport attributes this to the accumulation on 
the surface of the skirt of surface-active impurities which immobilize the inter- 
face and reduce the transfer rate. Presumably transfer rates from skirted bubbles 
or drops in very pure liquids would be appreciably higher than from fluid 
particles without skirts. 

IV. SPECIAL SYSTEMS 

Gas bubbles in liquid metals and in fluidized beds have been the subject of 
special studies because of their practical importance and because of the experi- 
mental difficulties associated with studying bubble properties in opaque media. 
Much of the work has been carried out in so-called "two-dimensional" columns. 
where a sheet of liquid or fluidized particles, typically 1 cm thick, is confined 
between two parallel transparent walls. Bubbles span the gap between the 
front and rear faces and can be observed with backlighting. 

There is considerable evidence (D3, G7, PI ,  P4, S1) that bubbles in liquid 
metals show the behavior expected from studies in more conventional liquids. 
Because of the large surface tension forces for liquid metals, Morton numbers 
tend to be low (typically of order 10-12) and these systems are prone to con- 
tamination by surface-active impurities. Figure 8.10a shows a two-dimensional 
nitrogen bubble in liquid mercury. For experimental convenience, the bubbles 
studied have generally been rather large, so that there are few data available 
for spherical or slightly deformed ellipsoidal bubbles in liquid metals. Data 



IV. Special Systems 

ibi 

FIG. 8.10 (a )  ..Two-dimensional" nitrogen bubble in liquid niercurq [Paneni and Davenport 
(PI). Truns. .Metali. Soc. AIME, copyrighted by the American Institute of Mining. Metallurgical 
and Petroleum Engineers. Inc]. (b) X-ray photograph of bubbles in a fluidized bed. Reference grid 
spacing is 2 cm in lertical direction. Fluidized particles are 79 /in1 silicon carbide particles. (Repro- 
duced with permission of Prof, P. K. Rowe). 
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tend to be subject to abnormally high scatter due to experimental difficulties 
associated with opaque media and high temperatures. For rekiews of the 
properties of bubbles in liquid metals, see (D5. R1. R2). 

Fluidized beds are beds of solid particles supported by upward flow of a gas 
or liquid. Because of their temperature uniformity; excellent heat transfer 
characteristics, and solids handling possibilities. fluidized beds have found wide 
application for physical and chemical processes. 

Gas fluidized beds are inherently unstable to the growth of voidage dis- 
turbances and this is believed to be the origin of bubbles in fluidized beds (J l ) .  
Rowe (R5) has reviewed the properties of these bubbles and experimental 
techniques used in their study. As a first approximation, the particulate phase 
(particles and interstitial gas) is usually treated as a Newtonian liquid of zero 
surface tension and of kinematic viscosity of order 5 cm2 s (G4). There is a 
strong analogy between bubbles in liquids and in fluidized beds (D7). In view 
of the negligible surface tension forces and the fact that bubbles are usually 
at least a centimeter in diameter, bubbles are generally in the spherical-cap 
regime. Reynolds numbers tend to be of order 10 to 100 with the result that 
bubbles have large values of 0, (see Fig. 8.1) and closed laminar wakes. A 
photograph taken with the aid of x-rays is reproduced in Fig. 8.10b. The ter- 
minal velocity of bubbles in fluidized beds is usually estimated using Eq. (8-10) 
or (8-11) with Ap p = 1 (D6), while the influence of bubble size on shape for 
bubbles from 1 to 16 cm in diameter has been represented (R7) by 

where dB is the maximum bubble width in centimeters in a plane normal to 
the direction of motion. There is evidence that the particulate phase is signifi- 
cantly non-Newtonian. Slip surfaces (P3) give evidence of yield stresses: and this 
had led some workers [e.g. (GI)] to treat the particulate phase as a Bingham 
plastic. 

Internal circulation for bubbles in fluidized beds is an aspect in which 
the analogy between liquids and fluidized beds ceases to apply since the 
bubble~particulate phase interface is permeable. There is a net upward gas 
flow through a bubble (G2). If the bubble rises more quickly than gas which 
is percolating through the particle interstices in the remote particulate phase, 
gas recirculation occurs in an annular shell called a "cloud" surrounding each 
bubble (R6). Cloud formation has considerable importance with regard to 
efficient utilization or treatment of gases in fluidized beds. Transfer between 
bubble and particulate phase results both from diffusion and from convection 
by the gas "throughflow." The overall transfer rate is commonly estimated by 
treating these components as additive (D6), although they probably interact 
strongly (C2, H6). 
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Three-phase (solid,!liquid:gas) fluidized systems are also of some practical 
importance. There is again a strong analogy between the rise of gas bubbles 
in normal liquids and in liquid fluidized beds (Dl,  R3), although there is evidence 
of solid,liquid segregation in wakes (R3, S6) which has no parallel for two- 
phase systems. 
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Chapter 9 

Wall Effects 

I. INTRODUCTION 

In terms of the analytic solutions for flow around rigid and circulating par- 
ticles, the effect of containing walls is to change the boundary conditions for 
the equations of motion and continuity of the continuous phase. In place of 
the condition of uniform flow remote from the particle, containing walls impose 
conditions which must be satisfied at definite boundaries. 

Consider the example shown schematically in Fig. 9.1 ; a sphere of diameter d 
is moving parallel to the axis of a cylindrical tube of radius R through which a 

I 
L O k R i  

FIG. 9.1 Sphere falling through a fluid in laminar flow: schematic. 
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fluid is passing in Poiseuille flow with centerline velocit) Lo.  Taking a refer- 
ence frame mobing with the particle. the new boundary conditions are: 

u = Ci at the walls, (9-1) 

where i is the unit vector directed vertically upwards and U is the absolute 
d o w n ~ ~ a r d  velocity of the particle. and 

at large distances upstream and downstream from the particle. These new 
boundary conditions cause changes in the drag force and transfer rate. For 
fluid particles there is the additional effect of the container walls on the particle 
shape. 

Here we concentrate on cylindrical containing walls. although there is 
some work on particles near plane boundaries and surfaces of arb~trary shape. 
Most of the work on rigid particles refers to spheres, and it is then convenient 
to use the diameter ratio 

For fluid particles, the volume-equivalent diameter is used in defining 1.. 

11. RIGID PARTICLES 

Little work has been reported on the motion of bounded fluids past rigid 
particles, except for the creeping flow range. Coutanceau (C8) reported visual- 
ization of the flow around a sphere moving along the axis of a tube containing 
an otherwise stationary fluid. The walls were found to delay formation of the 
attached recirculatory wake, and the onset of separation was given for R < 0.8 
by 

Re, = 20(1 - iL)-0.j6. (9-4) 

Taking detectable departure from fore-and-aft symmetry as the upper limit of 
Stokes flow, Coutanceau found that increasing 3. increased the range of validity 
of the creeping flow approximation.' The upper limit of Stokes flow was 
proposed as: 

Re, = (Re, 7) - 2.75 (3. < 0.8). (9-5) 

Johansson (J l )  reported numerical calculations of the flow around a sphere 
fixed on the axis of a Poiseuille flow (Fig. 9.1 with b = 0, C' = 0). Only solutions 
for ;. = 0.1 were considered, and wake formation was predicted for Re = 20.4 
based on the centerline velocity C', . 

' As noted In Chapter 3, the 1nconslstencS In Stokes' solutlon occurs In the outer f l o ~  field 
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At the other extreme of Re. Achenbach (Al) investigated flow around a 
sphere fixed on the axis of a cylindrical wind tunnel in the critical range. Wall 
effects can increase the supercritical drag coefficient me11 above the value of 
0.3 arbitrarily used to define Re, in an unbounded fluid (see Chapter 5). If Re, 
is based on the mean approach velocity' and corresponds to C, midway be- 
t ~ e e n  the sub- and super-cntical values. the critical Reynolds number decreases 
from 3.65 x 10' in an unbounded fluid to 1.05 x lo5 for i = 0.916. 

There are three useful measures of the effect of bounding walls on drag. A 
drag factor can be defined, based on the same particle at the same fluid velocity: 

drag in bounded fluid F, 
K F  = - - 

drag in infinite fluid FD, ' 
(9-6) 

Alternatively, a velocity ratio can be defined: based on constant particle di- 
mensions (i.e., constant ND): 

terminal velocity in infinite fluid C,, K ,  = - 
terminal velocity in bounded fluid - C ,  ' 

For falling sphere viscometry, it is most convenient to define a viscosity ratio 
based on constant particle dimensions and terminal velocity (S7 ) :  

where p is the actual fluid viscosity and p, is the viscosity of the unbounded 
fluid which would give the observed U ,  if Stokes' law were to apply, i.e., 

ps = d 2 ~ ( ~ p  - P ) ~ ' ~ ~ ~ T .  (9-9) 
The term K ,  includes the effect of departures from the creeping flow approxi- 
mations. In creeping flow, K F  = K ,  = K ,  = K ,  but at higher Re the relation- 
ships are more complex. In general, any of these ratios is a function of ;* and 
one other group (such as Re) chosen to suit the problem at hand. 

1. Low Reynolds Nurnbe~s 

For a complete review on low Re motion in bounded fluids: see Happel and 
Brenner (H3). Some general results are of immediate interest. For a particle 
moving through an otherwise undisturbed fluid, without rotation and with 
velocity L parallel to a principal axis both of the body and the container, 

where c is the maximum particle dimension, 1 the shortest distance from the 
center of the particle to the wall, and C depends on the nature of the boundary 

' Achenbach based Re on  flow conditions in the smallest cross section betaeen sphere and tube. 
With this definition. wall effects increase Re,. 
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TABLE 9.1 

Wall Correction Coefficient C in Eq. 19-10) for Rigid Boundaries 

Boundas1 Location of particle Direction of mo~ion  C 

Circular cylinder Axis Axial 2.10444 
Eccen~ric Axial Fig. 9.2 

Parallel plane walls Midplane Parallel to ~valls 1.004 
;distance across channel Parallel to ~valls 0.6526 

Single plane wall 9 Parallel to wall - 
16 

Normal to ~vall 9 
8 

Spl?erical Center - 4 9 

but not on the shape of the particle.? Thus correction factors determined for 
one particle shape can be applied to another shape, provided that cll is suffi- 
ciently small for the higher-order terms to be neglected. Table 9.1 gives C for 
various rigid boundaries; different values apply for free surfaces. For a particle 
settling eccentrically in a cylinder, C depends upon distance from the axis as 
shown in Fig. 9.2. For small bI1R, 

Note that K is insensitive to position provided that blR ? 0.6. 

b / R  

FIG. 9.2 Wall correction cocfficie~lt [C in Eq. (9-lo)] for a rigid particle settling eccentricailq in 
a circular cylinder. 

To obtain higher-order approximations, it is necessary to consider specific 
shapes. Various correction factors have been proposed for rigid spheres moving 
through an otherwise undisturbed fluid. The most widely used are summarized 
in Table 9.2. Experimental determinations of K reported by Fidleris and 

+ This result also applies to a circulating particle provided that the appropriate F,, is used. 
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TABLE 9.2 

Wall Correction F a c ~ o r  K for a Rigid Spherical Particle Mo\ing on 
the Axis of a Cylindrical Tube in Creeping Flou 

Ai~thor Expression for K 
- 

Ladenburg (LI )  1 1  2 105/ 

Faxen ( F l  j ( 1  - 2.1042. i 2.092.3 - 0.95i5!-' 

1 - 0.758572." Haberman and Sayre (HI)  .- -- - - 
1 - 2.1050;. + 2.08652." 11.7068i5 + 0.72603/." 

Francis (F6) (empirical! [ ( I  - 0.4752.) ( 1  - 2 . 1 1 ~  

Whitmore (F4) for i. I 0.6 lie between the expressions of Haberman and Sayre 
and of Francis. The Haberman and Sayre result shows about 1% less deviation, 
but the equation due to Francis has the virtue of simplicity. Experimental 
results due to Sutterby (S7) for iL 5 0.13 with Re + 0 agree with the Faxen, 
Haberman, and Francis curves which are virtually indistinguishable in this 
range. The Ladenburg result is only accurate for i i 0.05. 

The results in Table 9.2 apply when no end effects are present. Sutterby (S7) 
determined simultaneous wall and end correction factors for the creeping flow 
range. His correlations are shown in Fig. 9.3 where the cylindrical column has 
closed ends a distance L, apart and the center of the spherical particle is dis- 
tance Z from one end of the tube. The curve for DIL, = 1.0 and Z,L, = 1 2 is 

0 0.05 0.1 
Diameter ratio X 

FIG. 9.3 W-all correction fiactors ti for a rigid sphere on the axis o f a  cllinder of finite length in 
crecpingflov,(S7):( l)LC D =  I : (Z)L,  D = $ : ( ~ ) L ,  D = : .  
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indistinguishable from the Haberman and Sayre result for a long tube (Table 
9.2). so that the relative displacement of the other curves indicates the magni- 
tude of end effects. These are least when the sphere is at the midpoint of the 
column. For a column with LC D = 2.0. end effects are negligible if 1 .3  < 
Z LC < 2 3. A theoretical treatment of simultaneous wall and end effects by 
Tanner (T2) gives values of K which are asymptotic to the curves in Fig. 9.3 
for small i ,  but underpredicts K otherwise. 

For a rigid sphere on the axis of a tube through which a fluid moves in 
laminar floh- (Fig. 9.1 with h = 0). Haberman and Sayre (HI) showed that the 
magnitude of the drag force is 

where 

As for particles in infinite fluids, analytic solutioils have not been success- 
fully extended beyond the creeping flow range. Faxen (F l )  applied the Oseen 
linearization to a sphere moving axially in a tube, but the resulting drag pre- 
dictions are no more reliable than for an unbounded fluid (F4. H3, S7). How- 
ever, reliable experimental results are available for freely settling spheres (F4, 
M4, S7). spheres fixed in a fluid flow (Al. M5), and spheres freely suspended 
in an uphard-flowing liquid (R2). The results of these investigations are in 
remarkably good agreement. For particles in ducts of noncircular section, it is 
usual to define D as the conventional "hydraulic diameter," but the accuracy 
of this approximation does not appear to have been seriously assessed. 

Figure 9.4 shows curves for the drag coefficient (based on the velocity for a 
freely settling sphere and the mean approach velocity for a fixed or suspended 
sphere) and for the fractional increase in drag caused by wall effects. (KF - 1). 
Up to Re of order 50, the results are approximated closely by an equation 
proposed by Fayon and Happel (F2): 

C ,  = C,, + (24,Re)(K - I), (9- 14) 

where K is given by Table 9.2. For Re in the range from roughly 100 to lo4, 
available data indicate that KF is independent of Re, and given within 6':;: by: 

For Re > lo5, Achenbach's result (Al) may be used: 
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FIG. 9.4 
of circular 

Re 

Drag coefficient C',, and fractional drag increasc ( K ,  - 1 )  for rigid spheres 
ducts. 

on the axis 

For treatment of terminal settling velocities, it is more convenient to work in 
terms of ND defined in Eq. (5-15). Figure 9.5 shows the terminal Reynolds 
number and (K, - 1) as functions of IYA 3.  For IVb > lo3, KL is approximated 
closely by ,xi, with K F  given by Eq. (9-17). 

D 

FIG. 9,s Terminal Reqnolds number and velocitj correction fac~or for rigid spheres on the axis 
of circular ducts. 
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Sutterby (S7) gave a useful tabulation of the \-iscosity ratio K,. defined in 
Eq. (9-81, for relati\-ely low Re and i .  These values, intended primarily to correct 
for departures from Stokes' law in falling sphere viscometry, are shown in 
Fig. 9.6. Reynolds number is defined using the measured U, and ,us defined in 
Eq. (9-9). The curve for i = 0 accounts for departures from the creeping flow 
approximations in an unbounded fluid, and the relative displacement of the 
other curves indicates the %-all effect. 

FIG. 9.6 Viscosity correction factor K ,  for rigid spheres settling axially in circular columns with 
Re = C,rpil#ps (S7). 

In addition to the effect of the walls on the drag on the particle, the particle 
alters the shear on the duct. Consider a particle settling through a quiescent 
fluid (Fig. 9.1 with C ,  = 0). Brenner (B3) showed that, for low particle Re with 
the particle small by comparison with the distance between particle and wall 
(i.e., i. << 1 - p, where p = b'R), there is an excess pressure drop, APf, between 
points far below and far above the particle given by 

AP+ A F ,  = 2(1 - p2) - +jL2 + 0(i3) (i << 1 - p), (9- 18) 

where FD is the force on the particle and A is the cross-sectional area of the duct. 
Bungay and Brenner (B7) carried out a complementary analysis which predicts 
APf for particles close to the wall. For a small particle settling on the axis 

APf A = 2 F D ,  (9- 19) 

so that the walls exert a total force FD downwards on the fluid. Surprisingly in 
view of the assumptions, Eq. (9-19) appears to apply up to quite high particle 
Re. for a variety of different particle shapes (F3, L3), but then APtA F ,  falls 
sharply from two to unity. This transition corresponds roughly to 



11. Rigid Particles 229 

where C,  is the terminal velocity of the particle. The coincidence with the 
Reynolds number characterizing laminar turbulent transition in pipe flow 
remains a curiosity (L3). 

It is noted in Chapter 10 that, if inertial terms are neglected? a freely rotating 
particle suspended in a sheared fluid experiences no lift. However: in a classic 
series of experiments, Segre and Silberberg (S3) demonstrated that neutrally 
buoyant rigid spheres suspended in a Poiseuille flow migrate to a position 
given roughly by P = 0.6. This effect has been confirmed many times (B3, G4: 
H2, L4, Tl).  If ;. # 1, a sphere in a Poiseuille flow migrates towards the wall if 
its velocity exceeds the local undisturbed fluid velocity; but towards the center 
line if its velocity lags the fluid. Both neutrally buoyant and sedimenting spheres 
in a Couette flow migrate to the central plane (V2). The reason for this migra- 
tion has been widely debated. It must result from a lift force: but this cannot be 
explained by particle rotation [see (L4)]. The only explanation is the presence 
of inertial effects. Ho and Leal (H5) and Vasseur (V2) have confirmed this by 
applying the method of matched asymptotic expansions (C9). The migration 
velocity depends on the particle size and position: and on the duct and particle 
Reynolds numbers. Resulting trajectory predictions agree closely with obser- 
vation. Eichorn and Small (E2) measured the lift on a solid sphere fixed in a 
Poiseuille flow with 80 < Re < 250. 

There are two useful mea~ures of the effect of bounding walls on the heat- or 
mass-transfer rate. A mass transfer factor can be defined based on the same 
relative velocity between the particle and the fluid: 

Sherwood number in bounded fluid 
K I L  = Sherwood number in infinite fluid = (z) Sh, , 19-21] 

where the subscript U denotes the fact that the relative velocity is the same in 
the bounded and unbounded fluids. Alternativelq. a mass transfer factor can 
be based upon constant particle dimensions 

Sherwood number in infinite fluid 
K M D  = (9-22) Sherwood number in bounded fluid D 

where the subscript D denotes the fact that the particle dimensions. i.e., SA 3 ,  

are the same in the bounded and unbounded fluids. 

1. Low Rejnolds Nu~nbers 

The stream function expressions of Haberman and Sayre (HI)  for creeping 
flow permit the calculation of the effect of cylindrical containing walls on the 
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D~ameter ratio A 

FIG. 0.7 Mass transfer correction [actors K,,, and K,,, for a sphere on the axis of a cylinder in 
creeping flow. 

Sherwood number under the thin concentration boundary layer assumption 
through Eq. (3-46). The results are plotted in terms of K,, and KvD in Fig. 9.7. 
For a rigid sphere in creeping flow, the relationship between these quantities 
and the velocity ratio K is 

KMD = K M L  IK1  3. (9-23) 

For a rigid sphere (K = x) on the axis of a cylindrical tube, the Sherwood 
number is larger than in an unbounded fluid with the same particlelfluid ve- 
locity. The ratio of Sherwood numbers is approximated within 37(, for i, I 0.6 
by 

KblL = (1 - 0.35j") (1 - i). (9-24) 

The presence of container walls has a much smaller effect on Sherwood number 
than on drag since the mass transfer coefficient is only proportional to the 
one-third power of the surface vorticity. For a sphere with given NA settling 
on the axis of a cylindrical container, the Sherwood number decreases with i., 
but it is still within 8% of the Sherwood number in an infinite fluid for j. = 0.5. 
No data are available to test these predictions. 

2. Higher Reynolds Numbers 

For Re 5 lo3 there are a number of studies of the effect of walls on heat and 
mass transfer from solid particles in wind and water tunnels. In these studies 
it was customary to define a velocity ratio K ,, based on the same Sherwood 
number in bounded and infinite fluids: 

K,, = U,/'UT (9-25) 
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where U, is the true relative velocity between the particle and the fluid and 
C,, the effective velocity, is the velocity required in an unbounded fluid to 
give the same Sherwood number. The large number of relationships proposed 
for KMe have been reviewed by Pei (PI)  and Morgan (M6). The expression 
proposed by Leppert and coworkers (P2, V3) gives good agreement with data 
for rigid spheres located on the axis of cylindrical ducts: 

2 . 2  K M ,  = 1/(1 - 3/. ). (9-26) 

Equation (9-26) can be used with the Sherwood number equations for solid 
spheres in Chapter 5 to determine the increase in Sh due to container walls. 
For a settling sphere, a more useful velocity ratio is Gel U,, , the ratio of the 
effective velocity to the terminal velocity of the sphere in an infinite fluid: 

Le /LT ,  = 1/(1 - + i 2 ) K u .  (9-27) 

Here K ,  is obtained from Fig. 9.5. Equation (9-27) and the equations of Chap- 
ter 5 can be used to determine the decrease in Sh for a rigid sphere with fixed 
.Vh settling on the axis of a cylindrical tube. For example, for a settling sphere 
with i. = 0.4 and NA = 200, C', 'C,, = 0.76 and U e /  C, = 0.85. Since the 
Sherwood number is roughly proportional to the square root of Re, the 
Sherwood number for the settling particle is reduced only 8%, while its terminal 
velocity is reduced 24%. As in creeping flow. the effect of container walls on 
mass and heat transfer is much smaller than on terminal velocity. 

111. BUBBLES AND DROPS 

It is convenient to divide the discussion of wall effects for bubbles and drops 
into two parts. Section A covers cases where the diameter ratio, i = d,jD, is 
less than about 0.6. At low I., the walls cause little deformation beyond that 
which may be present for the fluid particle in an infinite medium, so that the 
discussion of wall effects for rigid particles forms a good starting point. Section 
B treats the case of slug flow (i. > 0.6) where the container walls have a domi- 
nant effect on the shape of the bubble or drop. 

A. WALL CORRECTIONS FOR j. 5 0.6 

1. Low Reynolds Numbers 

We recall from Chapters 2 and 3 that fluid particles at low Re in infinite 
media tend to be spherical and that the interface is usually stagnant due to 
surface-active contaminants or large values of K = p, ki. If i. is less than about 
0.3, deformation due to the container walls tends to be minor and the correc- 
tions given above for rigid spheres at low Re may be used. 

For an interface free of surface-active contaminants, Haberman and Sayre 
(HI)  obtained approximate solutions for a circulating sphere traveling in steady 
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motion along the axis of a cylindrical tube. As with rigid particles, the drag 
force on a circulating particle tends to increase as ;. increases. However. the 
effect is less than for a rigid particle under corresponding conditions. The drag 
force on a circulating sphere is given by 

where the correction factor, K is given by 

which reduces to the result in Table 9.2 as K + x. This correction factor was 
found to give good agreement with experimental results for relatively large 
aqueous glycerine or silicone oil drops falling on the axes of cylindrical tubes 
through castor oil (HI). As i. increased, the presence of the walls caused droplet 
deformation. elongation occurring in the vertical direction to yield approxi- 
mately prolate ellipsoid shapes. The theory gave an accurate prediction of the 
wall correction for i. up to about 0.5, although significant droplet deformation 
had occurred. 

The analysis was extended to apply to circulating particles on the axis of 
cylinders where there is a parabolic (laminar) velocity profile well upstream 
and downstream of the particle (Fig. 9.1 with b = 0). The drag force is given by 

F,= - 71pd[(2 + 3 ~ ) j ( l  + K)](K C' - K'U,), (9-30) 

where K is given by Eq. (9-29) and 

The above results give good predictions for bubbles and drops that would 
normally be spherical, provided that i is less than about 0.5, Re less than unity, 
and the fluid particle near the axis of the tube. 

2. Intermediate Size Drops and B~lbbles (Eo < 40) 

All studies of drops and bubbles have been carried out in containers of finite 
dimensions: hence wall effects have always been present to a greater or lesser 
extent. However. few workers have set out to determine wall effects directly 
using a series of different columns of varying diameter. Where studies have 
been carried out, the sole aim has usually been to determine the influence of 
i. on the terminal velocit>. While it is known that the containing walls tend to 
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cause elongation of fluid particles in the vertical direction, suppress secondary 
motion, and alter the wake structure, there is insufficient experimental evidence 
on these factors to allow useful quantitative generalizations to be drawn. 

Previous correlations of the influence of ;. on terminal velocities (El ,  H4, MI,  
S1, S6; T3, U1) are limited to specific systems, fail to recognize the different 
regimes of fluid particles (see Chapter 2)> or are difficult to apply. In the present 
section we consider both bubbles and drops, but confine our attention to those 
of intermediate size (see Chapter 7) where Eo < 40 and Re > 1. Only the data 
of Uno and Kintner (Ul): Strom and Kintner (S6) and Salami et ill. (Sl) are 
used since other workers either failed to use a range of column sizes for the 
same fluid-fluid systems, or it was impossible to obtain accurate values of the 
original data. This effectively limits the Reynolds number range to Re > 10 
for the low M systems studied. 

A plot of all the data as U,, C,. = K ;  ' (where L,, is the terminal velocity 
which the drop or bubble would have in an infinite container, as taken 
or extrapolated from the authors' own data) versus Re shows that, as for 
rigid spheres in cylindrical columns. the terminal velocity ratio deviates further 
from unity as i increases and as Re or S, decreases. In fact, the curves in 
Fig. 9.5 may be taken over and used directly for the prediction of C',/C',, for 
i. 50 .6 .  This may appear surprising, but it should be remembered that un- 
bounded drops and bubbles in this range tend to be flattened in the vertical 
direction, while the containing walls tend to cause elongation. Hence the 
resulting shape may not deviate greatly from a sphere. For wall effects to have 
negligible influence (less than about 2(5{,) on terminal velocities: the following 
conditions should apply: 

Re I 0.1 /1 1 0.06, (9-32) 

0.1 < Re < 100 iL 1 0 . 0 8  + 0.02log1,Re, (9-33) 

Re 2 100 i I 0.12. (9-34) 

These empirical relationships have been used in Chapters 7 and 8 to eliminate 
experimental results subject to significant wall effects. 

For Re greater than about 200, the effect of Re on C',/'C,, is relatively small 
(see Fig. 9.5). It is therefore possible to represent the results by a unique relation- 
ship between C,,!C',, and ).. The experimental results are shown in Fig. 9.8 
together with the equation 

VT/ VTm- = [ I  - 1 1  ."2 3 , 2 ,  (9-35) 

which gives an excellent fit for i up to about 0.6.' There appears to be a sys- 
tematic and inexplicable difference between the Salami et al. (Sl) data and 
the other data at i values greater than about 0.5. Equation (9-35) is recom- 
mended for bubbles and drops for Eo < 40, Re > 200 and ). 1 0.6. When the 
first and third of these conditions apply but 1 I Re I 200. Fig. 9.5 should be 
used. 
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0.1 1 1 1 1 1 I I I I 
0 0.1 0.2 0.3 0.L 0.5 0.6 0.7 0.8 0.9 

D~arneter ratio A 

FIG. 9.8 Retardillg effect of column aalls on the terminal velocity of drops and bubbles of 
intermediate size. 

3. Large Bubbles and Drops (Eo 2 40) 

Collins (C5, C6) carried out a thorough study of the influence of containing 
walls on the velocity of spherical-cap bubbles. The work was extended to lower 
Re by Bhaga (Bl) who also investigated the influence of wall proximity on 
wake size, external flow fields, bubble shape, and skirt behavior. Generally 
speaking, increasing i for a given large fluid particle in a system of fixed fluid 
properties was found to cause bubble elongation, a decrease in terminal veloc- 
ity, a marked reduction in the wake volume and the rate of fluid circulation 
within the wake, and a delay in the onset and waviness of skirts. Excellent 
photographs of bubbles subject to wall effects have been published (Bl,  Cl).  
Tracings showing the effect of increasing i at constant bubble volume on 
bubble shape are shown in Fig. 9.9. Some data illustrating the strong depen- 
dence of wake volume on R appear in Table 9.3. 

Experimental results show that wall effects are negligible for 1. up to about 
0.125 for spherical-caps in low !LI systems. Collins suggested semiempirical 
equations for C,/C,, . A simpler equation proposed by Wallis (Wl)  which 
agrees well with the results of Collins is 

+ Thls result also fits the \slues for rigid particles at v A  = 100 and 0 25 i i 0.6 
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(dl h=0.192 (e l  h=0,390 I f 1  hz0.795 
Re=369 Re.310 Re.211 

lgi h.0.192 ihl hz0.390 1 1 )  h .0795 
Re.5C.9 Re= L3.7 Rez29.5 

FIG. 9.9 Bubble shapes traced from photographs (Bl) showing the influence of i, on the shape of 
large bubbles: (a. b, c) V = 27.8 cm3. M = 1.64 x (d, e, f )  V = 92.6 em3. 41 = 1.64 x 
(g, h, i )  V =  92.6cm3, .44= 4.2. 

TABLE 9.3 

Wall Effect on Wake Volume for Large Bubbles in Viscous Liquids iB1Y 

D (cm) I L (cm s) Re Wake \olume (cm3) 

(a) V = 18.8 cm3. Eo = 183: 
29.2 0.112 38.2 58.3 187.1 
14.4 0.228 35.6 54.4 129.2 
7.1 0.468 27.1 41.5 28.2 

(b) V = 9.3 cm3. Eo = 116. 
29.2 0.089 33.1 40.2 55.6 
14.4 0.181 32.0 38.9 46.8 
7.1 0.369 26.5 32.1 20.2 

" Air bubbles in sucrose solution i p  = 2.89 poise. p = 1.35 g cm" n = 77.7 dyne cm. 
.M = 0.109). 

Lin (L6) derived a further equation which shows reasonable agreement with 
experiment for 1. less than about 0.6. While Collins' work was restricted to 
low IV. high Re systems. Bhaga's results show that Eq. (9-36) can be applied 
doun to Re 1 10 regardless of whether skirts are being trailed. 

While all the data discussed in this section are for large bubbles, it is rea- 
sonable to expect the results to apply also to large liquid drops for which 
Eo 2 40. For drops and bubbles in columns of noncircular cross section the 
results derived for cylindrical columns may be used with D replaced by the 
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convelltional hydraulic diameter. This practice is expected to give reasonable 
results for cross sections which do not deviate radically from circular. but 
experimental confirmation is lacking. 

B. SLUG FLOLV (i > 0.6) 

1. Sl~iy  Flow in Vertical Tubes of Cjlirzdrical Cross Section 

For appreciable values of i. it is obvious that wall effects influence fluid 
particles differently from rigid particles since a rigid particle will block the tube 
if too large whereas a bubble or drop can deform and maintain a nonzero 
terminal velocity even for i, >> 1. When the diameter ratio j. exceeds a value 
of about 0.6, the tube diameter D becomes the controlling length governing 
the velocity and the frontal shape of a bubble or drop. Bubbles and drops are 
then called slugs' (or Taylor bubbles) and tend to be bullet-shaped as shown 
in Figs. 2.4i and 9.9f. The slug can be considered to be composed of two parts, 
a rounded nose region whose shape and dimensions are independent of the 
overall slug length and a cylindrical section surrounded by an annular film 
of the continuous fluid ((23). Since the slug flow regime is of special interest for 
applications of boiling heat transfer (G9) and fluidized beds (S5), almost all 
work has been devoted to gaseous slugs. Reviews of the behavior of slugs 
have been given by Wallis (Wl)  and Govier and Aziz (G5). 

The terminal velocity of slugs may be estimated quite accurately using a very 
useful graphical correlation presented by White and Beardmore (W2). repro- 
duced in Fig. 9.1 0. Although originally derived for gaseous slugs, the correlation 
can be generalized to apply to liquid slugs as well (H4, R1, Wl) ,  and it is in 
the generalized form that it appears in Fig. 9.10. Angelino (A2) found that the 
correlation could be extrapolated to larger values of Eo,. Figure 9.10 can also 
be replotted in terms of any three independent dimensionless groups, e.g., as 
Re vs. Eo, with as parameter, analogous to Fig. 2.5 for the case where wall 
effects are negligible. 

Providing that the length of a slug exceeds about 1.5D, slug length has vir- 
tually no influence on slug velocity (G9, L2, R1, Z1). The terminal velocity is 
achieved within a distance of 2 0  from release (W2). Expressions are available 
for predicting the terminal velocity of slugs for the following special cases: 

a. Viscos~tj and Surjufuce Tensiorz Forces A?qlzgzble (Lil 5 and Eo, > 
100) For this case it can be shown, based on potential flo\+ theory, that 

- - 

Fr, = , p Ap(C, . yd)  = constant, (9-37) 

 here +dues  of 0.33 (Dl).  0.35 (D2). 0.36 (L5, Nl). and 0.37 (T4) ha+e been 

+ In Korth American usage, the word slug is often used to refer to the plugs of continuous liquid 
separating a series of elongated bubbles or drops. This difference can create considerable confusion. 
Here we use the term slug to refer to the elongated bubble or drop of dispersed phase fluid. 
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FIG. 9.10 General correlation for the rise bclocitj of slug flow bubbles (WZ) 

la)  i b) 
FIG. 9.1 1 Slug flow bubble shapes: (a) EoD > 10'. .'11 < (low viscosit) liquid): (b) riscous 

liquid; (c) inclined tube. 

derived for the constant. Experimental results (N2, S4) falor a ialue of 0.35.' 
Garabedian ((31) shou.ed that the shape (and hence the kalue of Fr,) is not 
uniquely determined and  suggested that the shape observed is that which leads 
to  the maximum rise velocity. Tung and Parlange (T4) applied this argument 
to  obtain a first estimate for the lowering of C', by surface tension. Brown (B6) 
extended the theory by considcrillg the effects of viscosity in the annular film. 
The slug velocit) Lvas shown to depend only on the frontal radius of curvature 
which is influenced in a minor way by the fluid properties through their control 
of the thickness of the annular film. Equation (9-37) is for single slugs rising 
along the axis of a vertical tube as shown in Fig. 9.1 l a .  If a slug adheres to the 

' The mean kalue for fluidized beds has been found to be 0.36 (01, S 5 ) .  Given the scatter in the 
experimental data. the difference between this \ d u e  and the value of 0.35 for slugs in low ~iscosity 
liquids is not significant. 
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wall - of the tube. the terminal kelocitq is increased bq a factor of approximately 
\ 2 tS5) 

b. Sitrlfirce Te i~s ion  Dol?tirzarzt (Eo, < 3.4) In this case, the slug remains 
motionless with its shape determined by a balance between hydrostatic and 
capillary forces (B4, W2). 

c. Viscosity Don~i l z~~nt  (Eo, > 70, Fr, < 0.05) The terminal velocity for 
these conditions is given by 

where the numerical constant suggested here is a mean of values given in the 
literature (Wl,  W2). The theory for this case has been presented and verified 
experimentally by Goldsmith and Mason (G3). The front of the slug was found 
to be prolate spheroidal while the rear was oblate spheroidal (see Fig. 9.11b). 

When none of the sets of conditions given in (a), (b), or (c) apply, Fig. 9.10 
should be used to predict the slug velocity. 

2. Slug Flow irz Vertical Tubes of Noncylindrical Cross Sectiolz 

For the special case (a) above where surface tension and viscous effects are 
negligible, the terminal velocity of a slug in a column of rectangular cross 
section (Dl x D,) is given by 

where D, I Dl (G8, Wl).  In the limit D2 << Dl,  this relationship reduces to the 
theoretical result (B2, C4, G I )  for a plane slug. For a concentric annulus with 
inner diameter Di and outer diameter Do and for the special case where inertia 
effects are dominant, the data of Griffith (G8) can be fitted by the simple 
relationship 

Extensive data for slugs rising in annular sections have recently been obtained 
(Rl)  in connection with blowouts in oil drilling operations. Bubbles were shown 
to assume the shape of "hot dog buns" with the fractions of the annular cross 
section occupied by downflowing liquid increasing with increasing viscosity. 
Eccentricity of the central tube, vibrations, changes in slug length, and surfac- 
tants were all found to have little influence on the terminal velocity of annular 
slugs. 

For the more general case when surface tension and viscous effects are ap- 
preciable, there are few data available. Grigorev and Krokhin (GI 0) presented 
some results for the rise of bubbles in thin rectangular slits and wedge-shaped 
channels, while Schad and Bishop (S2) investigated bubble rise in thin annular 
and planar gaps. 
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3. Sltig F l o ~ s  iiz I~zcliizecl Tubes 

Slug flow has been investigated for inclined cylindrical tubes (M3? R3, W2, 
Z1) and inclined rectangular tubes (G2, G10, M2). Slugs in inclined tubes tend 
to cling to one wall and the shape is altered as indicated in Fig. 9.1 1c. The ter- 
minal velocity tends to increase as the tube is inclined am-a? from the vertical 
reaching a maximum at an orientation of about 45' (Wl,  Zl) .  Some experi- 
mental results for air slugs in water are given in Fig. 9.12. Since 

it is not possible to give a simple two-dimensional representation of the ex- 
perimental results valid for all systems. Wallis (R3, W1) published a family of 
curves like those plotted in Fig. 9.12 for different ranges of EoD. For liquid 
draining from a horizontal cylindrical tube (8 = 90') and viscous and surface 
tension effects negligible, experimental results (G2, Z1) appear to support the 
experimental prediction of Brooke Benjamin (B5) giving Fr, = 0.54 for the 
advancing slug free surface. Results for the case where the tube is rotating are 
given by Collins and Hoath (C7). 

Symbol EoD -- 
3 4 0 C  

0.8 l o r  
A v 62 24 

0.L 
0 15 30 L5 60 75 90 

Tube incl~not~on-Degrees from vertcal 

FIG. 9.12 Effect of  tube inclination on the rise velocity of slug flow air bubbles in water (Z l ) .  

For large bubbles where inertia effects are dominant, enclosed vertical tubes 
lead to bubble elongation and increased terminal velocities (G7). The bubble 
shape tends towards that of a prolate spheroid and the terminal velocity may 
be predicted using the Davies and Taylor assumptions discussed in Chapter 8, 
but with the shape at the nose ellipsoidal rather than spherical. The maximum 
increase in terminal velocity is about 16% for the case where i. is small (G6) 
and 254; for a bubble confined between parallel plates (G6. G7) and occurs for 
the enclosed tube relatively close to the bubble axis. 
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Griffith ( 6 8 )  obtained some data for gaseous slugs rising in a vertical column 
of diameter 5 cm containing seven vertical tubes. one concentric with the main 
tube and the others on a circle of diameter 0.59D. The experimental results, 
reproduced by Wallis (Wl), show that the terminal velocity increases with 
increasing enclosed tube diameter reaching a value more than 70% greater 
than the empty tube slug velocity for a tube to column diameter ratio of 0.2. 

The results referred to in this section refer primarily to gaseous slugs and to 
large values of Eo or Eo, where inertia effects tend to be dominant. Experimen- 
tal results for liquid drops and for smaller bubbles and columns are lacking. 

D. HEAT AND MASS TRANSFER 

1. Lou: Reynolds N~lnzhers 

The surface velocities of Haberman and Sayre (HI), when used in the thin 
concentration boundary layer equation for circulating spheres, Eq. (3-51), 
yield the mass transfer factors Kvu and K M D  shown in Fig. 9.7 for K I 2. For 
a fluid sphere in creeping flow the relationship between the mass transfer 
factors is 

K,,, = K M U ' K 1  ', (9-42) 

where K  is given by Eq. (9-29). For a sphere of given size, the wall effect on 
mass transfer is larger than for a solid sphere at the same i,, but it is still less 
than 15% at i = 0.5 for K = 0. Although deformation was not taken into 
account, the experimental results of Haberman and Sayre (HI)  suggest that it 
is sufficiently small for i. < 0.5 that both K,, and KMD can be taken to be 
ratios of the mass transfer rates. 

2. Intermediate and Large Drops u n ~ l  Bzlbbles 

The influence of 1. on the mass transfer rate has not been determined. Con- 
sideration of the tracings shown in Fig. 9.9 and of data of Bhaga (Bl) suggests 
several different effects. Increasing i, elongates the bubble. at first making it 
more spherical and reducing its surface area: however, as i, approaches unity, 
the bubble becomes more cylindrical and the surface area increases again. At 
the same time, increasing 7. decreases the rise velocity causing a reduction 
in the mass transfer coefficient. Increasing i, also decreases the fraction of the 
surface in contact with the wake which tends to increase the overall transfer 
rate. Comparison of the data of Calderbank et al. (C2) in a 10-cm-diameter 
column and of Guthrie and Bradshaw (G11) in a 45-cm-diameter column 
indicates that i has little effect on the rate of mass transfer for spherical-cap 
bubbles when i. < 0.5, suggesting that the effects of i cited above are com- 
pensatory. This conclusion must be considered tentative, however, because 
these studies used different techniques to obtain the mass transfer rate. Measure- 
ments of the rate of transfer in a series of columns using a single experimental 
method are needed. 
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3. Slug Flow 

Mass transfer to the liquid phase around a slug can be treated with the thin 
concentration boundary layer assumption through Eq. (1-63). Van Heuven and 
Beek (Vl)  completed these calculations for a slug with viscous and surface 
tension forces negligible (Eo, > 100, ,bt' I The results can be represented 
bl 

I Z ~ D L  = cs91 2 ( g  L ) ' ~ ,  (9-43) 

where is the mass transfer coefficient x surface area product and the v, 'd 1 ues 
of C, are given in Table 9.4 as a function of L D, the ratio of the slug le~igth to 
the tube diameter. For slugs with L  D  > 1 the coefficient is essentially constant. 
Van Heuven and Beek's experimental data are in fair agreement with Eq. (9-43). 

The resistance to mass transfer within a slug in a liquid of low viscosity has 
been measured by Filla et nl. (F5), who found that (kA),  was approximately 
proportional to the square root of the diffusivity within the bubble, 9,. as 
predicted by the thin concentration boundary layer approximation. In addition, 
(if;i),,'~, was independent of slug length for 1 5 L I D  2.5. 

TABLE 9.1 

Slug Flow Mass Transfer Constants C, in Ecl. (9-411 

A l .  
A2. 
B1. 
B2. 
B3. 
B4. 
B5. 
B6. 
B7. 
C1. 
C2. 
C3. 
C4. 
C5. 
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Chapter 10 

Surface Effects, Field Gradients, 
and Other Influences 

I. INTRODUCTION 

In previous chapters, we have considered smooth particles moving steadily 
under the action of gravity in uniform fluids. In this chapter, we consider factors 
which commonly complicate the motion and transfer processes for solid and 
fluid particles. Surface roughness for rigid particles and interfacial effects for 
fluid particles are treated first. Natural convection resulting from density 
gradients associated with heat or mass transfer is the subject of the next section. 
We then give a brief review of the effects of shear and particle rotation. Free- 
stream turbulence can greatly influence particle motion and transfer processes, 
and this is treated next. Finally, we give a brief review of the effects of com- 
pressibility and noncontinuum flow on particle motion and heat transfer. 

IT. SURFACE ROUGHNESS (RIGID PARTICLES) 

Roughness on the surface of a solid particle is normally characterized by the 
"relative roughness," r ,d ,  the ratio of the effective roughness height to the mean 
outside diameter of the particle. This is analogous to the relative roughness 
employed to characterize flow through pipes. Spherical elements on the surface 
have an "effective roughness height" equal to 55% of the sphere diameter (A2). 
The Reynolds number for a rough sphere is conventionally based on the 
diameter of the circumscribing sphere. 

The most significant effects of surface roughness on flow past a particle 
occur in the critical range (see Chapter 5) .  Achenbach (A2) investigated this 
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range in detail. Roughness induces earlier transition to turbulence in the 
attached boundary layer, as in Prandtl's classic experiment in which a small 
wire hoop was attached to the surface of a sphere [see (G14)l. The sudden 
rearward shift in the final separation point occurs at Re values which decrease 
with increasing surface roughness down to 8 x lo4 for a relative roughness of 
0.007 (cf. Re, = 3.65 x 10' for a smooth sphere). The resulting drop in C ,  
occurs at lower Re,' while the minimum value of C ,  increases with increasing 
roughness. In the transcritical range, well above transition, C ,  for roughened 
spheres is independent of Re and constant at 0.38 for relative roughness greater 
than about There is some evidence (S20) that C ,  may be higher for a 
very rough sphere of low 7 in free flight. Similar phenomena have been observed 
for flow around cylinders (Al, A3, F1) and are likely for any body lacking 
edges which fix the separation position. In the supercritical range, smooth 
spheres in free motion are subject to random variations in flow which give 
rise to an erratic trajectory (see Chapter 5). Scoggins (S19) showed that rough- 
ening the surface reduces these fluctuations, causing particles to follow a much 
more regular path. This effect has been applied in the design of balloon wind 
sensors (S20). 

Just below the critical range, roughness has little effect on drag (A2): but for 
Re of order lo3 roughness can increase C ,  substantially (S23, S28). The increase 
in C ,  appears to depend on the ratio of roughness height to boundary layer 
thickness. For Re < 500, large-scale roughness reduces the drag (S28). The 
general result of Hill and Power (see Chapter 4) suggests that this should extend 
into the creeping flow range, since the volume of a roughened particle is less 
than that of the circumscribing sphere. 

As for drag, the most dramatic effects of surface roughness on heat or mass 
transfer occur near the critical range. The earlier transition to turbulence in 
the attached boundary layer yields a maximum in the local transfer rate located 
40-60- from the front stagnation point for spheres (J3, S15) and cylinders (A3). 
Near the point of final separation on the rearward portion of the body, the 
local transfer rate exhibits a minimum. The overall transfer rate is increased 
to a maximum of 2 to 3 times the rate for a smooth particle. At Reynolds num- 
bers above the crltical value, an increase in relative roughness causes the overall 
transfer rate to increase to a maximum and then decrease for relative roughness 
greater than 0.1 (S17). The few data available at lower Re indicate that rough- 
ness has little effect for transfer in gases (Sc, Pr % 1) when c: d < 10 Re3 (AS, 
53). Houever, for large Pr or Sc. roughness increases the transfer rate down to 

+ An interesting result of this effect occurs for falling ice spheres. When the surface melts; and 
therefore becomes sn~ooth.  flow can pass from supercritical to subcritical and the terminal velocity 
is suddenly reduced (W6). 
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lower Re because of the thinness of the thermal or concentration boundary 
layer (S16, S17). 

111. INTERFACIAL EFFECTS (FLUID PARTICLES) 

The effects of surface-active agents on the motion of and transfer from 
bubbles and drops have been discussed in earlier chapters. The main effect 
is to reduce the mobility of all or part of the interface. In this section we consider 
briefly two other interfacial phenomena: interfacial convection during mass 
transfer and interfacial barriers to mass transfer. 

Movements in the plane of the interface result from local variations of 
interfacial tension during the course of mass transfer. These variations may be 
produced by local variations of any quantity which affects the interfacial 
tension. Interfacial motions have been ascribed to variations in interfacial 
concentration (H6, P6, S33), temperature (A9, P6), and electrical properties 
(A10, B19). In ternary systems, variations in concentration are the major factor 
causing interfacial motion: in partially miscible binary systems, interfacial 
temperature variations due to heat of solution effects are usually the cause. 

On the interface between quiescent fluids. interfacial motions may take the 
form of ripples (E4. 0 2 )  or of ordered cells (B5, L5, 0 2 ,  S22). Slowly growing 
cells may exist for long periods of time (B5, 02),  or the cells may oscillate and 
drift over the surface (L6, L7). When the phases are in relative motion, interfacial 
disturbances usually take the form of localized eruptions, often called "inter- 
facial turbulence" (M3). This form of disturbance can also be observed at the 
interface of a drop (S8). A thorough review of interfacial phenomena, including 
a number of striking photographs. has been presented by Sawistowski (S7). 

The shape of a drop moving under the influence of gravity may be affected 
by interfacial motions: the drop may also wobble and move sideways (S27, W3). 
In one system (S22) the terminal velocity was reduced yielding a drag coefficient 
nearly equal to that of a solid particle. Interfacial convection tends to increase 
the rate of mass transfer above that which would occur in the absence of 
interfacial motion. The interaction between mass transfer and interfacial con- 
vection has been treated by Sawistowski (S7) and Davies (D4. D5). 

1. Cellular Interfacial *Wotions 

The factors determining the appearance of ordered cell-like motions were 
first investigated by Sternling and Scriven (S33) who considered the two- 
dimensional stability of a plane interface separating two immiscible semi-infinite 
fluid phases with mass transfer occurring between the phases. This system was 
shown to be unstable for mass transfer in one direction, but stable for transfer 
in the opposite direction. For an interfacial tension-lowering solute, instability 
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was predicted for transfer out of the phase with lower diffusivity or out of the 
phase with higher kinematic viscosity. A similar analysis by Brian and co- 
xorkers (B16, B17, B18) for a gas-liquid system included the adsorption and 
subsequent movement of the solute at the interface. The inclusion of interfacial 
convection and diffusion reduced interfacial concentration variations, making 
the system more stable. 

Cellular interfacial motions are generally observed in quiescent systems when 
the mass transfer driving forces and interfacial tension gradients are small, 
and when natural or buoyancy-driven convection is suppressed. Under these 
conditions, the occurrence of cell-like motions is in agreement with the 
Sternling-Scriven theory. The presence of these cells enhances the rate of mass 
transfer (B4), since fresh fluid is brought to the interface. The maximum increase 
in the rate of mass transfer has been predicted (B5) by assuming that cells of 
depth 6 on either side of the interface are in equilibrium as they grow. If there 
is no solute in the continuous phase, the amount of mass transferred per unit 
area, nz, is 

where c,, is the bulk concentration of solute. In the absence of interfacial 
motion and assuming diffusivities in each phase to be equal, the penetration 
theory gives 

-- 

where ape,, the penetration depth, is , n k t .  Bakker et al. (B5) found experi- 
mentally that 

Hence, the maximum increase in mass transfer due to interfacial convection is 

These limits are in good agreement with data on plane interfaces (B4, M3). 

Disordered interfacial motion can occur when there is mass transfer in either 
direction. When an eddy of solute-rich fluid reaches the interface, the interfacial 
tension is reduced locally at the point of impingement. Small regions of reduced 
interfacial tension formed in this manner tend to spread. As spreading occurs, 
bulk fluid of lower solute concentration is brought to the interface causing a 
local increase in interfacial tension which retards and eventually stops the 
spreading. The interfacial motion then reverses toward the original point of 
impingement. This reversed flow, if sufficiently strong, produces two jets of 
fluid, one cjected into each phase. This ejection is seen as an eruption from the 
interface (S8, T9). 



248 10. Surface Effects, Field Gradients 

The original eddy motion which sets up the chain of events leading to erup- 
tions may be caused by forced flow of the bulk phases, density differences due 
to concentration or temperature gradients (B12). or earlier eruptions. Strong 
eruptions occur when a critical concentration driving force or a critical inter- 
facial tension depression is exceeded (03 ,  S8; S9). At lower concentration 
differences ripples may result (E4), eruptions may occur only over part of the 
interface (S8) with the jets taking some time to form (T9), or no interfacial 
motion at all may occur. Attempts to correlate the minimum driving force 
required for spontaneous interfacial motions have met with little success. 

Mass transfer rates are increased in the presence of eruptions because the 
interfacial fluid is transported away from the interface by the jets. For mass 
transfer from drops with the controlling resistance in the continuous phase, 
the maximum increase in the transfer rate is of the order of three to four times 
(S8), not greatly different from the estimate of Eq. (10-4) for cellular convection. 
This may indicate that equilibrium is attained in thin layers adjacent to the 
interface during the spreading and contraction. When the dispersed-phase 
resistance controls, on the other hand, interfacial turbulence may increase the 
mass transfer rate by more than an order of magnitude above the expected 
value. This is almost certainly due to vigorous mixing caused by eruptions 
within the drop. 

The maximum effect of interfacial turbulence on the mass transfer coefficient 
can be estimated using the correlation of Davies and Rideal (D6) for the initial 
spreading velocity, C,, of a surface tension-lowering material spreading at the 
interface between two fluid phases: 

where A o  is the surface tension depression causing spreading. This velocity 
is then used in the Handlos-Baron (HI)  expression: Eq. (7-57) to give 

In this equation, AG is taken as the maximum possible surface tension lowering. 
Hence for a solute-free continuous phase, A o  is the difference between the 
interfacial tension for the solvent-free system and the equilibrium interfacial 
tension corresponding to the solute concentration in the dispersed phase. 
Equation (10-6) indicates a strong effect of the viscosity ratio K on the mass 
transfer coefficient as found experimentally (L11). For the few systems in which 
measurements are reported (B11. L11. 04) .  estimates from Eq. (10-6) have 
an average error of about 300, for the first 5-10 seconds of transfer uhen 
interfacial turbulence is strongest. 

The existence of interfacial barriers to mass transfer caused by films of surface- 
active materials has long been recognized (Ll).  When surfactants are added 
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to a system undergoing mass transfer. the) reduce the interfacial tension and 
make it less sensitive to tariations in solute concentration. In addition, sur- 
factants cause a resistance (surface viscosity) to motion at the interface. Inter- 
facial motion, whether caused by forced flow or by the Marangoni effect, is 
thereby reduced. The reduction in the rate of transfer caused by addition of 
surfactant to a system undergoing interfacial turbulence can be very striking 
(S10). In certain systems the surfactant itself provides a significant resistance 
to mass transfer. This is sometimes called the barrier effect. Interfacial resistances 
to transfer between quiescent liquid phases in the presence of surface-active 
materials have been determined by several workers (D7, M14). The effects 
appear to be specific to the solute-surfactant combination. Similar results 
have been obtained for gas-liquid systems (G15. P11, SI). Whether there are 
interfacial resistances to transfer in surfactant-free systems is still hotly debated 
[e.g., see (B14, C2, H15, T14)]. 

IV. NATURAL CONVECTION AND MIXED FLOW 

"Natural" or "free" convective flows are generated by density gradients 
resulting from heat or mass transfer. Gradients of temperature and, or concen- 
tration cause body forces to be nonuniform throughout the flow field, and these 
forces generate the "natural" motion. Because the density depends on com- 
position or temperature, the momentum and continuity equations are coupled 
to the species continuity or energy equations. Since these equations are ex- 
tremely difficult to solve, a set of simplifying assumptions, called the Boussinesq 
approximation, is widely used. 

A. THE BOUSSINESQ APPROXIMATION 

Analyses of time-steady free convection usually assume that: 

1. density is constant in the continuity and momentum equations, except 
in the body force term; 

2. density variations are caused only by temperature and composition 
gradients ; 

3. all other properties are constant. 

Under these assumptions Eq. (1-I), the Navier-Stokes equation, becomes 

u . Vu = (p  p , ) g  - (Vp p,) + v v 2 u .  (10-7) 

The variable density is expanded in a Taylor series about the density of the 
fluid far from the body. p, : 
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where \v is the mass fraction. The densit) has been considered on11 a function 
of temperature and concentration of one component. Substitution of Eq. (10-8) 
into Eq. (10-7) yields 

where Vp is the hydrostatic pressure gradient far from the body. It is convenient 
to introduce compressibility coefficients 

and 

Making Eq. (10-9) dimensionless through reference quantities as in Chapter 1 
yields 

The other governing equations-the overall continuity equation, the species 
continuity equation, and the energy equation-are identical to the dimension- 
less forms presented in Chapter 1. Two new dimensionless groups, a thermal 
Grashof number 

Gr, = L3/3,(~, - T,)y v2  (10-13) 

and a composition Grashof number, 

G r ,  = L3P,(1t, - u,,)g I ' ~  (10-14) 

appear. These are algebraic quantities and may be negative. When natural 
convection coexists with forced convection (termed mixed convection) the 
relative effect of natural to forced convection is indicated by Gr  Re2 where 
Gr  = Gr, or Gr,. 

For isothermal mass transfer (Gr, = O), 

Sh = f (Gr, , Re, Sc), (10-15) 

while for heat transfer under uniform composition conditions, 

Nu = f(Gr,, Re, Pr). (10-16) 

The functional forms for these two equations are identical for equivalent 
boundary conditions when Pr. Sc >> 1. 

The adequacy of the Boussinesq approximations has been tested for natural 
con~ection from a vertical plate (S31) and for mixed convection from a hori- 
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zontal plate (R4). The approximations give an adequate representation of 
~elocity and temperature profiles except near the point uhere buoyancq causes 
flow separation. Fluid properties are best evaluated at the reference conditions 
given by Sparrou and Gregg (S31) although the film condition is adequate 
for the calculation of average Nusselt and Sherwood numbers. 

We consider either isothermal mass transfer (Gr, = 0) or uniform composition 
heat transfer (Gr, = 0) from a particle with constant surface composition or 
temperature. The Rayleigh number Ra is used for both Gr,Pr and Gr,Sc. 

1. F l o ~ v  Aroclrzd Spheres 

The details of natural convective flons over surfaces other than flat plates 
have only recent11 been studled exper~mentall~ (A7. J1. P3. S12). We consider 
a heated sphere in an infinite. stagnant medium. Flow is directed toward the 
surface over the bottom hemisphere and away from the surface over the top 
hemisphere with a stagnation point at each pole (P3, S12). The lower pole is 
considered the forward stagnation point. 

The buoyancy force can be resolved into components parallel and normal 
to the surface. The parallel component acts in the direction of increasing 0, 
measured from the forward stagnation point. Over the lower hemisphere the 
normal component of the buoyancy force is directed toward the surface, while 
over the upper hemisphere the normal component is directed away from the 
surface. Therefore, the flow over the lower hemisphere is similar to that over a 
heated, inclined plate. This flow is of boundary layer type near the leading edge. 
but exhibits an instability in the form of longitudinal waves triggered by two- 
dimensional disturbances (L10, P4). The flow over the upper hemisphere is 
more unstable than the flow over an inclined flat plate because the periphery 
available for flow and the angle of inclination decrease as O increases. Near 
the rear stagnation point the normal component of the buoyancy force makes 
the fluid turn away from the surface and form an axisymmetric plume above the 
sphere ( J l ) .  Some distance above the sphere the plume becomes turbulent. 
As the Grashof number is increased. the point of plume instability approaches 
the sphere (J l )  until at a sufficiently high Grashof number the flow over the 
rear hemisphere is disturbed (S12, W4). At higher Grashof numbers the location 
of velocity disturbances moves forward (S12). Even at high Grashof numbers 
no standing eddq occurs: the flow turns awal from the sphere under the action 
of the normal component of buoyancj (P3). 

2. Zlass or Heat Tru l z~ fer  from Spheres 

For Gr  = 0, the Sherwood or Nusselt number is given by Eq. (3-44). For 
Gr  -+ 0, neither perturbation nor asymptotic expansion methods have proved 
capable of yielding solutions for Sh comparable to Eq. (3-55). At larger Gr  
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the boundary layer approximations become appropriate (G10). For an axisym- 
metric body the resulting equations (for Gr, = 0) are Eq. (1-55) and 

where r is the angle between the outward normal to the surface and the direc- 
tion of gravity. For a body with constant surface composition, n., , the boundary 
conditions are 

where the boundary condition on u, at the surface, q' = 0. is correct for large 
Sc and for uniform composition heat transfer. A similarity solution of these 
equations is possible for Sc -t x for any arbitrary body contour which does 
not have horizontal planes, sharp corners, or surface depressions (A5. S34). The 
mean Sherwood number is given by 

ahere .%' = R L and X = x, L ;  Sh and Ra are based on length L. For spheres 
~ i t h  L taken as d,  Eq. (10-20) bields 

For finite Sc similarity solutions are not possible for most shapes and approxi- 
mate methods have been used [e.g., see (L4)]. 

Experimental local Sherwood numbers on a sphere are shown in Fig. 10.1 
as a function of angle from the front stagnation point. The curves for Sc = 0.72 
and 10 are approximate boundary layer solutions (L4), while the curve for 
infinite Sc is the asymptotic similarity solution (A5). Except for high Ra, the 
data are in good agreement with the results of the boundary layer calculations. 
The large increase in mass transfer rate beyond 120" at the largest Ra results 
from the instability in the flow discussed earlier. The minimum transfer rate 
occurs before the flow instability (S12) since instability and longitudinal waves 
bring freestream fluid to the surface, thus increasing the transfer rate. 

Experimental mean Sherwood numbers are shown in Fig. 10.2. The asymp- 
totic solution, Eq. (10-21), gives a good representation of the data for large Sc 
when Ra > lo5. For extremely large Ra, a turbulent range is expected where 
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Angular Position,e 
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FIG. 10.1 Local l a lucs  of dimeilsioi~less transfer rate from spheres as  a fuilctioii of angular 
position. Thc  lincs corrcspo~id to  boundar! layer solutions (L4) for thc Sc  o r  Pr indicated. 
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Sh s~ ~ a '  3 .  Additional data are needed to confirm the existence of such a re- 
gime. For Ra < lo4 the asymptotic solution is inadequate because the bound- 
ary layer thickness becomes large compared to the sphere radius. Since no 
solutions have yet been obtained in this region, the data must be fitted em- 
pirically. There are few solutions available for finite Sc. but the function of 
Churchill and Churchill (C5) fits the available solutions and data for flat plates 
and horizontal cylinders. The following correlation is proposed for 1 < Ra < 
1o1O: 

with 

Equation (10-22) becomes essentially identical to the asymptotic solution, 
Eq. (10-21), for Sc >> 1 and Ra > lo5. In Fig. 10.2, lines are drawn corresponding 
to Eq. (10-22) for Sc = 0.7 and Sc = x. 

3. :Mass or Heat Trarzsfer porn Arbitrary Slzapes 

The boundary layer equations for an axisymmetric body, Eqs. (1-55), (10-17), 
and (10-18) have been solved approximately for arbitrary Sc (L4). For Sc + E 

the mean value of Sh can be computed from Eq. (10-20). Solutions have also 
been obtained for Sc -+ cr, for some shapes without axial symmetry, e.g., in- 
clined cylinders (S34). Data for nonspherical shapes are shown in Fig. 10.3 for 
large Rayleigh number. The characteristic length in Sh' and Ra' is analogous 
to that used in Chapters 4 and 6: 

area for mass transfer /' = (10-24) 
maximum perimeter projected on a plane normal' 

to the direction of gravity 

Symbol Sc or PI 

5 

Ref. Shape 

block 
hemispheres 
tablet 
cylinder 
horiz. plates 

Rayleigh Number, R: 

FIG. 10.3 A ~ e r a g e  Sh' o r  Nu' for nonspherical particlcs at h ish  Ra. 

1 

a triangle o square xcircle 
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For shapes which have an appreciable fraction of area over ivhich the normal 
component of the buoyancy force is directed away from the surface (e.g., a 
heated horizontal plate facing upward) the turbulent regime where Sh' x 
(Ra')' occurs at low Ra'. For example, the horizontal plates of Fig. 10.3 have 
only one side exposed, the side for which the normal component of buoyancy 
is directed away from the plate. Here the *-power relation applies at Ra' 5 10'. 
For horizontal cylinders, on the other hand, such a relationship is exhibited for 
Ra' 5 5 x lo9. For spheres in Fig. 10.2, there is no indication of this transition 
even at Ra' = The critical Rayleigh number, Ra,', above which the 4- 
power relationship applies is correlated by 

Ra,' = 10'fA4, (10-25) 

where fA is the fraction of the total surface area over which the normal com- 
ponent of the buoyancy force is directed away from the surface and the angle 
between the outward normal to the surface and the vertical is less than 45". 
The solid line in Fig. 10.3 is the asymptotic (Sc + x) solution, Eq. (10-21) with 
the Sherwood and Rayleigh numbers based on the I' of Eq. (10-24). For Ra' > 
Ra,' the Q-power relationship should be used as shown by the dashed line for 
horizontal plates in Fig. 10.3. 

Based on Eq. (10-22) the following relationship is recommended for arbitrary 
shapes at any Rat < Ra,': 

Sh' = 0.85 Sh,' + 0.15 Sh,' { 1 + (o.~~~gh,,)'[f (sC11~a.j' 4. (10-26) 

where Sh,' is the Sherwood number for diffusion into a stagnant medium dis- 
cussed in Chapter 4 and f(Sc) is given by Eq. (10-23). Equation (10-26) agrees 
well with the only set of data available at low Ra' (G13). 

4. Simultaneo~is Heat and AWass Trarzsjer 

When heat and mass are transferred simultaneously, the two processes in- 
teract through the Gr, and Gr, terms in Eq. (10-12) and the energy and diffusion 
equations. Although solutions to the governing equations are not available for 
spheres, results should be qualitatively similar to those for flat plates (T4), 
where for aiding flows (Gr, Gr, > 0) the transfer rate and surface shear stress 
are increased, and for opposing flows (Gr, Gr, < 0) the surface shear stress is 
predicted to drop to zero yielding an unstable flow. 

Solutions to the boundary layer form of Eq. (10-12) have been obtained for 
spheres in aiding flow with Sc 2 Pr and Sc + x ,  a situation relevant to a 
sphere in a liquid (T4). These results are approximated (S6) within 109; by: 

Gr, 'Gr, 
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C. * ~ ~ I X E D  FREE A S D  FORCED CONVECT~OS 

In mixed convection the orientation of the freestream velocity with respect 
to the gravity vector is an important variable. The three orientations which 
have received most attention are opposing flow, aiding flow, and crossflow. 
Aiding flow results when the velocity which would be induced by buoyancy 
acting alone is in the same direction as the forced flow, e.g., a stationary heated 
sphere in an upward flouring gas stream or a heated sphere falling in a stagnant 
gas. Opposing flow is the reverse while crossflow occurs when the freestream 
velocity vector and the gravity force vector are at right angles to each other. 

1. Creeping Flow 

In creeping flow the effect of aiding and opposing buoyancy has been ob- 
tained for uniform composition heat transfer by the method of matched asymp- 
totic expansions (H9) and numerically (W7). For Re I 1, the buoyancy increases 
the drag coefficient in aiding flow and decreases it in opposing flow, e.g.. a 
sphere which is hotter than a gas settles more slowly than if the sphere and gas 
were at the same temperature. Figure 10.4 shows the effect of temperature 
difference upon the terminal settling velocity at Re I 1. The parameter on the 

Dimensionless Diameter, N ~ '  

FIG. 10.4 Dimensionless tcrminal \elocity .\',I as a function of dimensionless diameter .\,,,I 

for spheres uhose temperature differs from thc fluid temperature. Calculated from Woo (W7) and 
Hieber and Gebhart (H9). 
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curves is a thermal number, !Vt, defined by 

Iii Fig. 10.4 the sphere diameter, terminal velocity. and temperature difference 
each appear in only one dimensionless group. The effect of natural convection 
on hitl is smaller at Pr = 10 because the region over which the buoyancy force 
acts is much thinner than for Pr  = 1. As Pr  + E the effect should disappear 
altogether. For Pr  = 0, numerical solutions (W7) show effects about 50°#; larger 
than for Pr = 1. 

The effect of natural convection on C, is shown in Fig. 10.5 for aiding and 
opposing flow. The ordinate is the ratio of the drag coefficient in mixed con- 
vection to C,,, the drag coefficient in pure forced convection (Gr, = 0). The 
abscissa is the parameter Gr,Re-1.85Pr-o.5 which brings all of the calculated 
values together for 0.7 5 Pr I 10 and Re I 30. The effect on the mean Nusselt 
number is appreciably less than on C,. Nu increases less than 3?,;] in aiding 
flow and decreases less than 3% in opposing flow for Re I 1. 

FIG. 10.5 Effect of Gr,. Re. and Pr on drag coefficient for spheres a-hose temperatures differ 
from the fluid temperature. 

Fluid velocities have been predicted numerically (W7) for mixed convection 
to spheres in aiding and opposing flow at Re I 30, Pr = 0.71, and Gr,/Re I 10. 
Aiding flow delays separation, while opposing flow moves the separation point 
forward. e.g., at Re = 5 the flow separates at 154' with Pr = 0.71 and Gr, = 15 
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in opposing flo\v. As in creeping flow, C ,  is increased in aiding flow. Although 
no computations of Nu are available, the average Nusselt number should 
increase in aiding flow because of the decreased size of the attached wake 
where local transfer rates are low. The reverse should occur for opposing flow. 
These expectations are borne out by data for spheres (PI,  Y1) and cylinders 
(H5) at Re less than required for eddy shedding in forced flow. Data for heat 
transfer from spheres to an air stream (Y1) are shown in Fig. 10.6 on coordi- 
nates suggested by a boundary layer analysis (A4). In crossflow Nu exceeds 
that expected for forced flow at all Re, while for opposing flow Nu goes through 
a minimum and approaches the forced flow limit from below. Aiding flow data 
lie slightly above those for crossflow. Similar behavior occurs for cylinders 
(H5, 01 ) .  

Pr=0.71 
1 3 c  Re< 300 & 1.0 

b 

0.5 

Data Po~nts 

o Oppos~ng Flow 100 < Gf,<1100 
a Aid~ng Flow 100 < G1,<1800 
o Cross Flow 100 < Gr,< 1800 

FIG. 10.6 Heat transfer in combined conbection to spheres with Pr = 0.71 and 3 < Re < 300. 

At higher Re, where eddy shedding occurs in forced flow, the behavior is 
similar to that in Fig. 10.6 if Ra ;: lo6 (01,  P2). As Ra increases, the minimum 
becomes shallower and moves to higher Gr,, Re2, while aiding and opposing 
flow Nu values approach each other (F2, H5, 01) .  For larger Ra, the situation 
is reversed with opposing flow yielding larger average transfer rates than aiding 
flow (B13, G7, W5). This reversal is caused by two factors. First, if Ra is high 
enough in aiding flow, the transfer rate on the rear surface is reduced below its 
value in pure natural convection (G7, W5). Second, if Ra is high enough in 
opposing flow, there is a strong interaction between the forced flow and the 
opposed natural convective flow at the rear of the particle. Flow visualizations 
(B13, W4) indicate a complex turbulence-like flow pattern which yields higher 
transfer rates over the entire surface than in aiding flow (G7). 

Consideration of the available data for spheres indicates that forced flow 
correlations are accurate to about 10% for Gr,/Re2 < 0.2. The analogous limit 
for natural convection is not so well defined, being about 10 at Pr  = 0.7 and 
increasing with Pr. Additional studies of mixed convection are needed to elu- 
cidate the physical phenomena and provide correlations. Simultaneous mass 
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and heat transfer ha\e been studied for drops evaporating into gases with 
Pr = 1. The aiding flow data agree with those shown in Fig. 10.6 (Nl) .  The 
Nusselt numbers are larger in opposing flow than in aiding floa, probably due 
to f lo~1 instability induced by the mass flow outward from the surface (Nl ,  S5). 

V. PARTICLE ROTATION AND FLUID SHEAR 

It is convenient to distinguish between particle or fluid rotation about axes 
normal and parallel to the direction of relative motion. These two types of 
motion may be termed respectively "top spin" and "screw motion" (T11). Top 
spin is of more general importance since this corresponds to particle rotation 
caused by fluid shear or by collision with rigid surfaces. Workers concerned 
with suspension rheology and allied topics have concentrated on motion at 
low Re, while very high Reynolds numbers have concerned aerodynamicists. 
The gap between these two ranges is wide and uncharted, and we make no 
attempt to close it here. 

1. Low Reynolds lVunzbers 

Figure 10.7 shows schematically a sphere undergoing top spin in an un- 
bounded fluidi moving with undisturbed relative velocity LR at its center. The 
fluid is in uniform shear in the plane of the figure, with shear rate: 

zix = Gy, U, = 0; LL, = 0. (10-30) 

I t  is convenient to define a shear Reynolds number: 

Re, = Gd2/v. 

The angular velocity of the sphere, R: is taken as positive for rotation in the 
same sense as that of the fluid. The resulting lift on the particle is taken as 
positive in the direction C2 x UR. 

v d -  

FIG. 10.7 Schematic diagram of sphere rotating in a fluid In simple shear. 

Rigid boundaries have a significant effect on lift and migration (H13) as discussed in Chapter 9. 
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Much of the nork on particle rotation at low Re, follows from the early 
work of Jeffery (52 )  who considered a rigid, neutrally buoyant spheroid subject 
to the uniform shear field defined b) Eq. (10-30). Jefferj s h o ~  ed that the particle 
center moves with the velocity which the continuous fluid would have at that 
point in the absence of the particle. while the axis of the spheroid undergoes 
rotation in one of a family of periodic orbits with angular velocities 

and 

d u  G(a2 - b2) - - - sin 20 sin 2q ,  
d t  (a2 + b2) 

where 0 is the angle between the axis of symmetry of the spheroid and the 
z axis and cp is the angle between the 3.z plane and the plane which contains 
both the z axis and the axis of symmetry of the spheroid. Integration of these 
equations yields 

tan 0 = Coal, a2 cos2 y + b2 sin2 y (10-34) 

and 

tan cp = (nib) tan[(2ntjtr) + yo] (10-35) 

where the integration constant Co is the orbit constant, i.e., the eccentricity of 
elliptical orbits traced out by the ends of the particle; yo is the initial phase 
angle; and t, is the period of rotation about the z axis given by 

t, = (2n/G)(E + 1 E). (10-36) 

For a sphere where a = b, the particle rotates with an angular velocity of GI2 
and a period of rotation of 4n1G. 

Mason and co-workers (B8, F3, G11, M5, T15) have shown that Eqs. (10-32) 
to (10-35) can also be applied to disks and cylinders provided that one uses an 
apparent value of E, calculated from Eq. (10-36) and the observed 7 , .  Bretherton 
(B15) considered more general shapes and proved that most bodies of revolu- 
tion, except for some extreme shapes, show periodic rotation with no lateral 
migration (i.e.. no lift) provided that inertia terms are neglected. In reality all 
these particles migrate in the direction of positive lift (see Chapter 9). For a 
useful extended reviem on particle motion in shear fields, see Goldsmith and 
Mason (G12). 

Theoretical attempts to explain lift have concentrated on flow at small but 
nonzero Re. using matched asymptotic expansions in the manner of Proudman 
and Pearson for a nonrotating sphere (see Chapter 3). In the absence of shear, 
Rubinow and Keller (R6) showed that the drag is unchanged by rotation. With 
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FIG. 10.8 Schematic d~agram sho\vllig Magnus effect on rotatlng sphere. 

both spin and shear, Saffman (S2) showed that the drag is slightly increased, 
while the lift is given by 

- 
F L  = 1.615pdCR, Re,. (10-37) 

Harper and Chang (H4) generalized the analysis for any three-dimensional 
body and defined a lift tensor related to the translational resistances in Stokes 
flow. Lin et 01. (L3) extended Saffman's treatment to give the velocity and 
pressure fields around a neutrally buoyant sphere, and also calculated the first 
correction term for the angular velocity, obtaining 

From flow visualization and angular velocity measurements, Poe and 
Acri~os (P12) concluded that the analjsis leading to Eqs. (10-37) and (10-38) 
is valid only for Re, -? 0.1, while for Re, 5 6 a sphere rotates unsteadily and 
the wake is oscillatory. Theoretical or numerical treatments appear to be 
lacking beyond the near-Stokesian range until much higher Reynolds numbers. 

Shear fields often induce splitting of fluid particles. This is treated in 
Chapter 12. 

2. Higher Rejizolds h'uinhers: Tlze Magizus Eflect 

At high Re (based on C ,,), rotating cylinders and spheres experience significant 
lift in the absence of fluid shear. This effect is well known to players of golf 
and tennis. and is normally known by the name of its supposed discoverer 
(M2Li The conventional Magnus lift acts in the direction shomn schematicallq 
in Fig. 10.8, i.e., in the same sense as positive lift at low Re. Lord Rayleigh (R3) 
gave a qualitative explanation for the lift in terms of ideal fluid theory, showing 
that the fluid velocity is higher and the pressure therefore lower near A than 
near B. The phenomenon 15 rather more complex and related to the formation 
of an asymmetric wake (see Fig, 10.8), demonstrated for spheres by Maccoll 
(MI)  and Taneda (T3) and for cylinders by Prandtl [see (G14)l. Drag and lift 
on a spinning sphere must be determined experimentally. 

' Although this effect is associated a i t h  Magnus. it was investigated for spheres much earlier b] 
Benjamin Robins (B61. 
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Dimensionless Surface Velocity,v~/U, 

FIG. 10.9 Drag and lift coefficients for rotating spheres. All data plotted are for smooth spheres. 

Figure 10.9 summarizes available measurements on smooth spheres for CD 
and the lift coefficient C,. A measure of the spin on the sphere is given by the 
ratio of the maximum surface speed t', to the relative velocity L',. Data of 
Maccoll (MI) and Davies (D3) for Re close to the critical transition indicate 
that CD is relatively insensitive to spin. However, C, is negative in this Re range 
for c, C, < 0.6. Taneda (T3) showed that this "negative Magnus effect" is 
restricted to the range 6 x lo4 2 Re 2 5 x 10'. The cause of negative lift was 
shown to be earlier transition to turbulence around point B on Fig. 10.8 so 
that final separation on that side of the particle occurs further to the rear (see 
Chapter 5). In the negative lift region, the wake is distorted in the opposite sense 
to that shown in Fig. 10.8 with the pressure at B lower than at A. Freestream 
turbulence, which displaces the critical transition to lower Re (see section VI), 
also displaces the region of negative lift. Well below the critical range, the data 
of Barkla and Auchterlonie (B7) indicate a steady rise of C,  and a slight fall 
in CD with increasing c,/U,. 

Davies (D3) found that roughened spheres behave rather differently at Re = 
9 x lo4. Both C, and C, rose steadily with increasing c,, U,, presumably due 
to the effect of roughness in displacing the critical transition to lower Re (see 
Section IT). It is therefore possible that rough spheres show negative lift at 
somewhat lower Re, but this has not been confirmed. 

For a sphere rotating about an axis parallel to the direction of relative 
motion, flow may be characterized by Re and by the ratio c,iU, of equatorial 
surface speed to the approach ~e loc i t y .~  As for top spin, screw rotation in 

This ratio, its inverse, and various multiples are often called the "Rossby number." 



V. Particle Rotation and Fluid Shear 263 

creeping flow has no effect on the drag experienced by a sphere: i.e., there is 
no coupling between rotation and translation (D10, G9). Results for non- 
spherical shapes are reviewed by Happel and Brenner (H3). The Oseen ap- 
proximation leads to the following expression for the ratio of sphere drag to 
drag in Stokes flow (S3): 

If csiCR exceeds a critical value of order unity, reverse flow occurs near the 
forward stagnation point for oblate and prolate axisymmetric bodies (M8, M9), 
leading to formation of an "upstream separation bubble." 

Luthander and Rpdberg (L13) investigated the effect of screw rotation on 
flow patterns and drag for a sphere near critical transition. Rotation with t.,'IT, 
up to 1.4 had virtually no effect on transition or on C,. Faster rotation de- 
creased Re, to approximately lo5 for cs:CR = 3. Again the drop in C, was 
associated with increased turbulence and delayed separation of the boundary 
layer; very rapid rotation caused the separation point to move forward again, 
causing a rise in supercritical drag. Below the critical range, rotation with 
cJC, < 2 had little effect on C,. These experiments were carried out with a 
sphere whose location in a wind tunnel was fixed, so that the implications for 
bodies in free flight are not clear. It is well known that the trajectories of pro- 
jectiles are stabilized by screw rotation, and this presumably results from 
elimination of the erratic lift forces in supercritical flow (see Chapter 5). 

Somewhat similar considerations apply to a particle moving through a fluid 
which is rotating about an axis not necessarily passing through the center of 
the particle. Taylor [e.g., see (T5, T6)] did much of the early work on the subject 
and showed that two-dimensional cylinders tend not to be deflected by the 
rotation whereas three-dimensional symmetrical bodies (including spheres) are 
deflected. For recent work on this problem. see (M4, M7: M12, M13). 

Gas bubbles in screw motion show flattening as the angular velocity is 
increased (R5). Coriolis forces must be considered in predicting trajectories of 
fluid particles and a method of doing this is given by Catton and Schwartz (Cl).  
Slugs in rotating tubes are treated in Chapter 9. 

The effect of rotation on transfer to a translating sphere has been studied for 
both screw motion (El. F6. T2) and top spin (N3, T2) with Re > 1500. The 
effect of rotation on the transfer rate is less than loo/, for c, C,  < 0.5. The ratio 
of the Sherwood number in screw motion to that in pure translation at the 
same U, is correlated within 1072 by 

Sh, Sh = [l $ 1.04(~, C'R)2]1 (10-40) 
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For top spin at higher rotation rates. Sh first decreases and then increases 
with increasing rotational Reynolds number. Rd2 I,. at constant translational 
Reynolds number, Re. The overall change in Sh is generally relatively small 
except for very rapid rotation. Analyses have been carried out (F4. P13) for 
spheres and cylinders with Re, << 1 and Pe, = Re, Sc >> 1 in simple shear. At 
low Re, there are closed streamlines around the body: at high Pe, these 
streamlines are also lines of constant composition so that Sh (or Nu) becomes 
independent of Pe,. For a sphere. Sh = 8.9 for Pe, + % (PI 3). More complex 
k-elocity fields have also been considered at low Re,. 

VI. FREESTREAM TURBULENCE 

The motion of a particle in a turbulent fluid depends upon the characteristics 
of the particle and of the turbulent flow. Small particles show a fluctuating 
motion resulting from turbulent fluid motion. Generally speaking, a particle 
responds to turbulent fluctuations with a scale larger than the particle diameter 
(Kg). A particle which is much larger than the scale of turbulence shows rela- 
tively little velocity fluctuation. The effect of turbulence is then to modify the 
flow field around the particle, so that the drag may be affected. 

The range between these "small" and "large" particles is less well understood 
although some experimental studies have been reported (K9, Ul).  Similar 
problems arise in interpretation as with accelerated motion (see Chapter 11). 
Measurements are commonly correlated by a turbulence-dependent drag co- 
efficient, which contains a number of possible acceleration-dependent compo- 
nents. With fundamental understanding so poorly advanced. it is impossible to 
say to what extent results are specific to the experimental conditions employed. 

If the fluid turbulence is represented as a Fourier integral. 

the response of the particle to individual angular frequencies w can be examined 
using the results for sinusoidal fluid motion given in Chapter 11. This approach 
has been developed by a number of workers [e.g. (F5, H10, H12, L2. L8, S30)], 
with one or more drag components often neglected. The results in Table 11.2 
and Fig. 11.15 can be used to estimate the particle-fluid amplitude ratio 71 and 
phase shift P for a given frequency of oscillation characterized by the dimension- 
less period (or Stokes number). zo = Y o a 2 .  The results are useful for eval- 
uating techniques. e.g.. flou kisualization or laser-Doppler anemometry, in 
which suspended particles must follow the fluid closely. Figure 10.10 shows T,, 
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Density Ratio, 6 - p P /p 

FIG. 10.10 Values of dimensionless period. T, = v oa2 .  for given amplitude ratio t1 and phasc 
shift /J' for spheres. The continuous lines give the full solution; while the broken lines are for the case 
where the history component is neglected. 

plotted as a function of the density ratio 7 for constant values of y and j. A 
tracer particle can be considered to respond to frequencies in the range above 
the curve corresponding to the required accuracy, provided that the particle 
also meets the conditions for smallness given by Eq. (11-72) and has low 
Reynolds number based on the r.m.s. relative velocity. 

Simplified expressions for predicting 17 and j are available, corresponding to 
neglect of various terms in the unsteady drag equation. These expressions are 
summarized in Table 11.2. Hjelmfelt and Mockros (H12) examined the validity 
of the simplifications; unfortunately. the most commonly neglected term, the 
Basset history term, is often significant at high frequencies.? Figure 10.10 shows 

' Ahmadi and Goldschmidt (A6) showed that the histor) term has a negligible effect on the 
mean motion of a particle in a turbulent fluid. The discussion here concerns fluctuations in particle 
motion. 
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curves of constant 11 and ,8 calculated neglecting the history term. Although 
neglect of this term is reasonable for density ratios typical of particles in gases 
(7 > lo3), this approximation is not advisable for particles in liquids, especially 
if the amplitude is of interest. 

As a rough guide, a particle follows the fluid motion faithfully if its relaxation 
time, a2(2? + 1) 9v, is small compared with the period of oscillation (L12), 
i.e., if 

T O  >> (27 + I), 9. (10-42) 

Figure 10.10 shows the curve T,, = lO(2;) + 1) 9. Equation (10-42) is a useful 
guide unless 7 is close to unity. 

The approach of representing the fluid and particle motion by their com- 
ponent frequencies is only valid if drag is a linear function of relative velocity 
and acceleration. i.e., if the particle Reynolds number is low. This is the 
reason for the restriction on "small" particles noted earlier. The terminal 
velocity of the particle relative to the fluid is superimposed on the turbulent 
fluctuations and is unaffected by turbulence if Re is low (see Chapter 11). 

3. Lurge PulAticles 

If the particle Re is well above the creeping flow range, mean drag may be 
increased or decreased by freestream turbulence. The most significant effect is 
on the critical Reynolds number. As noted in Chapter 5, the sharp drop in 
C, at high Re results from transition to turbulence in the boundary layer 
and consequent rearward shift in the final separation point. Turbulence reduces 
Re,, presumably by precipitating this transition.' 

As in Chapter 5, it is convenient to define Re, as the Reynolds number at 
which C, falls to 0.3. Freestream turbulence may be characterized by the 
re lu t i~e  intensity: - - 

I, = k1u'2,'uR, (10-43) 
- - 

where C ,  is the mean velocity of the particle relative to the fluid and , LL'~ 
is the r.m.s. fluctuating velocity of the fluid. Since C', is usually much smaller 
than the freestream velocity. I, is generally much higher for entrained particles 
than for fixed particles. For fixed particles, Dryden et al. (D11) found that Re, 
decreased as I, increased up to 0.045. This effect has been used to estimate 
turbulence intensities in wind tunnels [e.g. (G14)l. A weak effect of turbulence 
macroscale. L,,  was also found, and Re, correlated well with I,(dlL,)' j. This 
correlating group was derived by Taylor (T7), who suggested that fluctuating 
pressure gradients provoke boundary layer transition. Subsequently Torobin 
and Gauvin (T12). working with entrained spheres and 0.1 < I, < 0.4, found 
that Re, continued to decrease, down to approximately 400 for I, = 0.4 (cf. 

Seeley (S21) discounted this mechanism on the basis of flow visualization studies. However, 
the experiments were at Re < Re, given bq Eq. (10-44), and thus appear to be in near-subcritical 
flou. 
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Re, = 3.65 x 10' for turbulence-free flow). Yo effect of turbulence scale was 
detected. The data of Torobin and Gauvin do not (C7, U l )  readil) extrapolate 
to those of Dr) den et al. Whether the mismatch results from differences between 
fixed and entrained particles or from differences in turbulence characteristics 
is not clear. In the absence of further experimental data, Re, can be estimated 
by modifying the empirical equations proposed by Clift and Gauvin (C7), 
neglecting the weak effect of d L,: 

log,, Re, = 5.562 - 16.41, (I, 5 0.15), (10-44) 

log,, Re, = 3.371 - 1.751, (I, > 0.15). (10-45) 

Equation (10-44) gives a reasonable interpolation between the lower I, range 
examined by Torobin and Gauvin and the data of Dryden et al. (Dl l ) ,  but 
implies a stronger dependence of Re, on I, than indicated by Dryden's 
experiments. 

Clamen and Gauvin (C6) measured C ,  for entrained spheres at Re above 
the turbulence-induced critical transition, and C ,  was found to rise for Re > Re, 
to pass through a maximum which increased with I,. The point at which C ,  
again achieves 0.3 may be termed the "metacritical Reynolds number," Re,. 
and can be estimated (C7) by: 

Correlations for C ,  in the critical and supercritical ranges are given in Table 10.1 
and plotted in Fig. 10.1 1. The dependence of C, on Re in the supercritical 

TABLE 10.1 

Correlations for the Effect of Turbulence on Sphere Drag" 

Range Correlation for C, Source 

1 Subcritical 
a )  R e < 5 0 , 0 0 5  < I R < 0 5  C, = 1621; 3 R e - '  (u1) 
b) 50 < Re < 700.0.07 < I, < 0 5 C, = 0 133(1 + 150 Re)' j6" 41, ( u 1 )  

2 Critical 
0.9Re, < Re < Re, C, = 0.3 (Re Re,)-3 

3. Supercritical 
a) Re, < RC < R e ,  c D -  - 0 ' 3(Re ~ ~ , , ) ( 0 . 4 5  7 2 0 ' ~ )  ( c 7 )  
b) R e ,  < Re < 3 x lo4: 1, > 0.07 C, = 3990Re-6.'0 - 4.47 x 1051,0.9-Re-1.80 (C6) 

" In the above equations. Re,. the critical Reynolds number, is givcn b~ Ecls. (10-441 and (10-45): 
Re,, the metacritical Reynolds number. is given by Eqs. (10-46) and (10-47), and Re2.4j+20'"' = 
R e , 3 ~ e ( 0 . 4 j  + 2 0 1 ~ 1  

Y 
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Re 

FIG. 10.1 1 Eflect of relative turbulence intensity I, on drag coefficient C, 

range has not been verified and is not readily explainable, although some 
tentative explanations have been advanced (C6). 

Several workers investigated the effect of turbulence in subcritical flow, 
but their results are somewhat contradictory. Uhlherr and Sinclair (Ul )  deter- 
mined drag on entrained particles, and gave correlations which appear in 
Table 10.1 and Fig. 10.11. Generally, turbulence increased C,, but Fig. 10.11 
shows a region in which C, is reduced. They report that for 50 < Re < 700, 
CD has a minimum value for I ,  - 0.04. Petrak (P7) also found a decrease in CD 
in approximately the same Re range. However, Nicholls and co-workers (S28. 
Z1, 22) found that turbulence levels up to I, = 0.08 had negligible effect on 
C, for Re < 200, while at higher Re, C, increased monoto~lically with I,, 
but less rapidly than indicated by Uhlherr and Sinclair. Neither set of experi- 
ments indicates any effect of q L ,  in the lower Re range, although Zarin (Zl)  
found that C, decreased with increasing d;L, for 600 < Re < 5000. In addition, 
C, may depend on the turbulent energy spectrum (K3). Qualitatively, turbulence 
increases the Reynolds number at which separation first occurs (Ul),  but 
decreases the value at which wake shedding occurs (S28. 22). Relatively high 
I ,  causes disturbances in the boundary layer, especially near the front stagnation 
point and the separation circle (S21), and reduces the width and length of the 
attached wake (S21, Ul).  

Clift and Gauvin (C7, C8) discuss application of the correlations - in Table 10.1 
to particles falling at their terminal velocities. High . u ' h a n  stabilize the 
critical regime by making it a region in which drag increases with OR. It was 
noted in Chapter 5 that the critical range is unstable for a particle falling 
through a quiescent fluid. Clamen's correlation indicates that there can 
be a range of particle sizes with two stable terminal velocities: the upper 
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corresponding to critical floh and the lo!$ er to supercritical flow abo! e Re,. For 
a given particle diameter, the terminal 1 elocity can be increased or decreased, 
depending on 7. 
4. F l ~ l i d  Particles 

There has been relatively little work on the motion of bubbles and drops 
in well-characterized turbulent flow fields. There is some evidence (B3. K7) 
that mean drag coefficients are not greatly altered by turbulence. although 
marked fluctuations in velocity (B3) and shape (K7) can occur relative to flows 
which are free of turbulence. The effect of turbulence on splitting of bubbles 
and drops is discussed in Chapter 12. 

Experimental data are available for large particles at Re greater than that 
required for wake shedding. Turbulence increases the rate of transfer at all 
Reynolds numbers. Early experimental work on cylinders (Vl)  disclosed an 
effect of turbulence scale with a particular scale being "optimal," i.e.. for a 
given turbulence intensity the Nusselt number achieved a maximum value 
for a certain ratio of scale to diameter. This led to speculation on the existence 
of a similar effect for spheres. Howeker. more recent work (Rl. R2) has failed 
to support the existence of an optimal scale for either cylinders or spheres. 
A weak scale effect has been found for spheres (R2) amounting to less than a 
2% Increase in Nusselt number as the ratio of sphere diameter to turbulence 
macroscale increased from zero to five. There has also been some indication 
(M15, S21) that the spectral distribution of the turbulence affects the transfer 
rate, but additional data are required to confirm this. The major variable is 
the intensity of turbulence. Early experimental work has been reviewed by 
several authors (G3, G4, K3). 

In subcritical flow. increasing turbulence increases the rate of transfer only 
slightly over the forward portion of a sphere (G5, N2): larger increases are 
experienced over the separated (rear) portion. For cylinders, there appears 
to be a larger effect on the forward portion (G2, K4, M10) as well as a significant 
effect on the rear portion (M15, P8). Figure 10.12 shows local Nusselt numbers 
for heat transfer from a sphere to a turbulent air stream at Re = 2 x lo4. 
The experimental results show little effect of turbulence over the forward 
portion of the sphere at low turbulence intensities. The highest intensity is above 
I,, = 0.077. the turbulence intensity required to make Re, = 2 x lo4 as cal- 
culated from Eq. (10-44). The large Nu on the forward hemisphere and the 
local maximum on the rear hemisphere for I, > 0.077 indicate a turbulent 
boundary layer and supercritical flow conditions. 

The average Nusselt number for a sphere also increases with turbulence 
intensity. For spheres in air at Re -2 1.5 x lo4 there is a rather rapid rise of 
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FIG. 10.12 Effect of intensity of turbulence on the local Nusselt number for a sphere in an air 
stream at Re = 2 x lo4. Data of Galloway and Sage (G5). 

Nu with intensity up to I ,  z 0.01 (E2, R2). As I ,  increases further, but still 
I ,  < I,,: Nu increases roughly linearly, but more slowly. Similar effects have 
been observed for cylinders (M10). For spheres at higher Re: the average 
Nusselt number increases linearly with I ,  for I ,  < I,, (R2). Few reliable data 
are available for I ,  > I,,. Figure 10.13 presents a tentative correlation for the 
effect of turbulence on the average Nusselt number for spheres. The ordinate 
is Nu, Nu,, the ratio of the Nusselt number at I ,  to the value in the absence 
of turbulence, while the abscissa is the ratio of I,: the intensity, to I,,, the 
critical intensity. The value of Nu, was calculated from the correlations in 
Table 5.4 and I,, from Eqs. (10-44) and (10-45). The correlation is divided into 

t 
Scale Chang 

I I I 7 ,  
0. 0 2 0.4 0.6 0.8 1.0 2.0 3.0 

INTENSITY RATIO IR/IR, 

FIG. 10.13 Effect of intensity of turbulence on the a>erage Yusselt number for a sphere in an 
air stream. (Note scale change on abscissa axis.) 
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a 11near portion for I ,  I,, I 1 and a large11 unexplored reglon for I, I,, > 1 
For I ,  I,, I 1 a reasonable fit to the data is obta~ned bq straight l~nes dra\\n 
from Nu Nu, = 1 0 to the balue of t h ~ s  ratio at I ,  = I,,, denoted by Nu, Nu, 
and gib en bq 

Xu, Nu, = 1 + 4.8 x 10-'Re0 j- (10-48) 

The linear relationship betmeen Nu and I ,  at a fixed Re proposed in Fig. 10.13 
has also been found experimentally for stagnation point transfer from cj  linders 
iK4) and spheres (G6). In addition. it has received some theoretical confirmation 
from predictions of turbulence models for stagnation point transfer (GI. S29. 
T13. W2). 

Few reliable data are a\ ailable on the effect of turbulence on transfer at high 
Pr or Sc. The data of Henry and Epstein (H8) for transfer from spheres in 
turbulent gas streams with Sc I 5 and the data of Mizushina et nl. (M10) for 
cylinders with Sc = 103 suggest that the representation in Fig. 10.13 should be 
independent of Pr  or Sc. 

VII. COMPRESSIBILITY AND NONCONTINUUM EFFECTS 

Elsewhere in this book attention is focused on particles whose Mach and 
Knudsen numbers are small. The Mach number is defined as the ratio of the 
relati1 e velocity between the particle and the fluid to the speed of sound in the 
fluid: 

Ma = U ,  c. (1 0-49) 

For all practical purposes, isothermal flows with Ma -2 0.2 can be treated as 
incompressible, i.e., density variations in the fluid around the particle are neg- 
ligible. Compressibility effects become important as Ma is increased, especially 
for Ma approaching and in excess of unity. The Knudsen number is defined 
as the ratio of the molecular mean free path in the fluid to some characteristic 
particle dimension. For a spherical particle 

For Kn less than a value of order the particle is large by comparison with 
the scale of molecular processes in the continuous phase and the fluid can be 
treated as a continuum. Above this range, slip effects become significant. For 
liquids, c is sufficiently large and i sufficiently small that these effects are vir- 
tually never significant. This is not the case for gases. The mean free path in 
centimeters for air at temperature T(K) and pressure p(kP) may be calculated 
(B10) from 

i. = 2.1jPT1 p, (10-51) 

mhere p is the ~iscosity In kg ms For alr at 293 K and 100 kP, ( is 343 m s 
and IS 6 53 x l o p 6  cm Cornpress~b~l~tq effects are s~gn~ficant then for reldtike 
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helocities greater than about 70 m, s. while noncontinuum effects are significant 
for particles smaller than about 10 pm. 

Compressibility and noncontinuum effects are related. For an ideal gas, 
kinetic theory leads to the relationship (S11): 

where k is the ratio of specific heats for the gas forming the continuous phase.+ 
fience the drag coefficient can be treated as a function of any two of Re. Ma, 
and Kn and in place of a unique relationship between C ,  and Re (the "standard 
drag curve" discussed in Chapter 5). we require a family of curves. The dis- 
cussion is simplified by distinguishing two distinct kinds of system showing 
noncontinuum and or compressibility effects. Particles entrained in gases may 
be small enough for Kn to lie above the continuum range, although Re and 
Ma are very small. Flow around such particles shows noncontinuum effects 
but no appreciable compressibility, and this is discussed in Section A. The 
particles are subject to Brownian motion. so that for nonspherical particles 
the orientation is random and the hydrodynamic property of interest is the 
mean resistance to flow (see Chapter 4). The other class of flows corresponds 
to larger particles with high C,. often in rarefied gases, and is of interest in 
connection with high-altitude flight and rocket propulsion. In this case, Ma is 
large and Re may be above the creeping flow range. Conventionally, this kind 
of system is described in terms of Re and Ma. We discuss this case from the 
viewpoint of compressibility effects in Section B. Effects of rarefaction on heat 
transfer are treated in Section C. 

It is conventional to distinguish three noncontinuum flow regimes. At small 
but not negligible Kn, where i. is up to 10':; of d (or of the boundary layer 
thickness at higher Re), the gas adjacent to the particle surface has a significant 
tangential velocity or "slip." This range is termed the "slip flow regime," and 
flow is normally calculated by conventional methods with modified boundary 
conditions [see Pich (PlO)]. When the mean free path and body dimensions 
are comparable. this approach breaks down, since both surface collisions and 
molecular collisions in the free stream are significant. This range, which is 
poorly understood, is termed the "transition regime." At high Kn, molecules 
moving away from the particle only undergo collision at large distances from 
the surface, so that the flow is dominated by molecule-particle interactions 
(Dl, P9). This range is known as the "free molecule regime." The boundaries 
between these regimes are somewhat arbitrary. Table 10.2 summarizes two 
attempts at classification, but these are clearly not entirely consistent. 

I For air at 293-K and 100 k P :  Kn = 1.49 Ma Re. 
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TABLE 10.2 

Classification of Cont inuum and Koncontinuum Floa ~ e ~ i m e s . "  

Schaaf and Chan?bl.e Dc\ieniii. (Ion \lei) 

General Air 

Continuum Re < 1 V a  < 0 01 Re K n  < 1 5  x l o - '  
K n  < 

Re > 1 Md < 0 0 1 ,  Re K n  < 1 5 x R e - '  ' 

Trdnsltlondl M a  
flou R e < 1  0 1 < - < 3  0 1 5 < K n < 4 5  

Re 
O 2 5 < K n <  10 

Cl a - 0 15 
R c > 1  O I < - :  < 3 , R e  - : . i K 1 ? < 4 5  , Re , Rs 

Free molecule M a  > 3Re K n > 4 5  K n  > 10 
flow 

"After Dex~enne  (D8)  and  Schaaf and Chambre (S11 I. 

Drag on a particle at nonnegligible Kn, but low Ma and Re, is conveniently 
expressed by the "slip correction factor" : 

drag in continuum flow at same Re 
C = (10-53) 

drag on particle 

In the creeping flow range, C is equal to the ratio of the terminal velocity to 
the terminal velocity in continuum flow. The value of C is sensitive to the 
nature of molecular reflections from the surface of the particle (E5). The "ac- 
commodation coefficient," o,. may be interpreted as the fraction of molecules 
undergoing diffuse reflection, the balance being specularly reflected. Typical 
values for a, lie between 0.8 and unity. For near-continuum flow, Basset iB9) 
showed that 

while Epstein's result (E5) for the opposite extreme of free-molecule flow may 
be written 

Phillips (P9) proposed an approximate theoretical solution which yields Eqs. 
(10-54) and (10-55) in the limits of low and high Kn, and appears to give a 
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close fit to available data in the transitional range: 

where 

( , = ( 2 - a R ) a R  and c 2 = ( 2 - a , ) - ' .  (10-57) 

For particles whose accommodation coefficient is knoivn, Eq. (10-56) appears 
to give the most accurate estimate for drag. Since o, is rarely known to sufficient 
accuracy, C may instead be estimated for spheres over the whole range of Kn 
by a semiempirical expression whose form was first proposed by Knudsen and 
Weber (K6). With the numerical values due to Davies (D2): 

C = 1 + Kn[2.514 + 0.8 exp(-0.55 Kn)]. (10-58) 

The constants in Eq. (10-58) depend upon o,, and other authors (Dl .  P10. S11) 
give slightly different values. 

For nonspherical particles. values for the slip correction factor are available 
in slip flow (M11) and free-molecule flow (Dl).  To cover the whole range of 
Kn and arbitrary body shapes. it is common practice to apply Eq. (10-58) for 
nonspherical particles. The familiar problem then arises of selecting a dimen- 
sion to characterize the particle. Some workers [e.g. (H2, P14)] have used the 
diameter of the volume-equivalent sphere; this procedure may give reasonable 
estimates for particles only slightly removed from spherical, or in near-con- 
tinuum flow, but gives the wrong limit at high Kn. An alternative approach 

C - Random orlentation 

2.0 
- - - - AX!S parallel to flow - - Axis normai to flow 

FIG. 10. 
spheroids. 

0 1 2 3 L 
Aspect Ratio 

14 Ratio of adjusted sphere diameter to diameter of cylinder and equatc 
.After Dahneke ( D l  ). 

diam eter of 
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(Dl )  uses the "adjusted sphere," i.e., the sphere with the same value of C in 
free-molecule flou. The justification for this approach is that it gives the correct 
result in the limits of high and low Kn, and is therefore likely to be a good 
approximation in slip and transition flow as well. Figure 10.14 shows values 
for the diameter of the "adjusted sphere" for spheroids and cylinders. taken 
from Dahneke's tabulation. For cubes the "adjusted sphere diameter" to be 
used in defining Kn in Eq. (10-50) is 1.43 times the length of a side. 

The following discussion is concentrated on rigid spherical particles. There 
are many treatises [e.g. (Kg. S13, S25. TlO)] which consider aerodynamics and 
compressible external flows in a general manner, particularly with reference to 
aerofoils, wings, sharp cones, and other flight-related geometries. High-velocity 
flows are commonly accompanied also by significant aerodynamic heating and 
the temperature field can interact strongly with the velocity field. For simplicity, 
we restrict our attention to cases where the ratio of particle to gas absolute 
temperature, T,  T,, is approximately unity. [For a review of data showing 
the effect of T, T ~ ,  , see (Bl).] 

Early work in this area was reviewed by Hoerner (H14). [For more recent 
reviews of data, see (B1, B2: ClO).] Many of the data in the literature for 
Ma 5- 0.2 are unreliable, just as for the low Ma results discussed in Chapter 5, 
because of high levels of freestream turbulence, interference by a support, wall 
effects, etc. The curves given in Fig. 10.15 have been prepared largely using 
data given in (Bl) obtained in ballistic ranges where particle decelerations were 
measured over relatively short flight distances so that particle heating effects 
were small. The ratio of particle to gas density was sufficiently great that added 
mass and history effects (see Chapter 11) can be safely neglected in calculating 
C,. The estimated accuracy of the data is _f2%. 

For subsonic velocities where 0.2 < Ma < 0.9, the drag may be greater or 
less than that at low Ma depending on the value of Re. For 104 < Re < 3 x lo5, 
a curve containing a dip at Ma 0.85 given by Hoerner (H14) (see Fig. 10.15) 
was generally accepted for many years, but more recent work shows no evi- 
dence of this dip. Instead the drag increases monotonically with Ma at high Re. 
At very low Re, Kn becomes large [see Eq. (10-52)], and drag approaches the 
free-molecule flow limit. For intermediate Re (e.g., Re = 20) there is relatively 
little effect of Ma on drag. 

For transonic velocities (0.9 < Ma < 1.1), C, changes sharply with Ma, 
which accounts for the difficulty in obtaining reliable measurements in this 
range. Bailey and Hiatt (Bl) give photographs showing the formation of wake 
and bow shock waves in this Ma range for Re = lo3. Sharp pressure increases 
occur across shock waves, and strong interactions with boundary layers there- 
fore occur which tend to promote boundary layer separation (C4, S35). In the 
supersonic range (1.1 < Ma < 6), C, becomes almost independent of Ma (see 
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Fig. 10.15) and depends primarily on Re, except for Re < 10, where C, con- 
tinues to fall as Ma increases. For hypersonic velocities (Ma > 6). temperature 
variations become more important with high local temperatures leading to 
ionization of gases. Available results (B2, K11) show that drag coefficients 
increase toward the free-molecule flow limit as Ma increases in the hypersonic 
range, while there is a monotonic decrease in drag coefficient with increasing 
Re in this range, at least up to Re = lo4. Wake characteristics become par- 
ticularly important and complex at super- and hypersonic speeds (C4). 

In the free-molecule flow range, the drag on a sphere is given (S11). for 
diffuse molecular reflectiont (o, = I), by: 

0.1 

' The last term is absent for specular reflection. However, Eq. (10-59) is normally the applicable 
form. 

------------- - - - - ' - - \~oerner ,  RerRe,  

I I I 1 1 1 1 1  I I I 1  l l  I l l  I 

0.1 Mach Nurnber,Ma 30 

FIG. 10.15 Drag cocficient for rigid spherical particles in air as a function of .Mach number 
\+ith Reynolds number as parameter. for the case whcrc thc absolutc tcmperaturcs of the particle 
and fluid are essentiallq the same. 
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*here s is the "molecular speed ratio": 
- - 

s = Ma,, k 2. 

Cro~ve et al. (C10) developed a semiempirical procedure for estimating sphere 
drag coefficients as a function of Re and Ma, using CD,, and C,, . the standard 
drag coefficient for continuum flow at the appropriate Re, calculated as in 
Chapter 5. A so-called "inviscid drag coefficient" is first estimated. corre- 
sponding to the hypothetical drag at large (but subcritical) Re: 

C,, = 0.66 + 0.26 tanh(2 In Ma) + 0.17 exp[- 2.5(ln Ma:1.4)2]. (10-61) 

The drag coefficient for the case in question is then estimated as 

C D  = f c ~ f ,  + (1 - ~ ) C D I ,  (1 0-62) 

where the ratio f is: 

and 

B = KnO exp(l.2, ~i). 
This procedure has some advantage over the results presented graphically in 
Fig. 10.15 in that it allows for vdues of T, T, other than unity via its effect 
on C,,,. Walsh (Wl)  and Henderson (H7) ha1 e also proposed empirical equa- 
tions for C ,  as a function of Ma and Re. 

The results presented above are for cases where the fluid may be considered 
isothermal, except as outlined in the preceding paragraph where there may be 
gradients near the particle associated with aerodynamic heating of the particle 
itself. Another situation in which compressibility effects are important arises 
when there are substantial property gradients in the fluid through which a 
particle is moving. This case has been considered theoretically and experimen- 
tally by several workers [e.g. (C3, K1, S24)] for low Re, low Ma motion of 
spheres in gases with marked temperature gradients leading to simultaneous 
momentum and heat transfer. For example, Seymour (S24) carried out a nu- 
merical and experimental study of the motion of small spheres in an argon 
plasma at temperatures up to 13000 K for a sphere surface temperature of 
2000 K and Re varying between 0.3 and 1.5. Not surprisingly, characterization 
of gas properties and experimental drag determination become very difficult 
under such extreme conditions. 

Wortman (W8) has given an approximate method of extending results for 
spheres to other shapes which undergo random tumbling. The method requires 
calculation of an effective radius of curvature. using kinetic theory (H11) to 
define an equivalent cross section. The only restriction, aside from Ma > 1. is 
that the flight must last for a sufficiently long period that there is no statistically 
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preferred orientation. This approach gave good agreement mith supersonic 
data for cubes. especially in the hypersonic range. but it has not been confirmed 
for other shapes. Nevertheless, it appears to be the best method available for 
estimating the drag at supersonic velocities for shapes for which no direct 
measurements are available. especially if the particle is not far removed from 
spherical in shape. 

Analogous to the slip belocity between gas and particle at Kn above the 
continuum flow range discussed in Section A a b o ~ e ,  a temperature discontinuity 
exists close to the surface at high Kn. Such a discontinuity represents an addi- 
tional resistance to transfer. Hence, transfer rates are generally lowered by 
compressibility and noncontinuum effects. The temperature jump occurs over a 
distance 1.996k1,(2 - o,)iPr o,(k + 1) (K2, S11) where o, is the "thermal accom- 
modation coefficient," interpreted as the extent to which the thermal energy of 
reflected molecules has adjusted to the surface temperature. 

For small particles, subject to noncontinuum effects but not to compress- 
ibility. Re is very low; see Eq. (10-52). In this case, nonradiative heat transfer 
occurs purely by conduction. This situation has been examined theoretically in 
the near-free-molecule limit (S14) and in the near-continuum limit (T8). The 
following equation interpolates between these limits for a sphere in a motionless 
gas : 

NU = 2b,(l + b), (1 0-65) 

where 

Equations (10-65) and (10-66) give a good fit to data of Takao (TI) for heat 
transfer from a brass sphere to air with o, = 0.8. Natural convection at low 
pressures has been studied for cylinders and spheres (D9. K12). 

At high Re and Ma in the free-molecule regime, transfer rates for spheres 
have been calculated by Sauer (S4). These results, together with others for 
cylinders and plates, have been summarized by Schaaf and Chambre (S11). 
The particles are subject to aerodynamic heating and the heat transfer coeffi- 
cients are based upon the difference between the particle surface temperature 
and the recovery temperature (see standard aerodynamics texts). In the transi- 
tional region. the semiempirical result of Kavanau (K2), 

Nu* -- Ma Nu* Kn Nu* 
- 1 + 3.42 - = 1 + 2.73 - (10-67) 

Nu Re Pr ~ r , l L  ' 

may be used to relate the Nusselt number Nu to its value Nu* in continuum 
flow (Kn + 0) at the same Re and Pr for 0.1 < Ma < 0.7 and 2 < Re < 120. 
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Alternatikely, one can use the interpolation formula suggested by Sherman 
(S26), 

Nu,, 'Nu = 1 + (Nu,, Nu"), (10-68) 

where Nu,, 
[see (S 1 I)]. 
cylinders as 

is the Nusselt number in the free-molecule limit at the given Ma 
The latter equation has been found to give good predictions for 
well as spheres. Equation (10-65) is a special case of Eq. (10-68) 

for Re = 0. A more complete review of heat transfer in rarefied gases is given 
by Springer (S32) who also covers the transition region at Ma greater than 
unity. 
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Chapter 11 

Accelerated Motion without 
Volume Change 

I. INTRODUCTION 

Prediction of fluid motion, drag, and transfer rates becomes much more 
complex when the motion is unsteady. Dimensional analysis gives an indication 
of the problems. A rigid sphere moving with steady velocity in a gravitational 
field is governed by an equation of the general form 

Since there are three dimensions, two dimensionless groups. e.g., lYD and S, 
defined in Chapter 5, suffice to describe the motion. If the motion is unsteady. 
it is necessary to introduce the particle density explicitly, since it determines 
the particle inertia as well as the net gravity force. Also, since Zi, varies with 
time and position. a further parameter must be introduced. This may be the 
distance x moved since the start of the motion. Equation (11-1) is then replaced 
by 

.f [9, P, P. d ,  GR, Pp - XI = 0. (1 1-2) 

Two additional dimensionless groups are therefore required. These can be 
chosen as the density ratiot 7 and displacement modulus, AU', = x#d. Hence 

The additional complexity is not limited to introduction of two new groups. 
For example, Eq. (1 1-3) takes different forms for a particle accelerating from 
rest and a particle projected in a stagnant fluid. In principle, all time derivatives 

' It has already been noted in Chapters 5 to 7. that ; = p, p must be ~ncluded uhen  secondar) 
motion is superimposed on stead] part~cle translation 
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of C- ,  should be included in Eq. (1 1-3), leading to a series of new groups, of which 
the first is the acceleration modulus, 41, = (liC-,; d t ) d  'CR2. 

In this chapter v\2e first discuss the equations of motion for particles at low 
Re. Semiempirical extensions beyond the creeping flow regime are then con- 
sidered. It is useful to distinguish two general kinds of unsteady motion: 

Type 1 Characterized by rapid change of Re with AdD. 
Type 2 Characterized by slow change of Re with MD with the instanta- 

neous flow pattern similar to  that in steady motion at the instantaneous Re. 

For Type 2 motions. drag is insensitive to acceleration, and calculation of the 
motion is greatly simplified. For Type 1 motions, the instantaneous drag may 
differ radically from the corresponding steady drag. In practice, Type 2 usually 
corresponds to particles moving through gases (high y), whereas Type 1 gen- 
erally describes motion in liquids. 

Although a number of workers [e.g. (C5, D l ,  D2)] have considered flow 
around particles started impulsively from rest at constant nonzero velocities, 
this situation is of little practical interest. Attention is concentrated on free fall 
from rest and oscillatory motion. 

11. INITIAL MOTION 

As for steady motion, analytic solutions for unsteady motion of rigid and 
fluid particles are available only in creeping flow. The solution was developed 
by Basset (B3); the outline given here follows the treatment of Landau and 
Lifshitz (L4). The governing equation is the unsteady form of Eq. (1-36). i.e.. 
for axisqmmetric flow, 

2(E2$)  ?t = E4$. (1 1-4) 

The boundary conditions are the same as for steady motion considered in 
Chapters 1, 3, and 4, i.e., uniform flow remote from the particle, no slip and no 
normal flow at the particle boundary, and, for fluid particles, continuity of 
tangential stress at the interface. For a sphere the normal stress condition at 
the interface is again formally redundant, but indicates whether a fluid particle 
will remain spherical. 

Consider a rigid sphere of radius a, executing rectilinear oscillatory motion 
relative to remote fluid with its velocity given by': 

By analogy with the solution for steady creeping flow, we assume that the 
stream function relative to the particle takes the form 

$ = f(r)e-""sin2 0. (1 1-6) 

In Eqs (11-5) to (11-lo), on11 the real part is to be considered 
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The form of f ( r )  is obtained from Eq. (11-4)  and the boundary conditions 
leading to 

where 
- 

d = .'2v, w. ( 1  1-8) 

For co + 0 ,  Eq. ( 1  1-7) reduces to the stream function for steady creeping flow 
past a rigid sphere, i.e., Eq. (3-7) with K = x. The parameter 6 may be regarded 
as a characteristic length scale for diffusion of vorticity generated at the particle 
surface into the surrounding fluid. When w is very large, 6 is small, and the 
flow can be considered irrotational except in the immediate vicinity of the 
particle. In the limit w -t x. Eq. (1 1-7) reduces to Eq. (1-29) ,  the result for 
potential flow past a stationary sphere. 

The total drag on the sphere may be obtained, as in steady flow, by inte- 
grating the normal and shear stresses over the surface. In terms of the instan- 
taneous velocity U the result is (L4): 

where V is the volume of the sphere. Although the above results refer to pure 
oscillatory motion, they may be generalized to arbitrary rectilinear motion by 
representing the velocity as a Fourier integral: 

~ ( t )  = J-xx U,e-iot dw. (11-10) 

Equation ( 1  1-9) then becomes (L4) 

The first term of Eq. (11-11)  is the Stokes drag for steady motion at the instan- 
taneous velocity. The second term is the "added mass" or "virtual mass" con- 
tribution which arises because acceleration of the particle requires acceleration 
of the fluid. The volume of the "added mass" of fluid is 0.5V. the same as ob- 
tained from potential flow theory. In general. the instantaneous drag depends 
not only on the instantaneous velocities and accelerations, but also on con- 
ditions which prevailed during development of the flow. The final term in 
Eq. (11-11)  includes the "Basset history integral." in which past acceleration is 
included, weighted as ( t  - s)-I 2 ,  where ( t  - s) is the time elapsed since the 
past acceleration. The form of the history integral results from diffusion of 
vorticity from the particle. 
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Equation (1 1-11) depends on neglect of inertial terms in the Navier-Stokes 
equation. Neglect of inertia terms is often less serious for unsteady motion 
than for steady flow since the convective acceleration term is small both for 
Re -t 0 (Chapters 3 and 4), and for small amplitude motion or initial motion 
from rest. The second case explains why the error in Eq. (11-11) can remain 
small up to high Re, and why an empirical extension to Eq. (11-11) (see btlow) 
describes some kinds of high Re motion. Note also that the limited diffusion 
of vorticity from the particle at high co or small t implies that the effects of a 
containing wall are less critical for accelerated motion than for steady flow at 
low Re. 

Similar analyses have been developed for fluid spheres (SX, S9) and for rigid 
spheroids (L3j moving parallel to their axes. The main conclusions are dis- 
cussed below. 

For a spherical particle released from rest at t = 0 in a stagnant fluid, the 
equation of motion follows from Eq. (1 1-1 1) as 

where the overdot denotes a time-derivative. Introducing dimensionless times 

'T = v t  l l 2 .  G = V S ,  a', (11-13) 

and the ratio, W,, of the instantaneous velocity C to the steady velocity in 
Stokes flow, i.e., 

W, = L, L',, = 9pC 2a2qAp = Re/ReTs. (1 1-14) 

we can rewrite Eq. (11-12) in dimensionless form as 

which may be transformed (B5, K l )  to an ordinary differential equation: 

where B is the dimensionless acceleration. dW, (lz. at 'T = 0: 

Equations (11-15) to (11-17) correspond to the general results for spheroids 
given in Table 11.1. The velocity and displacement can be calculated as func- 
tions of time, either by direct numerical integration (K l )  of Eq. (11-16) with 





11. Accelerated Motion without Volume Change 

0 .I I 10 
Dlmenslonless Time,? 

FIG. 11.1  Variation of dimensionless velocit! and position with time for spheres of various 
density ratios acceleratiilg freely from rest in creeping flou-. 

initial conditions 

or from the analytic solutions in Table 11 . l .  The displacement is expressed as: 

The general solution in Table 11.1 was first given for a sphere by Boggio (B5). 
For 7 greater than a critical value denoted by y,, cl and ,8 are complex. This 
does not imply an oscillatory component in the motion, since the imaginary 
part of the expression is identically zero (HI 5). However. it may be more con- 
venient to use the purely real forms (H7) given in Table 11.1 .+ Figure 11.1 shows 

Tabulations of erfc(z) and W ( Z )  are available (A2). Brush et a/. (B9) gaye alternate results. 
including a series for W,(z) which converges rather slow-11. 
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predictions for spheres of various density ratios. The ~alidity of these results 
for creeping flow is well established (M6. MlO), and the range of applicabll~ty 
is discussed below. 

It is of interest to compare the predictions from Eq. (11-15) with simplified 
treatments which are often employed. If the troublesome history term is 
neglected, 

If added mass is also neglected, leaving only "steady drag," 

Figure 11.2 shows these approximate results for 7 = 2.65 together with the full 
solution. Neglect of the unsteady drag terms is clearly unjustified, with the 
history term being more important than added mass. Comparisons for other 
values of 7 are given elsewhere (H7. H15). Figure 11.3 shows the times and 
distances required for a particle to reach various fractions of its steady terminal 
velocity. Neglect of the unsteady terms becomes less serious at high 7, but 
discrepancies from the exact solution are still apparent as W, + 1. 

Dlmensionless Time, r 

FIG. 11.2 Variation of  velocity and position with time for a sphere with ;; = 2.65 accelerating 
freely from rest in creeping flow. 
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FIG. 11.3 Dimensionless time and distance required for sphere to reach \arious fractions of its 
steady terminal velocity in creeping flow. 

Lai and Mockros (L3) generalized Eq. (1 1-1 1) for a spheroid moving parallel 
to its axis of symmetry to give the approximation: 

where a is the equatorial radius defined in Fig. 4.2 and A, is the ratio of steady 
drag to that on a sphere of radius a, as discussed in Chapter 4: its value is 
given by Eq. (4-20) with the axial resistance, c , ,  from Table 4.1. The ratio of 
the history term to that on a sphere of radius a is 

The added mass coefficient. A,, is given by: 

2[E cos-' E - ,I 1 - E2] 
Oblate (E < 1) A, = 

E ~ ,  1 - E ~ - E C O S - ~ E ' *  
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-- 

2[Eln(E + E 2  - 1) - , E 2  - 11 
Prolate ( E  > 1) AA = -- 

- E ln(E + , E 2  -- 1) 

The coefficient of the added mass term. i A A ,  is identical with the ratio of form 
drag to friction drag in steady creeping flow given in Table 4.1. The ratio of 
the added mass on a spheroid to that on a sphere of radius a is EA,. For a 
spheroid falling from rest with its axis vertical. Eq. (11-22) leads to a result 
equivalent to Eq. (11-15) for a sphere, as summarized in Table 11.1. If the 
history term is neglected, Eq. (11-20) applies. If both history and added mass 
are neglected, the trajectory is given by, 

Mi3 2;)E W, and - = L(T - TI (1 1-26)  re^^ 

Figure 11.4 shows the velocity-time curves from the full solution for weightless 
rigid spheroids (7 = 0) and for density ratios typical of particles in liquids 
(;) = 2.65) and gases (7 = lo3). Figure 11.5 shows the ratio of the value of z for 
which W, = 0.5 to the corresponding value for a sphere. The effect of spheroid 

, , 
0 .1 1 I0 100 

Dimensionless Time, T 

FIG. 11.4 Variation of velocity with time for spheroids accelerating freelq from rest in creeping 
flow. 
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I 
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0.03 1 I I 

0 0.5 1.0 1 .5  2.0 2.5 

ASPECT R A T I O ,  E 

FIG. 11.5 Dependence of time required to reach 50':, of stead) terminal velocity (W, = 0.5) on 
aspect ratio for rigid spheroids. Solid lines givc ratio of T for spheroids to that for a sphere of the 
samc equatorial diameter. Broken lines givc the ratio of T from Eq. (11-20) neglecting historj terms 
to the value from the complete solution. Analqsis is for creeping flow. 

shape is generally weak,+ except for disk-like particles. As the spheroid becomes 
more prolate, the time and distance required to achieve a given fraction of the 
terminal velocity increase. Figure 11.5 also shows the effect of neglecting the 
history term. As for spheres, the errors become smaller as ;, increases. For very 
small 7 ,  neglect of the history term predicts the wrong effect of aspect ratio. 

3. Disks 

The drag on a thin disk moving normal to its faces is obtained by setting 
E = 0 in Eq. (11-22) (L3), i.e., 

The motion of a disk of small aspect ratio accelerating freely from rest is then 
given (L2)  by Table 11.1, with A, = 8i3n and B = 24 (371.E;~ $ 4). For an "ideal" 
disk (E = 0), B = 6 and the variation of J4( and AWD~Re,, with .r is independent 
of the density ratio. The corresponding velocity-time curve is indistinguishable 
from that for 7 = 0, E = 0.1 in Fig. 11.4. 

' If T is based on volume-equivalent radius, rather than equatorial radius as used here. E has 
almost no effect on the trajectory for prolate spheroids (Ll) .  However, this definition of .I obscures 
the effect of shape for oblate particles. 
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FIG. 11.6 Variation of velocit) with time for rigid (K = x) and circulating in~iscid ( I <  = 0) 
spheres accelerating frcely from rest. 

Sy et ul. (S8, S9) and Morrison and Stewart (M12) analyzed the initial motion 
of fluid spheres with creeping flow in both phases. For bubbles (7 = 0, K = 01, 
the condition that internal and external Reynolds numbers remain small is 
sufficient to ensure a spherical shape. However, for other K and 7 ,  the Weber 
number must also be small to prevent significant distortion (S9). For K = 0, 
the equation governing the particle velocity may be transformed to an ordinary 
differential equation (Kl), to give a result corresponding to Eq. (1 1-16), i.e., 

The initial conditions are (Kl ) :  

As for a rigid sphere. the initial acceleration is y(1 - ;.)/(;I + 1/21, i.e.. the added 
mass is half the displaced mass regardless of the nature of the sphere. 

Explicit forms for W,(T) and A14,(~) are not available, while numerical solu- 
tion of Eq. (11-28) is complicated by stability problems (C7). Sy et al. gave 
analytic solutions for ;l = K = 0 (S8), and numerical results for other cases (S9). 
Figure 11.6 shows the velocity-time curves for two density ratios and for K = 0 
and K = X. For short times, rigid particles show higher W, than circulating 
particles (because the dimensional initial acceieration is the same for the two 
cases while the rigid particle has a lower terminal velocity). A reduction in the 
dispersed phase viscosity reduces the time and distance required to attain a 
given W, at longer times. Curves for intermediate K generally fall between these 
curves. but near the intersection of the K = 0 and K = E curves. a drop with 
finite K shows a higher W, than either a rigid or an inviscid sphere. 
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111. RECTILINEAR ACCELERATION AT HIGHER Re 

1 .  General Consillemtions 

The only rigid particle for which accelerated motion beyond the creeping 
flow range has been considered in detail is the sphere. Odar and Hamilton 
(06 )  suggested that Eq. (11-11) be extended to higher Re as: 

The first term again represents drag in steady motion at the instantaneous 
velocity, with C,  an empirical function of Re as in Chapter 5. The other terms 
represent contributions from added mass and history. with empirical coeffi- 
cients, A, and A,, to account for differences from creeping flow. From mea- 
surements of the drag on a sphere executing simple harmonic motion in a 
liquid, A, and AH appeared to depend only on the acceleration modulus 
according to : 

For initial motion from rest, i.e., as C + 0 and -+ x, then A, = AH = 1, 
and Eq. (1 1-30) reduces to Eq. (1 1-11). 

Equations (1 1-30) to (1 1-32) give a good description of the motion of particles 
released from rest (C8, 0 1 ,  02) .  In dimensionless form, the equation of motion 
is (C8): 

where 

Re,, = gd3p Ap'1  8p2, 

A, = C, Re2, 

and 

Re' = d(Re),dz = Re2 M,/4. 

Here A, is a function of Re, analogous to ND used for steady motion in Chap- 
ter 5, and may be evaluated using the correlations in Table 5.2. Since N ,  = 

24Re,, for a spherical particle at its terminal velocity, Re,, fixes the terminal 
Reynolds number Re, via the correlations in Table 5.3. The relationship be- 
tween Re, and Re,, is shown by the uppermost curve in Fig. 11.11. In view of 
the complex dependence of A, and A, on Re and Re', Eq. (11-33) must be 
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FIG. 11.7 Variation of Re with dimensionless time for sphere falling from rest: ;, = 1.22. Re,, = 

3371. Re, = 364. Data are from Moorman ( M  10). run 33. (1 )  Eq. (1 1-33); A, and A, from Eqs. (1  1-31) 
and (1 1-32): (21 Eq. 11 1-33): A, = A, = I : 131 Creeping flow solution. Table 11.1 : (4) Steadj drag 
only ( A ,  = A, ,  = 0); (5) Stead] drag with A, = 1. Bottom part of figure. giking drag components and 
coefficients. corresponds to curve 1. 

solved numerically. Suitable integration procedures' are described by Odar 
(02 )  and Clift (C7). For fall from rest, the initial conditions are 

at r = 0:  Re = 0, Re' = 9ReT,/(2y + I), (1 1-37) 

and the particle displacement follows by numerical solution of 

There is no a priori justification for Eq. (1 1-30) since the form of Eq. (1 1-1 1) 
(and not simply the coefficients) depends on the assumption of creeping flow. 
Moreover, the form of the equation is open to criticism: for example, momen- 
tum arguments suggest that the added mass term be written (pV,2)d(AAU),'dt. 
However, Eq. (11-30) is the form for which Eqs. (11-31) and (11-32) were deter- 
mined (05) ,  and appears to give an accurate description of the motion of 
spheres from rest as demonstrated in Fig. 11.7. Curve 1 shows the predictions 

Kuo (K3) proposed a procedure based on piecewise application of the results in Table 11.1, 
taking C,, A,4. and A, as constant over each interval. For extensive calculations. this procedure is 
more laborious than numerical integration. 
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for the instantaneous Reynolds number, Re(?), corresponding to one run from 
the extensive data of Moorman (M10). Similar comparisons have been made 
for all of Moorman's runs, covering the range 1.22 < ;$ < 9.55, 5.8 < Re,, < 
7.6 x lo4 (01 .02 ) ,  for the data of Mockros and Lai (M6) where 1.15 < 7 < 500, 
6.4 < Re,, < 2 x lo4 (C8), and for data of Richards (R3) with 7 < 0.1 and 
9 < Re,, < 1.5 x 10' (C7, C8). Richards' results provide a particularly critical 
test since the added mass and history terms become more significant as g -t 0. 
In each case, Eqs. (11-31) to (11-38) give a good description of the motion 
except for limitations due to secondary motion noted below. 

Richards' results agree with the predictions for Re as high as lo4 (C7). This 
is not only far removed from creeping flow, but is also well above the range for 
which Odar and Hamilton derived Eqs. (11-31) and (11-32). The fact that A, 
and AH values determined for oscillatory motion work well for unidirectional 
motion at much higher Re probably arises because the trajectory is relatively 
insensitive to these coefficients. This is demonstrated by curve 2 in Fig. 11.7, 
obtained with A, = AH = 1. In the early part of the motion, changes in these 
terms tend to compensate, so that curves 1 and 2 only differ when approaching 
Re,. Similar conclusions apply for other particle characteristics (HI),  although 
the errors introduced by assuming A, = A, = 1 are generally larger for lower 
Re,, (CX). 

Although Eqs. (1 1-30) to (1 1-32) give a good description of free acceleration 
from rest, this does not necessarily mean that they apply to all types of unsteady 
motion. Fall or rise from rest is a particular case in which the creeping flow 
assumptions apply initially. The approach is less realistic if Re is initially large 
(e.g., for a particle released in a flowing fluid). 

2. Solutions for Particles in Liquids 

Unless ;I >> 1, all terms in Eq. (11-33) must be retained. Since Eq. (11-30) has 
no formal justification, the individual terms cannot definitely be ascribed to 
added mass or history effects. Even so, the relative magnitudes of the terms are 
of interest. Figure 11.7 shows the three terms for specific values of 7 and Re,,, 
expressed as fractions of the immersed particle weight. "Added mass" domi- 
nates initially: "history" passes through a maximum and decays slowly; "steady 
drag" increases monotonically to become the sole component at the terminal 
velocity. Both A, and AH depart from unity early in the motion. For smaller 
Re,,, "history" may be the dominant drag component for a brief period (02) .  

Figure 11.8 shows typical curves for Re/Re, as functions of T and MD, cal- 
culated from Eqs. (11-31) to (11-36) for y = 2.65. Even for low Re, (curve 2), 
the velocity approaches the terminal value more rapidly than predicted by the 
creeping flow solution. At higher Re, the steady terminal velocity is approached 
more rapidly, but the value required to achieve a given fraction of Re, 
increases with Re,. The trajectory is generally more sensitive to Re, than to 7 
as shown by Fig. 11.9, where we have plotted the T and M,iRe, required to 



Dimensionless Time, T Displacement Modulus,MD 

FIG. 11.8 Variation of belocit! with time and distance for spheres with ;. = 2.65. (1) Re, = ReTs 
(creeping ROLV): (21 Re, = 1.0. Re,, = 1.132; (3) Re, = 10.0. Re,, = 17.7: (41 Re, = 100.0, Re,, = 
453: (5) Re, = lo3, Re,, = 19600. 

FIG 11 9 Values of  7 and .W, Re, required for spheres of d~ffcrent , and Re, to reach 5O0/, and 
90°, of their stead1 terminal ~ e l o c i t ~ e s  
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achieve 50 and 90% of C,. Figure 11.9 enables rapid estimates to be made for 
particles in liquids. All drag components are significant and the motion is 
considered "Type 1 ." 

The creeping flow solutions for (Re Re,,) and (,V, Re,,) give a close approx- 
imation for early motion even for quite high Re (M6). Curve 3 in Fig. 11.7 
shows a typical case: due to compensating errors in the drag terms, the creeping 
flow predictions are close to the observed velocities up to Re of order 100. 
Figure 11.10 shows the ,21, at which the difference between the numerical and 
creeping flow values for lVD reaches 5%. Beyond this point the error increases 
rapidly, since the limiting Re for the creeping flow solution is Re,, rather than 
Re,. The Re at which the error reaches a given value is almost independent of 
y in this range. Figure 11.11 shows the Re at which the error in the creeping 
flow solution for Re(z) reaches 1 and 5%. Mockros and Lai (M6) determined 
a range of validity empirically, without specifying what error they considered 
to constitute disagreement. Their curve is shown in Fig. 11.11 and typically 
corresponds to 20% error in Re. 

Neglect of added mass and history simplifies calculation of unsteady motion 
considerably. However, for ;* characteristic of particles in liquids, this intro- 
duces substantial errors as illustrated by curve 4 in Fig. 11.7. The accuracy of 
the simplification improves as 7 and Re increase, but even for 7 as high as 10 
trajectories calculated neglecting history and added mass substantially under- 
predict the duration of accelerated motion. Neglect of added mass causes the 
predicted trajectory to be in error from the start of the motion. Since it is the 

I 
10 20 50 100 200 500 I000 2000 

Re,, 

FIG 11 10 Values of displacement modulus dt which error In creeping flon solution for M,,(T) 
reaches 5'1, 
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FIG. 11.1 1 \'slues of Re at which error in creeping flow solution for Re(:) becomes significant. 

history integral which complicates Eq. (11-33), it is tempting to neglect this 
term alone. Curve 5 in Fig. 11.7 shows the resulting trajectory with A, = 1. 
The prediction is somewhat improved, since the initial acceleration is correct. 
but the range of validity is much shorter than for the creeping flow approxi- 
mation. Thus there is no justification for neglecting the history term and 
retaining added mass, since history is only negligible if 7 is so large that both 
terms are negligible. 

4. Decelopl~zent of F lo~ t ,  Field 

Numerical solutions have been reported for fluid motion around spheres 
falling freely from rest (H4, L5, L7). The value of Re at which wake separation 
first occurs may be much higher than in steady motion (Re = 20: see Chapter 5) 
and increases with Re' (H4). Figure 11.12 shows typical results for the case 
where 7 = 1.72, Re, = 145 (Re,, = 770). Lateral wake development occurs 
quickly so that the separation circle rapidly approaches its steady position. 
Downstream growth is considerably slower. Similar trends are predicted for a 
sphere started impulsively (RI, R4). 

Free-fall experiments with Re, > lo3 show that a sphere released from rest 
initially accelerates vertically, and then moves horizontally while its vertical 
velocity falls sharply (R3, S2, S3, V2). As for "steady" motion discussed in 
Chapter 5: secondary motion results from asymmetric shedding of fluid from 
the wake (S3, V2). Wake-shedding limits applicability of the equations given 
above. Data on the point at which wake-shedding occurs are scant, but lateral 
motion has been detected for M, in the range 4-5 (C7). Deceleration occurs 
for Re > 0.9 Re,. The first asymmetric shedding occurs at much higher Re 
than in "steady" motion (Re = 200; see Chapter 5 ) ,  due to the relatively slow 
downstream development, as shown in Fig. 11.12. 
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Wake length 
Separation angle sphere diameter 

T Re (0,) (LN  d )  

1 0 . 1 2 3  102.6 150' 0.095 
2 0.15 114.5 138' 0.24 
3 0.164 119.3 134.5' 0.31 
4 0.185 125.4 131 0.41 
5 0.20 129.1 128- 0.50 
6 0.24 136.4 125' 0.66 
At stead>- 
state: 145 121' 1.1 

FIG. 11.12 Fluid streamlines relative to sphere falling from rest showing development of wake. 
after (L5). ;, = 1.72. Re., = 145. Conditions as above. 

5 .  Solutiofzs for Particles in Gases 

As noted above, added mass and history contributions can be neglected for 
large 7 ,  especially at high Re, or Re,,. The motion is then of "Type 2," with 
the fluid responding rapidly to changes in particle velocity. If the history term 
is neglected and y >> 1: Eq. (11-33) becomes 

2y d Re -- AD 
= Re,, - -. 

9 d~ 24 

It is convenient to rewrite Eq. (1 1-39) in terms of W = Ul'U, and a new dimen- 
sionless time: 

T = gt/U,. (1 1-40) 

Equation (1 1-39) then becomes 
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D~rnens~on lss~  Tlrne,T 

FIG 11 13 Vdlues of dimensionless ~e loc l t ) ,  It = L L , ,  dnd d~mens~onless dlspldcement. 
X = g \  C , ', as functions of d~rnenslo~~less tlme. T = qt L ,  for spheres released from rest In stagnant 
gases ( >> 1 I 

The dimensionless displacement is given by 

With these simplifications, W and X can be generated as functions of T ,  
with the particle characterized by a single dimensionless parameter, either 
Re,,, AT, or Re,. Figure 11.13 shows predictions for a particle released from 
rest ( W  = X = O at T = 0), while Fig. 11.14 gives trajectories for particles pro- 
jected vertically upwards such that the particle comes to rest at T = 0. Figures 
11.13 and 11.14 enable rapid estimations for many problems involving unsteady 
motion of particles in gases. 

6 .  Heut und Muss Tralzsjer 

Hatim (H2) obtained numerical solutions for heat transfer from a sphere of 
constant temperature accelerating from rest. The trajectory was calculated 
from Eq. (1 1-33), and the time-dependent Navier-Stokes and energy equations 
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Dlmenslonless Tlme,T 

FIG. 11.14 Dime~lsionless velocit) and displacement as functions of dimensionless time for 
spheres projected ~erticallq upwards into stagnant gas (7 >> I ) .  

were solved numerically.' Two distinct cases were considered. If steady-state 
conduction was assumed to be established before the sphere was released (i.e., 
Nu = 2 at t = O), the Nusselt number was calculated to rise monotonically 
towards the final value corresponding to the terminal velocity. If the sphere 
was assumed to be released into a fluid of uniform initial temperature, Nu was 
initially very large, but fell rapidly to a minimum somewhat in excess of Nu = 2, 
and subsequently rose to the final steady value. In each case, the minimum 
local transfer rate at the sphere surface at any time following separation 
occurred downstream of the separation point. 

As for steady motion, shape changes and oscillations may complicate the 
accelerated motion of bubbles and drops. Here we consider only acceleration 
of drops and bubbles which have already been formed; formation processes 
are considered in Chapter 12. As for solid spheres, initial motion of fluid spheres 
is controlled by added mass, and the initial acceleration under gravity is 
g(;, - l)/(y + *) (El,  H15, W2). Quantitative measurements beyond the initial 
stages are scant, and limited to falling drops with intermediate ReT, and rising 

+ Instantaneous overall drag coefficients determined from the Navier-Stokes equation were 
within about 10% of values obtained from Eqs. (1  1-30)-(11-33). This provides an additional 
justification of the approach discussed above. 
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spherical- and circular-cap bubbles. It is not uncommon for fluid particles to 
achieve a maximum rise or fall velocity soon after release and then decelerate 
somewhat. The deceleration thereafter is caused by accumulation of surface- 
actih-e impurities at the interface [e.g. (A4, W4)] and is considered briefly in 
Chapter 7. 

1. Drops 

Edge et al. (El )  studied the motion of oscillating drops immediately after 
formation in carefully purified aqueous systems. Their results generally confirm 
the observations of other workers (S5, W5). Drops fall vertically at first. Inter- 
nal circulation may be strong at first, depending on the mode of formation 
(GI). Shape oscillations may be initiated by deformation immediately prior to 
detachment (El: S5) and occur at Lamb's theoretical frequency; see Eq. (7-30). 
Thereafter the frequency decreases, and oscillations are associated with growth 
and shedding of the wake. Except for drops which show large-scale asymmetric 
wake shedding in "steady" motion, a steady velocity close to the terminal value 
is attained before macroscopic shedding occurs, as for rigid spheres discussed 
above. Drops typically travel 5-10 equivalent diameters before shedding occurs, 
somewhat further than rigid spheres. Once shedding starts, wake shedding 
coupled with oscillations of shape and velocity is observed. A drop whose 
"steady fall" is accompanied by asymmetric shedding and a zig-zag trajectory 
passes through the intermediate regime of oscillating rectilinear motion with 
shedding of a vortex chain. 

Drops accelerated by an air stream may split, as described in Chapter 12. 
For drops which do not split, measured drag coefficients are larger than for 
rigid spheres under steady-state conditions (R2). The difference is probably 
associated more with shape deformations than with the history and added mass 
effects discussed above. For micron-size drops where there is no significant 
deformation, trajectories may be calculated using steady-state drag coeffi- 
cients (Sl). 

2. Large Bubbles 

Walters and Davidson (W1; W2) investigated the motion of large spherical 
and circular bubbles. initially at rest in a stagnant fluid. As predicted by irrota- 
tional flow theory, the initial acceleration following release is 29 for a spherical 
bubble and y for a cylindrical bubble (the difference being caused by the differ- 
ent added mass in the two cases). In each case: a tongue of liquid moves upward 
into the rear of the bubble, so that it immediately begins to deform towards a 
spherical-cap or circular-cap shape.: Rapid generation of vorticity in the wake 
may cause two small satellite bubbles to detach from a two-dimensional bubble 

Similar initial motion occurs for bubbles in fluidized beds. nhcre  thc final shape is attained 
after rising through a distance of the order of the initial radius iC10. M14) .  
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(Wl). or a ring of such satellites to form behind a three-dimensional bubble 
(W2). 

3. Toroidal Bubbles 

If a relatibely large bubble, typically 5 ml or more, is formed rapidly (e.g., 
by injection of gas at high velocity through a tube, or bursting of a submerged 
balloon in water). a toroidal vortex ring may be formed with the gas bubble as 
its "core" (W2). The toroidal bubble is inherently unstable. As time progresses, 
circulation inside the bubble decreases. the bubble slows down and the toroid 
diameter increases while the core diameter decreases (B8. W2). Even'tually, the 
bubble becomes unstable and breaks up into a number of approximately equal 
segments which may retain their relative positions in the toroid (B8). Theoreti- 
cal predictions for toroidal bubbles by Pedley (PI)  are in qualitative agreement 
with experimental results (B8). 

IV. OSCILLATORY MOTION 

Periodic fluctuations of fluid velocity usually increase the mean drag and 
transfer rates for entrained particles, and this has led to applications of pulsa- 
tions in industrial contacting equipment. Certain natural phenomena may also 
be affected. For example, modification of drag by flow oscillations may be 
important for various flying and swimming organisms (H11, H13). Similarlj. 
pulsations promote the onset of movement of particles originally at rest on 
the bottom of a duct containing a flowing fluid (C2). In addition, fluid oscilla- 
tions are related to the motion of particles in turbulent fluids, as discussed in 
Chapter 10. 

1 .  General Considerations 

The instantaneous drag on a rigid spherical particle moving with velocity 
L, in a fluid whose instantaneous velocity in the vicinity of the particle is C, 
follows from an extension to Eq. (11-30): 

where CR = C', - C,. is the velocity of the particle relative to the fluid. Only 
rectilinear motion is considered. The first three components are discussed 
above. The last component, the "pressure gradient term," represents the force 
required to accelerate the fluid which would occupy V if the particle were 
absent. Like Eq. (11-30), Eq. (11-43) is subject to the objection that it is an 
empirical modification of a result which is justified only for creeping flow. 
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Although its practical applicability is not so well established as that of Eq. 
(11-30) for motion from rest, it represents a convenient starting point for a 
discussion of oscillatory motion. If the fluid oscillates in the vertical direction. 
and velocities are positive downwards. the equation of motion for a freely 
moving particle follows from Eq. (11-43) as: 

3 L -- 9AH ,I S; C,(S)~S -- dCf 
4d 

(; - I)  -. 
d .\ln ,t-5 l it 

2. Creeping Flow 

If the particle Re is always small. the creeping flow assumptions apply. 
Equation ( I  1-44) then becomes: 

The linearity of Eq. (1 1-45) implies that the mean terminal velocity is unaffected 
by oscillation (M7). The velocities may then be written as sums of mean values 
and variations from the mean, i.e.. 

- 
= + :  C ' f = C ' c + ~ f :  U R = C ' R + ~ l R ,  (11-46) 

where 
CR = Apqd2 18p 

is the Stokes terminal velocity, Eq. (3-18). Equation (11-45) becomes: 

Molerus (M7) and Hjelmfelt and Mockros (H6) have developed complete 
solutions to Eq. (11-48). Velocities can be expressed as Fourier integrals. It 
therefore suffices to consider pure sinusoidal oscillations: 

u, = ALI) cos u t .  (1 1-49) 

The particle velocity is related to u, by an amplitude ratio yl and phase shift 0: 

Table 11.2 gives expressions for q and fl in terms of 7 and a dimensionless 
period' : 

Figure 11.15 shows predictions for density ratios typical of bubbles and of 
particles in liquids and gases. For low frequency (high 7 , ) .  the particle follows 

t This group 1s sometimes called a "Stokes number" It 1s also d 2  211'. \\ith o defined b~ Eq (1 1-81 



TABLE 11.2 

Amplitude Ratio and Phase Shift for Spheres Entrained in 
Oscillating Fluids at Low Reynolds Number 
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the fluid motion. This also occurs for all so at ;' = 1. Deviation of the particle 
from the fluid motion increases at higher frequency, and is most marked for 
high 7 .  It has been shown theoretically (M5) and experimentally (M9) that these 
results can be applied to particles in bounded fluids provided that true local 
\-alues are used for u,. Application of these results to particles in turbulent 
fluids is discussed in Chapter 10. 

Various levels of simplification are also available with corresponding results 
given in Table 11.2. Hjelmfelt and Mockros (H61 have given detailed com- 
parisons. The approximate results agree closely with the exact solutions at 
high 7, (low w), but are inaccurate when the particle does not follow the fluid 
closely. As in motion from rest, neglect of the history term generally introduces 
larger errors than neglect of added mass. Both terms are less critical for high ;'. 
Neglect of the pressure gradient term introduces errors at low 7,. 

3. Higher. Reyrzolds :V~~nzbers 

Outside the creeping flow range, Eq. (11-43) becomes nonlinear, making 
solutions more difficult to obtain. Although the nonlinearity implies that it is 
no longer sufficient to express an arbitrary oscillatory motion as a Fourier 
integral, most treatments hahe considered purely sinusoidal variations in Cf. 
Particle motion can be obtained numerically from Eqs. (11-44), (1 1-31), and 
(1 1-32). Since these equations were derived for oscillatory motion, this approach 
should have some validity. Oscillations reduce the mean terminal velocity 
outside the creeping flow range. due to the convex form of the "steady drag" 
term (B6, H 12. M7). 

A common simplification is to assume constant C, (equivalent to assuming 
that Re is always in the Newton's law range). It is then convenient to define 
a dimensionless frequency and amplitude: 

S,, = ~ ( 2 ; '  + A*)\ ~d 3gCDAp, (1 1-52) 

Equation (1 1-44) now becomest : 

where 

t+  = tco and 7 -  = SLL). (1 1-55) 

W, = L, C,: Wf = C', C',: C', = \  4gliAp 3pC,, (11-56) 

and 
-- 

,Y, = 6AHt 3 ~ ~ 1  ngdC,Ap. (1 1-57) 

' The first term on the right of Eq. (1 1-54) I S  - l for ;, < 1 
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If the historq term is neglected. Eq. (1 1-54) can be solved if  WR does not change 
sign (H10). The mean relative velocity is then approximately (H12) 

Al-Taweel and Carley (A3) gave corresponding expressions for the amplitude 
ratio and phase shift. For N,2,Y,2 << 1, Eq. (11-58) reduces approximately 
(H 14) to 

Figure 11.16 shows WR as a function of S,. calculated from Eq. (11-58) for 
various values of S,. Chan et al. (C3) extended this approach to a sphere in 
a horizontally oscillating fluid. 

Dimensionless Frequency, N, 

FIG. 11.16 Ratio of mean terminal velocity to terminal velocity in absence of oscillations for 
particles in sinusoidall) oscillating fluids. Unbrokcn lines are predictions from Eq. (1 1-58): broken 
lines are uumerical predictions (M8) for 2 mm spheres in water with 7 = 2.5 and I*;, \ alues as follows: 
curve A-0.28: B--~0.42: C-0.56: D --1.11; E -1.67. 

A number of authors (Bl. B2: H3. H10. M8) have solved Eq. (1 1-44) numeri- 
cally. often neglecting the history term and using empirical approximations for 
C,,. Tj.pical predictions are shown in Fig. 1 1.1 6.' Qualitatively. the trends are 
the same as predicted by Eq. (1 1-58). but the numerical approach predicts less 
retardation since C ,  decreases as Re increases (T4). Here WR is predicted to 
become zero only for &V, + x at finite ,V,. Thus assumption of constant C, 
leads to significant error. A rather different approach was initiated by Bailey 

' For the specific particle considered ( M E ) ,  the terminal R e ~ n o l d s  number is approximatel) 520. 
corresponding to C, = 0.55. but ,V,, or 9, were elaluated using the "Ne\+ton's la~v" halue. C, = 

0.445. 
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(Bl), based on a time-averaged form of Eq. (11-44) and applicable to any form 
of oscillation if the period is long compared with the response time of the 
fluid (see below). At the other extreme of simplification, Rschevkin (R5) showed 
that if all effects except added mass and pressure gradient are omitted from 
Eq. (1 1-44). a particle moves in phase with the fluid oscillations (i.e.: j = 0) 
with amplitude ratio: 

11 = (2 + A,) (2;' + A,). (1 1-60) 

The validity of the various simplifications has been the subject of considerable 
discussion [e.g. (A3, B2, H3, T4)]. Schoneborn (S4) showed that in the range 
where periodic wake shedding normally occurs (Re 5 200; see Chapter 5):  
the effect of fluid oscillations depends on the relationship between the forced 
fluid frequency and the natural wake frequency: 

(a) If the fluid frequency is low? typically 0.02CT,'d or less, it is reasonable 
to use a "quasi-steady" model in which history is neglected and A, = 1. Equation 
(1 1-58) can then be used for particles in the Newton's law range. Particles with 
lower Re,. generally settle more rapidly (T4), as shown by the numerical results 
in Fig. 11.16. 

(b) At higher frequencies, WR is lower than the value predicted by the 
"quasi-steady" approach, providing that A:d is sufficiently great for vortex 
shedding to occur (H3). The difference is most marked when the fluid frequency 
corresponds to the frequency of wake shedding (see Fig. 5.9). Then WR is typically 
20-30"; lower than predicted by Eq. (1 1-54) (B2: S4), due to resonance between 
the fluid and wake frequencies. A falling particle then shows substantial sec- 
ondary motion, usually following a zig-zag trajectory (S4), and shedding large 
vortices at the driving frequency (B2, Cl). 

(c) For forcing frequencies greater than about twice the natural wake 
frequency. wake shedding is suppressed and the particle trajectory is close to 
rectilinear. The mean settling velocity is then predicted well by Eq. (11-44) 
with the history term included (S4). Schoneborn found little difference between 
predictions using A, = AH = 1, and using the Odar and Hamilton values. The 
difference was most apparent at lower Re, where Eqs. (11-31) and (1 1-32) were 
more reliable. As for free fall from rest, these results applied for Re much higher 
than the range covered in Odar and Hamilton's experiments. For particles 
not in the wake-shedding range (i.e., Re < 130). Eqs. (1 1-31): (1 1-32), and (1 1-44) 
gave the best prediction of WR. This approach also gives the best values for 
the amplitude ratio. for all cases. 

Other simplifications apply under specific conditions. Bailey (Bl) showed 
that history can be neglected in calculating WR at high frequencies, i.e., :Y, >> 1. 
Al-Taweel and Carley (A3) found that the amplitude ratio for particles in liquids 
is given by the creeping flow results in Table 11.2 at low frequency (z, 5 0.2), 
while the ideal fluid result, Eq. (1 1-60) with A, = 1, applies at high frequency 
(z, < 0.002 to 0.01: dependent on y ) .  
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4. Lecitntion 

Levitation is defined as a stable condition in which a particle responds to 
vertically oscillating fluid so that net gravity forces are completely neu- 
tralized and the particle merely oscillates about a fixed position (H12). In 
terms of the preceding analysis, this means FR = 0 (cf. Fig. 11.16). Contrary to 
the predictions of the numerical solutions, Feinman (Fl) found that levitation 
can be caused by sinusoidal oscillations. Equation (11-58) predicts that WR 
becomes zero if: 

Levitation is inconsistent with the assumptions leading to Eq. (1 1-58), since 
WR must change sign during a cycle. Even so, Eq. (1 1-61) appears to represent 
a lower bound on the ,\7,AY, needed to initiate levitation. Krantz et nl. (K2) 
found that levitation conditions were correlated closely by 

Inclusion of the dimensionless history coefficient 'V, gave no improvement 
in the correlation. 

As noted above, the nonlinearity of Eq. (1 1-44) implies that the form of the 
oscillations in L, will also affect the particle motion. If  the oscillations have 
larger upward than downward velocities, the mean upward drag is increased. 
Van Oeveren and Houghton ( V l )  confirmed that particles could be made to 
levitate or move against gravity more readily by "sawtooth" oscillations in 
which c',/ is greater on the upward stroke. The reverse wave form. in which the 
downstroke is more rapid, should increase FR above unity provided that 2\',.\-c,, 

is sufficiently large (Bl,  B6). 

5.  Hent ur~d .MUSS Transfer 

There is conflicting evidence regarding the extent to which imposed vibrations 
increase particle to fluid heat and mass transfer rates (G2), with some authors 
eken claiming that transfer rates are decreased. For sinusoidal velocity variations 
superimposed on steady relathe motion. enhancement of transfer depends on 
a scale ratio A'd and a velocity ratio Af L, ((33). These quantities are rather 
like the scale and intensity of turbulence (see Chapter 10). For Af C ,  < 1 2rr, 
the vibrations do not cause reiersal in the relative motion and the enhancement 
of mass transfer has been correlated ((33) by 

(Sh, - Sh,) Sh, = 1.05[1V - 0.061' 2 h  (0.06 _< h' ;C 0.65), (1 1-63) 

where 
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Vibration then has less than 10°,, effect on Sh for b < 0.2, \vhich expla~ns wh) 
earlier ~or lcers  (B4) failed to detect an effect of vibration normal to the axis 
of translation 

Sinusoidal oscillations of the continuous phase cause levitation or counter- 
gravity motion much more readily for gas bubbles. due to changes in bubble 
volume which cause a steady component in the pressure gradient drag term 
(J l ,  J2). If the fluid motion is given by Eq. (11-49) the pressure in the vicinity 
of the bubble also varies sinusoidally. For normal experimental conditions, the 
resulting volume oscillations are isothermal (P2), and given by (Jl):  

V = V'(1 - c sin ot). (1 1-65) 

where the bubble is at depth H below the liquid surface, the mean pressure 
around the bubble is p. and 

For small c. bubbles have zero mean velocity if 

0 2 ~  = v 2yp, pH. 

This result is valid for Re < 2. At higher Re. problems again arise from the 
nonlinearity of Eq. (11-43), and larger values of 02A are required to cause 
levitation. For Re = 100, conditions for the bubble to have no mean motion 
relative to the continuous phase were correlated (B10) by 

u2A = g f v'3g2 + 2gP;pH. (1 1-68) 

Jameson (J l )  also derived expressions for the amplitude ratio and phase 
shift in creeping flow, based on the assumption that fluid stresses due to the 
velocity and pressure fields do not affect one another, i.e., the drag terms are 
unaffected by volume oscillations. Two limiting cases were considered, cor- 
responding to zero tangential velocity and zero shear stress at the bubble 
boundary. Resulting values for the amplitude ratio and phase shift are given 
in Table 11.2 and shonn in Fig. 11.15, with z, based on the mean bubble radius. 
In the range where the bubble departs most from the fluid motion, mobility 
of the interface should increase the amplitude ratio and phase shift. As a result, 
a fluid particle follows the motion of ambient fluid less faithfully than a solid 
particle (M12). In practice, g is larger than either theoretical value, possibly due 
to shape changes not considered in the analysis (J l )  and other simplifications 
(M2). 

The above results apply to spherical bubbles, and analysis for nonspherical 
bubbles is considerably more complex (P3). Marmur and Rubin (M3) have 
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given an approximate analysis of the motion of spherical bubbles in a radially 
oscillating liquid. Large oscillating bubbles produced by underwater explosions 
have been reviewed by Holt (H9). 

2. Drops 

Chonomski and Angelino (C6) studied chlorobenzene drops in an oscillating 
water column (;- = 1.1. K = 0.8). Over the range of the experiments (50 < Re < 
240: 0.5 < A < 2 cm: 1 < f < 3 s-l) .  W, was a decreasing function of A '  3f.  

An equation of motion was developed in which historq is ignored' [cf. 
Eq. (11-44)]: 

with C ,  estimated from the Hu and Kintner correlation (see Chapter 7). The 
amplitude ratio and mean velocity were well predicted by analytic solutions 
to Eq. (1 1-69), but the general applicability of this result is untested. For high- 
amplitude, high-frequency oscillations, the mean drag on drops may actually 
decrease (Al). 

3. AUass aizd Hea t  Traizsjkr 

Oscillations are often used to improve the efficiency of transfer processes in 
industrial phase-contacting equipment [e.g., see (B7, T3)]. Substantial improve- 
ments in mass transfer rates occur (A3), but these are due to a combination of 
effects including increased hold-up of fluid particles in the column due to the 
increase in mean drag described above, break up of fluid particles to give smaller 
bubbles or drops with increased interfacial area, and improved transfer coeffi- 
cients. Experimental measurements of transfer coefficients on single drops in 
pulsed fluids show an increase in mass transfer with increasing pulsation 
amplitude and frequency (Al), with enhancement increased if U, changes 
direction during each cycle. Qualitatively, the greatest enhancement should 
occur when the imposed frequencl is close to the natural frequency of the 
fluid particle [see Eq. (7-30) (MI I)]. or for bubbles and drops too small or too 
large to undergo shape dilations and secondary motion in steady translation 
through stagnant fluid (see Chapter 7). 

V. ARBITRARY ACCELERATED MOTION 

Apart from the specific classes of motion discussed above. understanding of 
unsteady fluid-particle interaction is not well advanced. Torobin and Gauvin 

' The reason for v,riting the added mass term in this form is not clearly explained 
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(T2) and Clift and Gauvin (C9) have reviewed the relevant literature. There 
have been two distinct approaches to unsteady drag. The first ignores the 
history term completely, and either neglects added mass or assumes A, = 1. 
The drag force is then correlated using an acceleration-dependent C,. This 
approach has some justification for Type 2 motion (see below). However, it 
has been widely used for Type 1 motion also, and resulting correlations tend 
to be specific to the conditions used. Ensuing problems in interpretation are 
exemplified by the well-known work of Lunnon (L9) on spheres accelerating 
from rest. Similar problems were encountered by Schwartzberg and Beckerman 
(S6), who determined the drag on particles following spiral trajectories in 
horizontally gyrating liquids. They assumed A, = 1 and AH = 0, and found 
that the apparent CD was increased by a factor dependent on (l,~~)lrlL',~'dtl, 
whose form suggests that the unsteady terms would better account for the 
additional drag. Acceleration-dependent CD values are generally higher than 
the "standard" values discussed in Chapter 5 [e.g.: see (MI,  R6)]. Some workers 
report anomalously low drag for water drops in air (11, 0 7 )  but this appears 
to result from freestream turbulence and difficulty in accurately determining 
particle accelerations (M4. T2). Small liquid drops in gases can be treated as 
rigid spheres for trajectory calculations (Sl), provided that evaporation rates 
are low and that acceleration is insufficient to cause break up or significant 
deformation. 

The second general approach is based on extension of the creeping flow 
result, as in earlier sections. Corrsin and Lumley's modification (C11) of the 
equation proposed by Tchen (TI) allows Eq. (1 1-43) to be generalized as 

where FD,, L,,. and C,, are orthogonal components of the total drag force 
and of ielocities L R  and U,, respectively. and 

The pressure gradient term has been extended to its full form from the Navier- 
Stokes equation. Equation (1 1-70) has been discussed by Corrsin and Lumley 
(Cll) ,  Hinze (H5). and Soo (S7). It is applicable only if a particle is small 
compared to the scale of velocity variations in the fluid (L8). i.e.. if 

Effects such as lift due to particle rotation or fluid velocity gradients can readily 
be included in Eq. (11-70) if appropriate. The resulting equation of motion is 
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the usual starting point for analysis of particle motlon in turbulent fluids, as 
discussed in Chapter 10. and is also the basis of particle trajectory calculations. 
For rectilinear motion in which Re is initially small. A, and AH can be esti- 
mated from Eqs. (11-31) and (11-32). provided that wake shedding does not 
occur. Lewis and Gaukin (L6) found that this approach gives a good description 
of the motion of particles in a decelerating plasma jet.+ If Re is high throughout 
the unsteady motion, the history term can be neglected, since the flow pattern 
never resembles creeping flow. 

Useful trajectory estimates for high Re can frequently be obtained by simply 
assuming that C ,  takes its standard value and that A, = 1. For example, 
Guthrie et al. (G4) found that this approach gave useful predictions of the 
motion of a sphere projected into a stagnant liquid, even though a cavity 
formed in the particle wake. Prediction of unsteady drag is generally most 
difficult in ranges where the flow pattern changes markedly with Re. Accelera- 
tion delays the laminar/turbulent transition in the boundary layer (C4) and 
thus increases the critical Reynolds number (W3); deceleration has the reverse 
effect. 

Additional difficulties arise when the motion is not rectilinear. Odar (02,  04 )  
measured the drag on a sphere following a circular path in a stagnant liquid. 
If the path diameter was at least 7 times the particle diameter, the drag was 
virtually unaffected by acceleration or curvature of the trajectory. in agreement 
with the approach based on Eq. (1 1-70). However, the added mass and history 
coefficients were both greater than unity (cf. AH < 1 for motion from rest) and 
dependent on the curvature of the trajectory. In addition, a particle moving 
steadily on a circular path experiences "lift" in the outward radial direction 
(03). correlated by a "normal drag coefficient": 

C, = Radial force:'(7i.dZp UR2/8). (1 1-73) 

At Re = 20, C, increased sharply to pass through a maximum of approximately 
0.22 at Re 40, declining to be very small for Re 5 150. Large normal drag is 
probably related to wake development, and similar effects may be expected 
whenever the flow pattern changes markedly with Re. In the critical range, 
lateral acceleration would tend to produce asymmetric boundary layer transi- 
tion, so that significant lift can be anticipated. 

From the examples of experimental studies discussed, it is clear that it is 
impossible to predict with any confidence either the magnitude or the direction 
of the drag on a particle when the relative velocity and acceleration are not 

' This is an unusual case in which v is so high that the history term is significant eyen though 7 
is large. It demonstrates the advisability of evaluating the unsteady drag components before as- 
suming that motion is of Type 2. 
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parallel. Even when motion is rectilinear. accurate predictions are expected 
only for the particular cases discussed. The following general guidelines are 
proposed for calculation of particle trajectories : 

a. Classify ~Motiorz as .'Type 1" 01. ' 'T jpe  2" This implies estimating wheth- 
er terms in Eq. (1 1-70) dependent on relative acceleration are significant. This 
can be done beforehand if rough estimates are available for acceleration and 
velocity during the motion. Alternatively, the trajectory can be calculated 
according to the relatively simple "Type 2" procedure, with the magnitudes of 
the unsteady terms evaluated in the course of the calculations. As a general 
rule, motion of a particle in a gas is usually of Type 2, while that in a liquid is 
almost always of Type 1. 

b. T j y e  1 .Lfotiolz If the acceleration-dependent drag terms are significant, 
Eq. (1 1-70) is recommended for estimating the instantaneous drag. Numerical 
solution is then necessar) (C7). The difficulty lies in estimation of A, and A,. 
If the motion is similar to a case for which experimental results are available, 
reported data should be used [e.g., Eqs. (1 1-31) and (11-32) for motion M hich 
is close to rectilinear. or the results of Odar or Schwartzberg and Beckerman 
for circular or spiral motion]. Otherwise there may be no ready alternative to 
the assumption A, = AH = 1. Errors in the predicted trajectories are especially 
serious when such complications as shedding or asymmetrq of the wake are 
present. If Re is high throughout the motion, it is reasonable to ignore the 
history term. The calculation procedure then becomes the same as for Type 2 
motion. 

c. TJ-pe 2 Motion If the history term in Eq. (11-70) can be neglected, and 
the added mass is either negligible or constant, estimation of particle trajec- 
tories is simpler. The equations for particle velocity form a set of at most three 
first-order ordinary differential equations, given by the scalar components of 

where F, contains body forces (such as gravity), the pressure gradient term.? 
and any significant lift terms. The particle displacement is given by the com- 
ponents of 

Much has been written on the solution of Eqs. (11-74) and (11-75) [see. e.g.. 
(H8, K4, M13)]. frequently without serious consideration of the validity of 
Type 2 simplifications. Approximate methods, avoiding numerical integration, 
are also available for specific types of motion, such as a particle projected with 
arbitrary velocity in a gravitational field (H8. K4). 

The pressure gradient contribution can be significant. even for high ;. [see (D3)] 
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The drag components contain CDC-Ri I L,l, with CD evaluated for Re = d l i , : ~ .  
Some authors have used C,CRi2, or even C,iL7,i2, where CDi corresponds to 
Re, = dURi>v. These simplifications are only valid in Stokes flow, and can lead 
to substantial errors at higher Re [see: e.g., (R7)]. The effect of freestream tur- 
bulence can be included, via the correlations in Chapter 10, provided that the 
turbulence intensity can be estimated. Alternatively, one of the available corre- 
lations for drag in accelerated motion through a turbulent fluid can be used 
[see (C9)], although these are only applicable for limited ranges of experimental 
conditions. 

A l .  
A2. 

C9. 
C10. 
C11. 
D l .  
D2. 
D3. 
E l .  
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Chapter 12 

Formation and Breakup 
of Fluid Particles 

I. INTRODUCTION 

In earlier chapters, we have considered steady and unsteady motion and 
transfer processes for fluid and rigid particles without treating the initiation or 
termination of these processes. This final chapter is concerned with formation 
and breakup of fluid particles. The problems are distinct from those encoun- 
tered in Chapter 11 for the unsteady motion of rigid particles. A single rigid 
particle can be launched, dropped, or suspended in a fluid flow,? but a fluid 
particle must be formed at the same time as it is launched. In keeping with 
earlier chapters, we consider here only cases where single particles or very 
dilute dispersions are generated. This division is necessarily arbitrary, since 
many techniques can be used to produce dilute or concentrated clouds of 
particles. Space limitations have severely restricted treatment, but the reader 
is referred to relevant reviews where these exist. 

11. FORMATION O F  BUBBLES AND DROPS 

Generation of small bubbles and drops is essential in a wide range of phase- 
contacting equipment. In bubble columns, fermentation vessels, extraction 
equipment, etc., bubbles and drops are usually formed by forcing the dispersed 
phase through orifices or a porous sparging device into the continuous phase, 
frequently with mechanical agitation to aid dispersion. A variety of atomizers, 
spray nozzles, and sprinklers have been devised for dispersing liquids into 
gases. In most of these applications, the objective is to produce a cloud of 

See (H16, L14) for reviews on dispersal of solid powders 



322 12. Formation and Ereakup of  Fluid Particles 

small fluid particles. Since we are concerned here only with single particles, 
discussion is limited to simple techniques: capable of producing single or widely 
spaced drops or bubbles. Mechanically agitated or rotated delivery devices are 
not considered: nor are devices using impinging jetsi impaction: ultrasonic or 
mechanical vibrations, electrical forces, etc. For general reviews of spraying, 
atomization, and injection devices? see (GZ, G6, H16, L7, 0 1 .  S19). 

A number of workers (H11. J1. K2, K6. K15, L7. S25, V1) have reviewed the 
formation of bubbles or drops by flow through orifices or nozzles. Here, we 
consider only injection at modest flow rates through single orifices of diameter 
do,  less than about 0.65 cm. At high velocities and for large orifices, significant 
jetting and multiple particle formation occur (J2, S25). Sections 1 and 2 are 
concerned only with single orifices of circular cross section facing in the flow 
direction. i.e., upward for p, < p and downward for p, > p. The continuous 
phase is stagnant except for motion caused by flow of the dispersed phase. 
More complex situations are treated briefly in Sections 3 and 4, and mass 
transfer during formation is discussed in Section 5. 

1. Bubble Formation 

As a bubble is formed by flow of gas through an upward-facing orifice. the 
pressure within the bubble decreases due to upward displacement of its cen- 
troid and to decrease in the capillary pressure, 2alr. Thus, the gas flow rate 
may vary with time. If there is a high pressure drop restriction, such as a long 
capillary, between the gas reservoir and the orifice, the pressure fluctuations 
due to forming bubbles are much smaller than the pressure drop between the 
gas reservoir and the orifice. In this case, the gas flow rate can be taken as 
constant. Otherwise, account must be taken of both the "line" pressure drop 
and the reservoir volume. If the volume of the reservoir or "plenum chamber" 
upstream of the orifice is very large by comparison with the volume of bubbles 
being formed, the varying gas efflux will not significantly change the pressure 
in the chamber. This corresponds to the other limiting case of bubble formation 
under constant pressure conditions. For conditions intermediate between the 
limits of constant flow and constant pressure, the chamber volume I/,, must be 
taken into account. Unfortunately, some workers have failed to report the 
characteristics of their orifices and chambers so that their results are hard to 
interpret. 

Thus bubble formation at an orifice is a surprisingly complex phenomenon. 
For intermediate conditions and a perfectly wetted orifice, the volume of the 
bubble formed may be written?: 

+ Even this list is not alwals complete. For example, if the orifice is a tube projecting into and 
poorl) ~ e t t e d  by the liquid. the outer tube diameter is also important (S2). 
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where Q is the time-mean flow rate? K the "orifice constant," and H the sub- 
mergence. For most practical purposes? p, << y and p, can be omitted. Usually 
p, can also be removed (D5), since p, << p for bubble formation except for 
cases, such as high pressure formation: where the momentum of the incoming 
gas must be considered (L2). 

a. Tlzeoretlcal -b'oclels The many models proposed to describe bubble 
formation in liquids are summarized in Table 12.1. All are mechanistic in the 
sense that they are based on a sequence of events suggested by photographic 
observation. All depend on some form of force balance for predicting one or 
more stages in bubble growth. Almost all approximate the bubble as spherical 
throughout the growth period. The simplest group may be termed "one-stage 
models." In these, bubbles originating at the orifice are assumed to grow 
smoothly until detachment, which occurs when the rear of the bubble passes 

TABLE 12.1 

Theoretical Models for Bubble Formation at a Submerged Orifice 

humber 
Ref. Conditions of stages Forces ~nciuded" Comments 

Constant f l o ~  
Constdnt f l o ~  
Constant flow 
Constant flov 
Constant llov 
Conctant flow 
Constdnt flow 
Conxant f l o ~  
Constnnt flov, 
Constnnt flow 
Constant flow 
Constant floa 
Constant f l o ~  
Constant flow 
Constant pressure 
Constant pressure 
Constant pres\u~e 
Constant pressure 
Constant pressure 
Internledlate 
Intermediate 
Intermediate 
Intermcdlate 
lntermedldtc 
Intermedlntc 

1 B. Dd, I. P. S 
1 B. Dd, I. P. S 
I B. D a  
1 B. Da, Ia 
1 B. la  
1 B, Ib 
1 B. lab, S, W 
2 B. Da. S 
2 B. Da, la  
2 B. Da, la. S 
2 B, Dc. Ib. S, W 
2 B. la, M 
2 B, Dc. la. S 
I B. Dbc. S 
1 B. Da 
I B. Da. la  
1 B. Ia 
2 B. Da, Ia. S 
1 B. la  
2 B. D. Ia, S 
3 B. I 
- B. Ib. W 

1 B. Db. M, P. S 
1 B. la. M 
1 B, Ic. S 

Same as (HE) but includes cross flow 
Low flou rates 
Higher flow rates 
High flow rate. low-viscosity liquid 
High floa rate, lory-viscosity liquid 
Low-viscosity fluid 

Also cxtendcd to collorving stream 
Hemispherical in first stage 

Low flov, 
High flow 
High Row, Ion-~iscosity liquids 

Extension of (D6) 

Shape or~ginalij hemispherical 

Shape iarles: numer~cal solution 

" B: buoyancy; D :  drag (a:  Stokes: b: Hadamard: c:  empirical expression: d :  kept as constant 
to fit to data): I: inertia (a:  C ,  = 1 1  16: b:  C, = 1 2 ;  c: C ,  kept as constant to fit to data): M: gas 
momentum: P: excess pressure term; S: surface tension force: W :  wake effect from previous bubble. 
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the orifice or mhen buoyancy exceeds the retarding forces. In "multiple-stage 
models," it is assumed that there is a basic change in the groath mechanism 
at one or more points in the growth process. Typically, it is assumed that the 
bubble resides on the orifice during the first stage, and that the second stage 
begins at "lift-off." with the bubble subsequently fed by a tongue of gas from 
the orifice. There is some photographic evidence for this sequence of events 
[e.g. (D5, K17)]. 

In view of the complexity of the bubble formation process, it is not surprising 
that the models are successful only under restricted conditions. The simplest 
models, and the only ones to give simple analytic expressions for the volume 
of the bubble produced. apply for constant flow formation. All the models 
have inherent limitations: 

(i) The assumption that bubbles remain spherical is reasonable for most 
low M systems, but can be significantly in error for large M systems (M2, W8). 

(ii) Assumptions regarding the sequence of events, in particular the criteria 
for such events as lift-off and detachment, are often arbitrary. In some models, 
force balances are applied throughout, while in others they are applied only as 
a means of predicting the volume at the end of one stage in growth. 

(iii) When surface tension forces and contact angles are included, the a and 
8, used are invariably determined under static conditions, even though bubble 
formation is a dynamic process. 

(iv) Expressions used for drag and added mass are at best approximate. 
No allowance is made in any of the models for history effects, which may well 
be important since p >> p, (see Chapter 11). 

(v) Terms such as the updraught due to the wake of the preceding bubble 
are generally ignored, but may be important. Individual models also ignore 
other terms (see Table 12.1), often without adequate justification. 

b. Constant Flow Conditions Despite the shortcomings noted in many of 
the models, useful results can be obtained for constant flow conditions by 
judicious combination of dimensional analysis, force balances, and empirical 
results. Neglecting p, and p, for the reasons given above and noting that K, 
T/,, and H are not required when Q is constant, we write the reduced form of 
Eq. (12-1) in terms of a dimensionless bubble volume as 

V' = Vg Ap/do,o = f (Q', p', M), (12-2) 

where Q' is a dimensionless flow rate: 
5 6  1 3  Q' = (p/d,,o) g Q (12-3) 

and p' is a dimensionless viscosity: 
- 

P' = 1 , ~  P~OP.  (12-4) 

For bubble formation with p, << p, Ap is taken as p. However, V' is defined in 
terms of Ap to facilitate its interpretation as the magnitude of gravitational 
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forces relative to surface tension forces. and to aid comparison with drop for- 
mation. If it is assumed that bubbles remain essentially spherical throughout 
formation, then a and the orifice diameter do, enter only as d,,a which can be 
treated as a single quantity. Hence can be omitted, so that all the simple 
models take the form 

V' = f (Q', p'). (12-5) 

For very low gas rates, i.e., Q' + 0, 

where I), is the Harkins correction factor (HS) given in Fig. 12.4 and discussed 
below. This correction factor makes allowance for dispersed phase fluid re- 
tained at the orifice when detachment occurs. Equation (12-6)' is frequently 
employed in measuring surface and interfacial tensions by the bubble forming 
or "drop-weight" method [e.g., see (D8)]. 

At high flow rates with liquids of low viscosity (i.e., relatively large Q', small 
p'), a simple equation developed by Davidson and Schuler (D6) is commonly 
used, i.e., 

V' = 1.378(Q')1,2, (12-7) 

or, in dimensional form, 

V = 1.378Q1.2g-0.6. 

The numerical coefficient in Eq. (12-7) is obtained using an added mass coeffi- 
cient, C,, of 11/16, for a spherical bubble forming at a perforation in a flat 
plate. For a nozzle protruding into a fluid C, = 1,2 and the coefficient becomes 
1.138 (D3, W2). An early empirical correlation (V3) gave a value of 1.72. Since 
the mean frequency of bubble formation is Q/V, Eq. (12-8) predicts that the 
frequency becomes only weakly dependent on flow rate at relatively high flow. 
In practice, the dependence becomes even weaker than the -0.2 power pre- 
dicted, with the mean frequency of bubble formation becoming essentially 
independent of Q (e.g., see Fig. 12.2). Hence, for bubble formation in liquids of 
low viscosity like water, it is common [e.g. (Vl)] to describe formation at low 
flow rates where Eq. (12-6) applies as "constant volume formation" and that at 
quite high Q as "constant frequency foimation," with an "intermediate region" 
for the range where neither result applies. For viscous liquids (high p') and 
intermediate Q', another equation developed by Davidson and Schuler (DS) 
gives 

V' = 6.48(Q'p')0.75. (12-9) 

Ruff (R11) has developed a semiempirical model which approximates to 
Eqs. (12-6), (12-7), and (12-9) in the appropriate limits. It may be regarded as 

+ For a projecting nonaetted nozzle, the outer diameter of the tube should be used in place of 
the inner (S2) in evaluating V'. 
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an improvement on the model of Kumar and Kuloor (K15) with a better 
expression for the drag coefficient and an empirical correlation rather than an 
arbitrary model to describe the second stage of growth. Two successive stages 
in bubble formation are considered, with 

The bubble volume achieved in the first stage is predicted from a force balance: 

VI1 - 0.0578(VI1)-' 3(Q')2 - 2.417(V1)-I 3Q'p' - 0.204Q'v'p'Qf/~,' = n, 

(12-11) 

where the first term arises from gravitational forces, the second results from 
inertia and drag, the third and fourth from drag, and that on the right-hand 
side from surface tension. The volume added in the second stage was correlated 
empirically as 

V,' = (Q')"' + 4.0(Q'p')314. (12-12) 

Dimensionless bubble volumes predicted by solving Eq. (12-11) numerically 
and adding the second stage increment are plotted in Fig. 12.1 as functions of 
the dimensionless flow rate Q', with p' as parameter. It is important to note 
that p' is constant for a given orifice in a given gas-liquid system. Hence, Fig. 
12.1 or Eqs. (12-10) to (12-12) give a convenient means of predicting bubble 
formation in any liquid-gas system whose properties are known. Over most of 

lo-? 10.' 1 10 100 1000 

FIG 12 1 Variation of dimensionless bubble volume, V = VgAp d , , ~ ,  with dimensionless gas 
Ilou rate Q = ( p  d , , r~ )5  6g1 3Q for bubble formation under constant flow condlt~ons predict~ons of 
Ruff model uith limiting cases also shoun 



11. Formation of Bubbles and Drops 327 

the range of Q', the correlation agrees within 115% with most data appearing 
in the literature [e.g. (B5, D5. D6, K13, K16, R2, S11. S22, W8)]. Discrepancies 
for bubbles formed in liquid metals iA2, S2) are more serious, possibly because of 
experimental difficulties, surface effects, or bubble deformation at the low 
values of M characteristic of liquid metal-gas systems. Also shown in Fig. 12.1 
are lines corresponding to Eqs. (12-6) (12-7). and (12-9). These simplified 
equations may be viewed as limiting cases, with the ranges of Q' and p' for 
their application indicated by Fig. 12.1. 

Predictions of Ruff's model for air bubbles forming in water are shown in 
dimensional form by the two solid lines in Fig. 12.2 for two commonly used 
orifice diameters, 0.63 and 0.32 cm (1 14 and 118 inch). Some data are also shown 
for the larger orifice and agreement is generally very favorable. Note that the 
orifice diameter plays an important role only at low Q, where surface tension 
provides the major restraining force. 

1 10 100 1000 
Air f low rate, Q (crn3/5) 

FIG. 12.2 Bubble volume as a function of flow rate for air injection into water at 20°C. Curves for 
constant flow obtained from Ruff model. Eqs. (12-10) to (12-12): (1) do, = 0.63 cm, p' = 1.5 x 
(2) d,, = 0.32 cm. 1' = 2.1 x Experimental results shown for constant flow. intermediate, and 
constant pressure conditions. 

Deviations from the theories tend to occur at large Q where the frequency 
of bubble formation becomes essentially independent of Q, whereas theory 
predicts f x Q - 0 . 2 .  For example, the frequency in air-water systems levels out 
at about 17 s-' as shown in Fig. 12.2. This almost certainly results from the 
updraught caused by preceding bubbles, ignored in almost all the models. At 
still higher flow rates, bubble pairing occurs at the orifice, when a bubble 
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coalesces with that just formed before it can escape. Incipient pairing occurs for 

where the constant coefficient C has been given kalues from 1.3 to 6.2 (W2, W8). 

c. Constant Pressure Corzditiorzs Bubble formation under constant pres- 
sure conditions is of practical interest for sieve trays and other multiorifice 
distributors. As noted above, the flow rate through the orifice varies with time. 
The "orifice equation" may be written 

where u is the instantaneous radius of the forming bubble and p,, the pressure 
in the chamber behind the orifice. In general, Eq. (12-14), or a more complete 
orifice equation like that proposed by Potter (PlO), must be solved simulta- 
neously with a force balance equation to predict initial bubble volumes. Models 
are outlined in Table 12.1. Due to the added complexity of the formation pro- 
cess, analytic results cannot be summarized neatly. Dimensional quantities K 
and p(= pch - pgH) are required in addition to those needed for the constant 
flow case, so that dimensionless presentation of the results also becomes 
cumbersome. Furthermore, fewer experimental studies have been reported for 
constant pressure than for constant flow conditions. 

If accurate predictions of bubble volume are required, the original models 
should be consulted. The Marmur model (M2) appears to work well for low- 
viscosity liquids over a broad range of I/,, and Q, but is too complex to be 
useful for normal predictive purposes. Of the relatively simple models, the 
most reliable are those of Lanauze and Harris for low p' (L3. L4), and those 
of Kumar and Kuloor (K15, S3) and Davidson and Schiiler (D5) for viscous 
liquids. 

For many purposes, approximate predictions suffice, and may be obtained 
from the results for constant flow formation using some simple guidelines. 
Bubbles obtained under constant pressure tend to be larger than under constant 
flow conditions at the same time-mean flow rate. Q, because most of the flow 
with variable Q occurs during the latter stages of formation. It is convenient to 
define a ratio of bubble volumes formed under constant pressure and constant 
flow conditions as 

For large Q', p' + 0, and large values of the dimensionless orifice constant, 

Y approaches approximately 1.5 (D6). As K ' +  0, constant flow conditions 
are approached and Y + 1. For intermediate and low flow rates. Y may be as 
high as 10, as shown by the curve for approximately constant pressure conditions 
in Fig. 12.2. 
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d. Interr.lzediate Co~lditiolzs The importance of the chamber volume: T/,,, 
was first recognized by Hughes et 01. (H23) and Davidson and Amick (D7). 
If I.',, is relatively small and the orifice constant relatively large, then both the 
flou. rate through the orifice and the pressure in the chamber vary with time. 
Practical interest, for orifices in such devices as sieve trays in phase-contacting 
equipment: lies as much in reverse passage of the continuous phase ("weeping") 
as in bubble formation. 

Models used to describe bubble formation under intermediate conditions 
are listed in Table 12.1. Generally, they must be solved numerically. Reasonable 
agreement has been obtained (K18, M2: M5) for low-viscosity liquids so long 
as "pairing" at the orifice did not occur:In addition to pairing, six other flow 
regimes have been identified, and charted for formation in water at three sizes 
of orifice (M6). Following Hughes et 01. (H23), many workers have used a 
capacitance number 

lvch = 4g Ap l/,h/71d,r2pp~2: (12-17) 

where c is the velocity of sound in the gas, but in other studies [e.g. (K17)] 
this group was found to have no significance. In general, bubbles produced 
under intermediate conditions are intermediate in size between those formed 
at constant pressure and constant flow at the same Q. The results in Fig. 12.2 
for a 0.63 cm diameter orifice illustrate the effect of increasing chamber volume 
and thus going from constant flow to constant pressure. 

e. Bubble Fornzatiorz irz Fluidized Beds As noted in Chapter 8: the surface 
tension between the bubble and dense phase of a fluidized bed is generally 
taken to be zero. Equations (12-10) to (12-12) can be rewritten as 

V" = Vl" + V2", (12-18) 

Vlr' - 0.0578(Q")2(V")-2 - 2.417Qf'(V")- - 0.204(Q")t.5(V")- = 0, 

(12-19) 

and 

V2" = (Q" ) ' , ~  + ~.O(Q")O.'~, 

where 

T / l 8  = vg/l12 

and 

Hence bubble formation in fluidized beds may be predicted in a manner similar 
to that emplojred for liquids using an effective dense phase kinematic viscosity v. 
The equations reduce to the Davidson and Schiiler forms, Eqs. (12-7) and (12-9), 
for large and small Q", respectively, and show reasonable agreement with 
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experimental results (H7). For bubble formation: it is best to take the effective 
kinematic viscosity of the bed as about 0.5 cm2,s, a mlue an order of mag- 
nitude less than the value derived from bubble shape measurements (see 
Chapter 8). 

At flow rates greater than about 100 cm3/s, the frequency becomes essen- 
tially constant at a value of about 20 s-': close to the value for bubble for- 
mation in real liquids (B4, H7). The volume of bubbles formed, however, is 
generally less than Q . j  due to leakage of gas into the dense phase (N3). The 
length of jets, when these occur, feeding forming bubbles is correlated (M12) 
by the equation 

Some effect of chamber volume has been demonstrated (H21) for low pressure 
drop orifices, as for bubbles forming in liquids. 

2. Drop Formatiotz 

a. Regimes of Je t  Fort?lation When a liquid of density p, issues steadily 
from a horizontal orifice into an immiscible fluid of density p, drops may form 
at the orifice or at the end of a disintegrating cylindrical jet as shown sche- 
matically in Fig. 12.3. At low flow rates, formation occurs close to the orifice, 
as for gas bubbles. As Q is increased, a critical flow, Qj,,: is reached at which a 
jet forms. At higher flow rates, drops form by jet breakup. At flow rates between 
Q,,, and a value labeled Q,,,, break up occurs by Rayleigh instability (i.e., 
axisymmetric amplification of surface perturbations). while the jet length in- 

Mean o r i f i ce  Velocty, u,, ( c m / s )  
25 50 75 100 

I I I I 

FIG. 12.3 Typical jet development for injection of a liquid through an orifice into another liquid: 
experimental results of Meister and Scheele (M10) for heptane injection into water with do, = 
0.16 cm, ~ i ,  = 0.00393 poise, p, = 0.683 gm'cm3, a = 36.2 dynescm. 
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creases with increasing Q. Above Q,,,, the jet length decreases again, and 
breakup results primarill from growth of asymmetric disturbances. The jet 
length decreases until, for Q > (2,;. the liquid shatters at or very near the 
orifice to give many droplets of nonuniform size. Atomization of liquids by 
forcing through an orifice ("pressure atomization") is treated in a number of 
reviews [e.g. (B6, F6, G2, G6, H16)I. Only drop formation at much lower 
flow rates is discussed here. 

The condition for incipient jetting has been derived by Scheele and Meister 
(S4) as 

where V is the volume of drops which would form if jetting did not occur, 
obtained from Eq. (12-28) below. The numerical coefficient, 1.36, applies when 
the velocity profile in the jet at the orifice is parabolic; a coefficient of 1.57 
should be used for a flat velocity profile. 

b. Formation at L o w  Flow Rates Drop formation with Q < Qj,, occurs at 
the orifice, and is qualitatively similar to bubble formation. Quantitative 
differences arise because the momentum and viscosity of the entering fluid 
are often appreciable for drops, but rarely for bubbles. The momentum effect 
is particularly important, and causes drops to be smaller than those formed 
under near-static conditions (Q' + 0) where 

which is the dimensional form of Eq. (12-6) given above for bubbles. The 
Harkins factor, $,, accounts for the fact that a residual drop remains at the 
orifice when detachment occurs, causing the volume of the detached drop, V ,  
to be less than the volume at which the net gravity force exactly balances the 
interfacial tension forces. Smoothed values of $, (H5) are shown in Fig. 12.4 
as a function of do,, V1 3 ,  together with the fitted equations (H13, L5): 

If the continuous fluid does not wet the orifice material, corrections must be 
made as for bubbles. 

As Q' is increased slowly, modifications in shape occur (H3). As for bubble 
formation, many equations and models have been proposed for predicting 
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FIG. 12.4 Harkins' correction factor for formation of drops or bubbles, accounting for residual 
volume retained at the orifice when detachment occurs. 

initial drop volumes. Some of these [e.g. (G8, H9, N1, N4)] are almost entirely 
empirical. Even though these empirical approaches are simple to use and have 
enjoyed some popularity, they should be employed with caution outside the 
range of variables investigated by the workers who derived them. For example, 
some correlations include no viscosity term. and are therefore very unlikely 
to apply to viscous liquids. Several more mechanistic, semiempirical models 
have also been proposed for drop formation in liquid-liquid systems [e.g. (H13, 
K9, R14, S4)]. Because liquids are essentially incompressible. drop formation 
corresponds closely to bubble formation under constant flow conditions. Many 
of the underlying ideas are the same as those in models for bubble formation, 
and the same criticisms apply. For example, the drop is generally assumed to 
remain spherical throughout formation. Formation is again usually treated 
as a two-stage process, as revealed by photographic observation (S4): the first 
stage terminates at "lift-off," predicted by a force balance, while the second 
stage corresponds to "necking" and eventual severing of the liquid filament. 
Kumar and co-workers (K14, K15, R5) have attempted to establish models 
general enough to cover both drop and bubble formation with constant flow. 
Grigar et al. (G7) give a method for calculating pressure drops across orifices 
or nozzles, accounting for both hydraulic and drop formation effects. Humphrey 
et al. (H25) give a detailed experimental analysis of flow patterns in forming 
drops [see also (Sl)]. 

Unfortunately, none of the models for drop formation can be recommended 
with complete confidence. Most of the experimental results for liquid-liquid 
systems have been obtained with water as one phase and a low-viscosity organic 
liquid as the other. Under these conditions, especially at modest flow rates 
(tl,, < 15 cm s. a number of the models predict drop volumes within 15-20%. 
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Scheele and Meister (S4), for example. give 

where the terms account. respectikely, for buoyancy. interfacial tension. Stokes' 
drag, momentum, and volume added during necking. The factor 16,3 in the 
third term assumes a parabolic velocity profile in the orifice. and should be 
replaced by 4 for a flat velocity profile. Although appreciable discrepancies may 
exist (D9. K9) and the prominence given to $,, derived under static conditions. 
is questionable, Eq. (12-28) appears to be the best compromise between accuracy 
and ease of use for drop formation with Q < Q,,,, especially for low-viscosity 
systems. 

c. For~zatiorz by Je t  Disirztegratiorz With Q,,, < Q < Q,,, drop size is gov- 
erned by jet stability. Rayleigh (R6) was the first to apply linearized stability 
analysis to the growth of small axisymmetric disturbances on a cylindrical jet, 
and his treatment has been extended to account for viscous and nonlinear 
effects [see, e.g. (L11, M9, P3. T8, Yl)]. For most purposes, the linearized theory 
is surprisingly accurate for Q,,, < Q < Q,,. It is assumed that the amplitude 
of disturbance grows as 

where a& is the initial amplitude. i, the wavelength, and x the distance along 
the jet. Values for the "growth rate," a, can be obtained by solving the fourth- 
order determinant equation derived by Tomotika (T8), or by an approximate 
procedure proposed by Meister and Scheele (M9). The drop size follows as 

where i,, is the "most dangerous" wavelength, corresponding to disturbances 
with the fastest growth (i.e., maximum 2). Rayleigh considered a water jet 
issuing into air, and by neglecting the viscosity of both phases obtained i, = 

4.54, and d ,  a 1.9d0,, results which are in reasonable agreement with experi- 
mental findings. Other limiting cases can also be obtained (M9) from the 
Tomotika equation. The linearized analysis has been extended to breakup of 
stationary liquid threads (R13) and threads undergoing extensional flow (M14). 

Meister and Scheele (M10) examined phenomena determining the jet length, 
L,,,. For Q somewhat greater than Q,,,, L,,, can be predicted from the linearized 
stability theory as the distance required for a symmetric disturbance to grow 
to an amplitude equal to the jet radius.' For the apparatus and conditions 

The analysis also explains why jets are not normally observed for bubble formation at an 
orifice. When a gas is injected into a liquid, unstable disturbances amplify to the radius of the 
orifice within a very short distance (M10). Some data on jet lengths for gas floa into liquids have 
been published (P4). 
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investigated the initial amplitude was well approximated by 

crb = (do, 2) exp [ - 6.0) = 0.00124d0,. (12-31) 

At somewhat higher (2, drops in many liquid-liquid systems merge since their 
terminal velocity is less than the jet velocity; as a result: the jet lengthens 
abruptly. This occurs. for example, at a f l o ~ -  rate of about 0.7 cm3,1s for the 
experimental results shown in Fig. 12.3. Sinuous disturbances are shown to 
be unimportant at low Q: but at higher Q they account for the attainment of 
a maximum jet length since they are capable of ejecting drops sideways. out 
of the path of the oncoming jet. Mass transfer affects jet breakup ifconcentration 
variations are sufficient to cause significant gradients of interfacial tension (B9). 

For low-viscosity liquid-liquid systems, tables presented by Hozawa and 
Tadaki (H19) offer an alternative means of predicting initial drop sizes for 
Qjet < Q < Qat This method also has the advantage of giving an estimate of 
the spread in drop sizes caused by pairing and other complex interaction effects. 
Empirical expressions are also available for predicting the size of drops produced 
by jet break up [e.g. (P2, TI)]. 

3. InfIlierzce of' OriJice Slzape and Orientation 

Kumar and Kuloor (K15) have surveyed work on the influence of orifice 
shape and orientation. For very low flow rates, where surfice tension effects 
are dominant, bubbles appear to form from an equisided orifice, such as an 
equilateral triangle or regular hexagon, as from the inscribed circular orifice. 
At higher flow rates, an orifice with a shape not too far removed from circular 
gives roughly the same bubble volume as the circular orifice of the same area 
at the same flow rate. Irregular geometries, such as elongated rectangular slots, 
show more complex behavior. 

Inclining an orifice may increase or decrease the volume of bubbles formed, 
although the effect of orientation is often rather small (S22). Kumar and Kuloor 
(K15) extended their two-stage model to an orifice inclined at an arbitrary 
angle to the horizontal. Equations are given both for constant flow and constant 
chamber pressure, and agreement with experiment is favorable. Analogous 
equations are suggested for drops forming at inclined orifices. 

4. In jue~zce  of' Flow of Continuous Fluid 

If the continuous fluid has a net vertical velocity component, the additional 
drag causes earlier or later detachment and hence reduces or increases the 
volume of particle formed according to whether the drag force assists or impedes 
detachment. Significantly smaller bubbles or drops can be produced by causing 
the continuous fluid to flow cocurrently with the dispersed phase (Cl). 

Horizontal components of velocity also tend to affect the volume of bubbles 
and drops produced at an orifice. At low Q there is little effect, but larger bubbles 
tend to be produced as the horizontal mean velocity is increased at intermediate 
Q (S22), presumably because of a reduction in the updraught effect noted above. 
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Mass transfer during formation of drops or bubbles at an orifice can be a 
very significant fraction of the total mass transfer in industrial extraction or 
absorption operations. Transfer tends to be particularly favorable because of 
the exposure of fresh surface and because of vigorous internal circulation during 
the formation period. In discussing mass transfer in extraction, it has become 
conventional (H12) to distinguish four steps: (1) formation: (2) release, (3) free 
rise or fall, (4) coalescence. Free rise or fall has been treated in previous chapters. 
Steps 1 and 2 are considered here. 

By making mass transfer during coalescence negligible and by varying column 
heights, one can determine mass transfer during formation and release by 
extrapolation to zero column height. However: it is difficult to apportion this 
transfer between formation and release. In the period immediately after detach- 
ment, mass transfer rates may be high due to internal circulation: shape oscil- 
lations, and acceleration. Theoretical models have been proposed for formation, 
but not for release. Empirical correlations also exist for the forination step, 
but usually include transfer during release. We consider here models for "slow 
formation," i.e., formation without internal circulation, and "fast formation" 
in which the momentum of the entering fluid causes circulation within the 
forming bubble or drop. Both situations correspond to flow rates below Qjet .  

a. Slou Formation The most realistic models for slow formation are based 
upon one of two assumptions: "surface stretch," in which the fluid at the 
interface is assumed to remain there throughout formation, and "fresh surface," 
in which fresh fluid elements are assumed to arrive at the interface to provide 
the increase in area. The interfacial area during formation is assumed to be 

A = AR + Ptn, (1 2-32) 

where AR is the surface area of the residual drop or bubble left at the orifice 
after detachment. Values of n of 2 3 (R4) and 1 (H10) have been reported for 
drop formation at constant flou rate. Combining Eq. (12-32) with Eq. (7-51) 
or (7-52) yields - 

G = 2 B A f , { 9  nt,, (12-33) 

where A, is the surface area of the drop or bubble at detachment and t ,  is the 
duration of the formation process. Values for the constant B are given in 
Table 12.2 Equation (12-33) can be used when resistance in the dispersed 
phase controls if kA is replaced by (m), and 9 by 2,. The predicted values 
of kA are not strongly sensitive to 17. and differ little between the two models. 
Experimental data are not sufficiently accurate to differentiate between them, 
and good agreement has been found for drops with the controlling resistance 
in either phase as long as there is no circulation during formation (G9, H12, 
P8, P9, R4). Corrections have been given to account for changing concentration 
within the forming drop (W3) and for curvature of the interface for very small 
drops (N2). 
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TABLE 12.2 

Models for Transfer during Sloa Format1011 of 
Bubbles dnd Drops 

Surface stretch model: 

For i z  = 1, A, = 0:  B = 0.577. For n = 3 .  A, = 0: B = 0.655. 

Fresh surface model: 

For n = 1. .4, = 0:  B = 0.667. For 11 = 3 ,  A,  = 0:  B = 0.737. 

b. Fast Forination On the basis of flow visualization. Humphrey et al. 
(H26) proposed that circulation occurs in a forming drop if 

where d, is the equivalent diameter of the drop at detachment and the effective 
viscosity is 

Circulation increases transfer, and two models have been proposed. Zheleznyak 
(22) assumed that the fluid from the orifice moves along the axis of the drop to 
the stagnation point, and then travels with the orifice velocity, u,,, back to 
the base of the drop and into the interior. If the drop is spherical, the instan- 
taneous mass transfer product with the external resistance controlling is 

If it is assumed further that the surface area of the residual drop is negligible 
and that formation occurs at constant flow, the time-average product is 

Equation (12-37) correctly predicts the effect of do, and Q, and Zheleznyak 
found that it agreed closely with his own data. Although proposed for the 
external resistance, Eq. (12-37) should also apply to the internal resistance if 
written in terms of dispersed phase properties. 

Siskovic and Narsimhan (S14) modified the model of Handlos and Baron 
discussed in Chapter 7, using an estimate for internal circulation, to obtain 
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for the controlling resistance in the dispersed phase. Agreement with their data 
was satisfactory when the constant was reduced from 0.01 to 0.0062. 

c. Enzpirical Cor.relations Skelland and co-workers proposed empirical 
equations for transfer during formation and release. with the mass transfer 
coefficient based on the arithmetic mean of the driving forces at the beginning 
and end of the whole process. For the continuous phase (S16): 

while for the dispersed phase (S17) 

where d, and A,  refer to a sphere with the same volume as the drop at detach- 
ment. Equations (12-39) and (12-40) should be used with caution outside the 
limited range of properties covered by the original experiments. 

d. EfSeect of SuI.face Actice Agents Skelland and Caenepeel (S15) added 
surface-active materials to examine their effect on transfer during formation 
and coalescence. By comparison with Eq. (12-40), addition of surfactant reduced 
(G),/A, by a factor of five during formation with dispersed phase resistance 
controlling, but increasing surfactant concentration returned the transfer rate 
almost to its value in the pure system. No quantitative explanation for this 
behavior is available. As in the work of Rajan and Heideger (Rl), surfactants 
had relatively little effect when the resistance in the continuous phase controlled, 
reducing D ~ A ,  by at most 50'2,. 

Bubbles, drops, and solid particles are of importance in many processes, 
such as boiling, condensation, sublimation, crystallization, cavitation, elec- 
trolysis, and effervescence, in which a change of phase occurs. A detailed review 
of these subjects is beyond the scope of this book, but a few basic points and 
useful references will be given. 

All the above processes involve an initiation stage. called nucleation, followed 
by particle growth. Both homogeneous and heterogeneous nucleation are 
possible, although the latter is generally more important, except in certain 
processes in the atmosphere or in ultrapure systems with large driving forces. 
The surface tensions of pure liquids are so high that preexisting nuclei must gen- 
erally be present for vapor bubbles to form in cavitation, boiling, or electrolysis. 
Frequently microscopic scratches, pits. or crevices on solid surfaces trap gas 
pockets at which vapor bubble growth may begin. The equilibrium diameter 
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d,, of a spherical bubble at a point in a liquid where the local pressure is p, is 

d,, = 4a:(pV + p, - PI): (12-41) 

where p, is the partial pressure of any noncondensable gas and p, the vapor 
pressure of the liquid at the given temperature. Bubbles smaller than d,, decrease 
in size while larger pockets grow. Growth may be promoted by lowering the 
local p,: as in cavitation or effervescence, or by raising p ,  as in nucleate boiling. 
In atmospheric nucleation, nuclei are commonly provided by sodium chloride 
or potassium iodide crystals or by airborne dust or droplets. Microscopic solid 
particles may also be important for heterogeneous nucleation in liquids or 
at liquid-liquid interfaces. [For discussions and reviews of nucleation, see 
(Bl, B10, C4: H15, H16, H18, K5: R9, Zl).] 

Bubble growth in vaporization is usually controlled by diffusion of mass 
or heat, although chemical steps can be rate-controlling for electrolytic processes 
(D2). Thorough reviews of diffusion-controlled bubble growth are available 
(Bl, H20). Theoretical treatments [e.g. (F4, P7: S8)] generally consider spherical 
symmetry with spherical or hemispherical bubbles in a liquid of large extent 
and fluid properties assumed uniform within each phase, although extensions 
have been made, e.g., to show the effect of other contact angles (B8) and bubble 
translation (R10). Sideman (S10) reviewed studies of heat transfer to drops 
and bubbles undergoing simultaneous change of phase. 

The growth and collapse of cavitation bubbles is commonly described by 
considering irrotational expansion of a spherical cavity in an incompressible 
liquid of infinite extent, subject to the unsteady form of Bernoulli's equation 
(B3, P5). Effects of compressibility and bubble migration must also be considered 
for oscillating bubbles produced by underwater explosions (B3, C5). 

A horizontal interface between two fluids such that the lower fluid is the less 
dense tends to deform by the process known as Rayleigh-Taylor instability 
(see Section 1II.A). Spikes of the denser fluid penetrate downwards, until the 
interface is broken up and one fluid is dispersed into the other. This is observed, 
for example, in formation of drops from a wet ceiling, and of bubbles in film 
boiling. For low-viscosity fluids, the equivalent diameter of the particle formed 
is of order o,g Ap. 

Various experimental techniques have been devised for introducing relatively 
large single drops or bubbles into liquids. The most common method is inversion 
of a cup, immersed in the fluid for p, < p or at the surface for p, > p. Other 
vartants are opening a shutter (C6), withdrawal of a solid cylindrical tube (Wl), 
and bursting of a stretched balloon containing the dispersed phase (W2). 
The mode of injection sometimes plays an important role, for example. in 
affecting wake shedding from large bubbles (C9). Smaller bubbles may be 
generated by a focused laser beam (LlO), enabling the exact bubble position 
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to be predetermined. Flow visualization using hydrogen bubbles generated by 
electrolysis is described by Schraub et al. (S6) and by Tory and Haywood (T9). 
Bubbles are entrained when a jet of liquid enters a pool from above (L13, V2). 
Formation of bubbles at the surface of liquids ill turbulent flow, associated 
with .'white water," has also received some attention (F3). 

Kintner et al. (K7) and Damon et nl. (Dl )  have discussed photographic 
techniques applicable to the study of bubbles and drops. Sometimes it is 
desirable to hold a bubble or drop stationary: to study internal or external 
flow patterns and transfer processes. To prevent the particle from migrating 
to the wall, it is desirable to establish a minimum in the velocity profile at 
the position where the particle is to reside, and various techniques have been 
devised (D4, F1, G I ,  P11, M15, R15, S20) to do this. Vertical wandering of 
such particles may occur (W7), and may be reduced by using a duct tapered 
so that the area decreases towards the top (D4). Acoustic levitation of liquid 
drops may also be used (A3). 

111. BREAKUP OF DROPS AND BUBBLES 

In multiphase flow equipment, the size distribution of drops and bubbles 
is commonly determined by the dynamics of break up and coalescence. Coales- 
cence involves multiple fluid-particle systems and hence is beyond the scope 
of this book. A number of processes may cause breakup and these are discussed 
here. 

When one fluid overlays a less dense fluid, perturbations at the interface 
tend to grow by Rayleigh-Taylor instability (L1, T4). Surface tension tends 
to stabilize the interface while viscous forces slow the rate of growth of unstable 
surface waves (B2). The leading surface of a drop or bubble may therefore 
become unstable if the wavelength of a disturbance at the surface exceeds a 
critical value 

= 2nd o,g Ap. (1 2-42) 

For rising bubbles and drops, instability manifests itself as an indentation at 
the upper surface which grows deeper as time advances. Splitting tends to occur 
if the disturbance grows sufficiently quickly relative to the velocity at which it is 
swept around to the equator by tangential movement along the interface. A 
typical sequence of events is shown in Fig. 12.5. This mechanism of splitting 
applies to bubbles in liquids and in fluidized beds (C2, C3, H14) and to drops 
in gases and liquids (G5, K8, KIO, P12, R15). For unstable drops falling in air, 
an indentation develops at the front leading to a hollow rim with an "inverted 
bag" of liquid attached (HI,  H4. L6). This mode of breakup is shown in Fig. 12.6. 
The bag is inflated as time progresses with the penetration velocity given 
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FIG. 12.5 Breakup of a large t1t.o-dimensional bubble in r.iscous sugar solution. traced from 
photographs by Clift and Grace (C2). (1) 0 s :  (2) 0.16 s ;  (3) 0.32 s: 14) 0.56 s: (5) 0.84 s. 

FIG. 12.6 Breakup of a natcr  drop in an air stream moving downw-ards relative to a particle, 
traced from photographs by Lane (L6). 

approximately (F2) by 0.3, similar to Eq. (9-37) for bubbles in tubes, where 
i' is the drop acceleration. The wall of the bag thins until the film shatters 
into as many as several hundred fragments (MI,  M3). The toroidal rim also 
breaks up into larger droplets containing about 75% of the original drop 
mass (B6). 

The time available for a disturbance to grow is approximately (G5) 

The time required for growth. t, = 1 x ,  may be estimated, to a first approxima- 
tion, from the linearized theory which leads to the equation 
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where k' = 271. i, is the wavenumber and 

On intuitive grounds i cannot be larger than about half the circumference. 
Maximum values oft, may be obtained by solving Eq. (12-44) for I,, < i I nd,12. 
If  the density and or viscosity of one of the phases is much larger than that of 
the other phase, simpler approximate forms of Eq. (12-44) may be solved 
(P6, W5). 

Comparison of the computed values of t ,  and t, gives an indication of the 
likelihood of splitting. Values of L may be obtained using the correlations 
given in Chapters 7 and 8. Experimental evidence shows that splitting occurs 
when t ,  > 1.4tg for liquid drops, and when t, > 3.8tg for gas bubbles (G5). 
Maximum stable drop and bubble sizes predicted with this procedure are 
given in Table 12.3. For K 5 0.5, i.e., for liquid drops falling in gases and for 
many liquid-liquid systems, the maximum stable diameter is given approxi- 
mately (G5, L12) by 

7 

(de)m,x % 4, o'g AP. (1 2-46) 

Equation (12-46) implies that the Eotvos number cannot exceed a value of 
about 16. Since the spherical-cap regime requires Eo 2 40 (see Fig. 2.5), stability 
considerations explain why drops falling in gases and drops in many liquid- 
liquid systems never attain the spherical-cap regime. Moreover, since We = 

4Eoi3CD and C, is nearly constant for large drops in air. it is also possible to 

TABLE 12.3 

Maximum Stable Drop and Bubble Sizes for Systems at Room Temperature 

System 
Experimental Predicted 
, , ,  ( 1  Ref. ( ~ 4 ) ~ ~ ~  (cm) 

Water drops in air 
Isobutanol drops in air 
Carbon tetrachloride drops in air 
Carbon tetrachloride drops in water 
Nitrobenzene drops in water 
Chlorobenzene drops in water 
Bromoform drops in water 
Diphenyl ether drops in water 
Carbon tetrachloride drops in 31p aq. sucrose solution 
Air bubbles in 0.5p aq. sucrose solution 
Air bubbles in 2p paraffin oil 
Air bubbles in water 
Air bubbles in mercur) 
Air bubbles in fluidized bed 
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use a critical We criterion for breakup [e.g., see (TI  I)]. Experimental maximum 
stable bubble and drop sizes for stagnant media are given in Table 12.3 for 
some systems. [For other systems. see (F l .  G5. H22. K12. Mll) . ]  

There is some evidence that isolated drops may shake themselves apart if 
shape oscillations become sufficiently violent (L7). It has been suggested (El,  
G11: H22) that breakup occurs when the exciting frequency of eddy shedding 
matches the natural frequency of the drop. However, other workers (S7) have 
found that oscillations give way to random wobbling before breakup occurs. 
While it is possible that resonance may produce breakup in isolated cases, 
this mechanism appears to be less important than the Taylor instability 
mechanism described above. 

Sevik and Park (S9) suggested that resonance can cause bubble and drop 
breakup in turbulent flow fields when the characteristic turbulence frequency 
matches the lowest or natural frequency mode of an entrained fluid particle. 
Breakup in turbulent flow fields is discussed below. 

A drop or bubble in a shear field tends to rotate and deform. If the velocity 
gradients are large enough, interfacial tension forces are no longer able to 
maintain the fluid particle intact, and it ruptures into two or more smaller 
particles (Al, K1, R12, T3, T10). Observations of drop and bubble breakup 
have also been obtained in hyperbolic flows (R12, T3). Figure 12.7 shows 
tracings of photographs showing the effect of increasing shear rate; further 
sequences appear in (R12, T3, T10). 

& i o s  - 0 -  L'S 
5 6 

FIG 12 7 Breakup of hquid dlops In slmple shear Veloclt) gradlent G increases in each 
sequence (a) Rumscheldt and Mason (R12) k = 1. (T = 4 8 dines cm, (b) Torza et a1 (T10) K = 1 1, 
G = 1 3  dines em 
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Theoretical predictions relating to the orientation and deformation of fluid 
particles in shear and hyperbolic flow fields are restricted to low Reynolds 
numbers and small deformations (B7, C8, T3, T10). The fluid particle may be 
considered initially spherical with radius 11,. If the surrounding fluid is initially 
at rest, but at time t = 0, the fluid is impulsively given a constant velocity 
gradient G, the particle undergoes damped shape oscillations, finally deforming 
into an ellipsoid (C8, T10) with axes in the ratio E -  ' :1: E l 2 ,  where 

with 

The corresponding orientation at large time is given by 

The relaxation time for the oscillations is approximately 

7 ,  = aopP/ 0. (1 2-50) 

For the limiting cases, N -t 0 and ti + x, Eqs. (12-47) and (12-49) reduce to 
equations derived by Taylor (T2, T3) for fluid particles in steady-state shear 
or hyperbolic flows, i.e., 

n 1 - E 1 + 19ti 16 
as LV + 0, 0 - ,  and --- 

l + E  

Rumscheidt and Mason (R12) proposed that breakup occurs if N exceeds a 
critical value 

which varies only between 0.5 and 0.42 as ti varies from zero to infinity. The 
corresponding value of E would be 1'3 if Eq. (12-47) continued to apply up 
to such aspect ratios. 

Experimental results show reasonable agreement with the above equations 
even for deformations considerably larger than those for which the theory 
might be expected to apply. In practice. breakup occurs for E 2 0.26 + 0.05 
(R12), whereas observed relaxation times are longer than predicted from 
Eq. (12-50) (T10). Experimentally no breakup occurs when ti > 3; instead a 
drop becomes aligned and elongated in the flow direction with its aspect 
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ratio given approximately by Eq. (12-52). There is also a lower limit of 7i beloiV 
which no breakup occurs, ti = 0.005 for simple shear fields (K1). 

The mode of breakup depends upon the rate at which the shear rate is applied 
(T10). If dG;dt is too large, a fluid particle develops pointed ends for ti less than 
about 0.2 and fragments break off both ends. On the other hand, if G is increased 
gradually, necking occurs in the center until rupture produces two large droplets 
of nearly equal size separated by tiny satellite droplets (Fig. 12.7a). With large 
dG.'cit and 0.2 < ti < 3, a drop is pulled out into a long thread which eventually 
breaks up due to Rayleigh instability (Fig. 12.7b). 

In the experiments referred to above, the systems were relatively free of 
surface-active agents and Reynolds numbers were small. Care must be exercised, 
therefore, when applying these results to drops or bubbles under other 
conditions. 

Two-phase systems are often exposed to turbulent flom conditions in order 
to maximize the interfacial area of the fluids being contacted. In addition, 
turbulence is often present in wind tunnels and other laboratory equipment, 
as well as in nature where it can influence breakup processes (F5). Prediction 
of drop or bubble sizes in turbulent contacting equipment for any geometry 
and operating conditions is a formidable problem, primarily because of the 
inherent theoretical and experimental difficulties in treating turbulent flows. 
To these difficulties, which exist in single phase systems. must be added the 
complexity of interaction of dispersed particles with turbulent flow fields. 

Work in this field tends to follow directly from two simple concepts proposed 
by Hinze (H 17) : 

(a) The total local shear stress. z, imposed by the continuous phase acts to 
deform a drop or bubble, and to break it if the counterbalancing surface tension 
forces and viscous stresses inside the fluid particle are overcome. The condition 
for breakup is then : 

(b) Only the energy associated with eddies with length scales smaller than 
d, is available to cause splitting: larger eddies merely transport the drop or 
bubble. Hence, the turbulent energy available to cause breakup of a fluid 
particle of diameter d, is given by 

where k' is the wavenumber and E(kf) the energy spectrum. 
Equation (12-54) leads to a prediction of a critical (or "maximum stable") 

size if z can be evaluated. For example, Hughmark (H24) applied Eq. (12-54) 
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with some success to experimental data obtained in fully developed turbulent 
pipe flow by Paul and Sleiclier (PI, S18). These workers arbitrarily specified 
the maximum stable size as that for which 20% breakage occurs. It was found 
that drops usually split into two daughters of approximately equal size, though 
much smaller drops were stripped off larger ones in some cases. There is some 
evidence (C7, S18) that most of the breakup occurs in the wall region of the 
pipe, where it is possible for the time-mean velocity gradients to cause distortion 
and breakup as discussed in the previous subsection. For developing pipe 
flow: on the other hand, breakup tends to occur near the center of the pipe, 
and may be due to pressure fluctuations which cause one or two small fluid 
particles to detach from the original particle (S23). 

Concept (b) is less useful, except in rare cases where the energy spectrum 
has been measured. It is common to assume that the turbulence is homogeneous 
and isotropic and that the eddies in question are in the inertial (-513 power) 
subrange. This assumption is unlikely to be valid in an overall sense though it 
may be reasonable locally (G10) or for the high wavenumber (small) eddies 
which are of primary interest. For an example of the application of the theory, 
see Middleman (M 13). 

There is little evidence showing the mode of breakup in turbulent flow fields. 
Hinze (H17) speaks of a "bulgy" mode of breakup. Published photographs 
(C7, T12) show highly deformed bubbles and necking drops, protuberances 
and cell-like surface structures (see Fig. 12.8). Experimental evidence regarding 
single bubbles and drops in well-characterized turbulent fields would be most 
welcome. 

L - - -.A 

1 r n r n .  

0 
FIG. 12.8 Breakup of drops in a turbulent liquid flow. traced from photographs by Collins and 

Kiludsen (C7) .  (a) ;, = 0.79, = 1.2. 6 = 40.3 dlnes em; (bi ;: = 0.85. K = 9. 6 = 13.0 dynes em: 
(c) ;' = 0.87, ic = 16. a = 17.6 dynes cm. 
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Break up of drops accelerated by air blasts (including shock waves) can 
occur by an "inverted bag" mechanism similar to that described in Section A 
above, for Eo,, = O A ~ ~ ' , ~ , G  between about 16 and lo5 (HI, H2, H4, L6). 
Reichman and Temkin (R7) give a detailed description of four stages of bag-type 
breakup. Under some circumstances, deformation preceding breakup appears 
more like a parasol than an inflating bag (S12). The distance x moved by the 
drop is given approximately by 

where a, is the radius of the drop before exposure to the air blast, 

is a dimensionless time, and u is the air velocity (R8, S13). Equation (12-55), 
corresponds to constant acceleration with a C ,  value of 2.1. A criterion for 
breakup has been derived based on a critical thickness beyond which deforma- 
tion is irreversible (R7). For water drops accelerated by a shock wave of velocity 
11, breakup occurs for 

For higher accelerations with lo2 < Eo,, < lo5, liquid tends to be stripped 
from the surface of the drop as a spray (F2, R3, T5), this phenomenon usually 
being called "boundary layer stripping." The time for the drop to disintegrate 
completely by this stripping mechanism is of order T = 3.5 (R8). Breakup 
becomes increasingly chaotic with increasing Eo,,. For Eo,, of order lo5 and 
higher, the drop tends to shatter due to development of a series of indentations 
on the windward surface (R8), in a time interval given approximately by 

T,,,, = 4 5 ~ e - ' I 4 .  (12-58) 

For theoretical analyses of instability of accelerating drops, see (H6, K11, T5). 

Breakup of water drops due to strong electrical forces has been studied in 
connection with rain phenomena [e.g. (A4, L8, L9, M4, M7)]. As a strong 
electrical field is imposed on a freely falling drop, marked elongation occurs 
in the direction of thffield and can lead to stripping of charge-bearing liquid. 
A simple criterion derived by Taylor (T6) can be used to predict the critical 
condition for instability. It has also been shown (W6) that soap bubbles can 
be rendered unstable by electric fields. 

Raindrop breakup also occurs when drops collide, and this has been studied 
by a number of workers [see (M8)]. It is probable that the collision mode of 
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breakup is much more significant in determining the size distribution of 
raindrops in the atmosphere than the Rayleigh-Taylor instability mode dis- 
cussed above. 

Impaction of water drops on solid surfaces has been studied (G3), and under 
some circumstances smaller drops are detached and leave the surface. Impinge- 
ment of drops on thin liquid films may also cause breakup (K3, S5). Breakup 
of bubbles in fluidized beds due to impingement on fixed horizontal cylinders 
has also been observed (G4). Sound waves may lead to instability of bubbles 
in liquids (S21). 
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Nomenclature 

h,. h2 
C 

surface area of particle; cross-sectional area of duct; amplitude of oscillation 
CDReZ as defined by Eq. (11-35) 
surface area of volume-equivalent sphere 
true surface area of bubble or drop at detachment 
coeficient in Kronig-Brink series; Eq. (3-82) 
surface area of perimeter-equivalent sphere 
projected area of particle 
surface area of rcsidual bubble or drop left at orifice after detachment of parent 
fluid particle 
amplitude of turbulent oscillations with angular frequency co 
minimum surface area of particle undergoing shape oscillations 
Archimedes number = gp Ap d e 3 : p 2  
radius of sphere, disk, or spherical-cap: equatorial radius of spheroid; semimajor 
axis of fluid particle 
amplitude of oscillation or disturbance 
average radius of curvature over leading portion of large fluid particle 
radius of curvature of rear indented surface of large fluid particle 
initial radius of bubble or drop 
initial amplitude of disturbance 
constants in fitted polynomials 
function of Kn defined b) Eq. (10-64); dimensionless initial acceleration [Eq. ( 1  1-17) 
and Table 11 .I]: numerical parameter in models for transfer during slow formation 
functions of r; in Table 5.7 
constants in Eq. (4-34) 
Biot number = iiu H%,, kil, 2H9, ,  or ha Kt, 
semiaxi's of spheroidal particle along axis of symmetry: breadth of particle: 
vertical semiaxis of spheroidal cap; distance from centre of particle to axis of 
tube: group defined by Eq. 110-66); numerical parameter in models for transfer 
during slow formation 
semiminor axes of particle (see Fig. 7-10) 
coefficient in Eq. (3-20): slip correction factor. defined by Eq. (10-53): constants 
in Eqs. (9-10) and (1 2-13) 



360 Nomenclature 

drdg coefficient = 2FD pL ,'A, = 2FD rrpC ,'(I' for sphere = 4Ap g d ,  3pL, for 
fluid part~cle at its terminal \elocit> 
drdg coefficient corresponding to >kin friction alone 
drag coefficient for free-molecule floa 
~ n ~ i s c i d  drag coefficient given b> Eq (10-61) 
drag coefficient under steady conditions corresponding to the instantaneous 
Re) nolds number. Re, 
drag coefficieni for incompressible flow (Ma + 0) at the same Re 
drag coefficient corresponding to pressure distribution (form drag) alone 
drag coefficien~ given by Stokes law-, =24'Re 

3,, coefficients of pressure drag, drag due to deviatoric normal stress, and drag due to 
shear stress 
drag coefficient in unbounded fluid 
drag coeficient for sphere subject to secondary motion: drag coefficient for 
cylinder defined by Eq. (6-23) 
capacitance 
lift coefficient. =2F,.'na2pL~,2 for sphere 
normal drag coefficient for circular motion, Eq. (1 1-73) 
orbit constant 
constant in Eq. (9-43) and Table 9.4 
heat capacity at constant pressure of continuous. dispersed phase 
concentration in continuous phase: numerical constant in Table 3.1; maximum 
particle dimension; speed of sound in same medium 
mean resistance, Eq. (4-6) 
principal translational resistances, Eq. (4-4) (c, is axial resistance) 
translational resistance of sphere in creeping flow = 67ra 
concentration in dispersed phase; bulk concentration of solute in dispersed phase 
average concentration in dispersed phase 
initial concentration in dispersed phase 
concentration in continuous phase at surface of particle 
constants defined by Eq. (10-57) 
concentration in continuous phase remote from particle 
degree of circularity, defined by Eq. (2-61 
operational circularity, defined by Eq. (2-9) 
diameter of containing vessel or tube: hydraulic diameter of duct 
inner and outer diameters of annular section 
length and width of cross section of rectangular duct 
molecular diffusivity in continuous, dispersed phase 
characteristic dimension of particle: diameter of sphere, cylinder; or disk; equa- 
torial diameter of spheroid 
diameter of sphere with same projected area as particle in its orientation of 
maximum stability on a horizontal surface, =,(~AT 
maximum bubble width 
diameter of volume-equivalent sphere, = (6V;n)' 
maximum stable volume-equivalent diameter 
equilibrium diameter of bubble 
orifice diameter 
diameter of solid particles in fluidized bed 
aspect ratio, = b u for spheroid or L'd for cylinder 
aspect ratio aceraged over shape osc~llations 
operator defined by Eq. (1-37) 
Eotvos number, = g Ap dZ G or q Ap dL2 G 



Nomenclature 361 

1.4s 
.fa . ~ C P  

JY 
.f\s 
,f\v 
G 
G , .  G, 
Gr 
Gr,. Gr, 
9. 8 
"/(Ov) 
H 

Eotvos number based on diameter of duct. = y Ap D2 o 

modified Eotbos number. based on difference between surface tension of pure 
fluids and at equilibrium with surface active contaminant 
modified Eotvos number. based on difference betaeen surface tension of pure 
fluids and minimum value at which surface film collapses 
accelerat~on E o n  os number. = 1 Ap ( l e2  5 ---- 
eccentricitc. =, 1 - E 2  - - - - - -  
eccentricitq. =, 1 - h, ,  (i2 

flatness ratio, Eq (2-3) 
clonganon ratio. Eq (2-4) 
fractional approach to equilibrium ("extraction eficiency"). =(c,, -7,) (c,, - Hc,) 
net drag force (scalar, vector) 
component of drag force in i-direction 
drag component parallel to velocit) component L', for orthotropic particle (see 
Fig. 4.1 1) 
drag component normal to belocity component C ,  for orthotropic particle (see 
Fig. 4.1 1 )  
drag force in unbounded fluid 
net force on particle in type 2 accelerating motion (see Ch. l l ) ,  excluding steady 
drag. histor)-. and added mass 
net lift force 
value of extraction efficiency. F. for mobile portion of particle 
value of extraction efficiency. F. for stagnant portion of particle 
drag force in Stokes flow. =6nupEn for sphere - - - - - - - 
Froude number. = C,, p ' A p g D  
frequency of oscillation of particle or fluid; fraction defined b! Eq. (10-63): 
frequency of formation of bubbles or drops at orifice 
( . fw + f i ) .  2 
fraction of particle surface with buoyancy directed outwards at an angle less than 
45, to the vertical 
area of contact between mobile and stagnant parts of spherical fluid particle, 
divided by surface area of particle. 471a' 
fraction of particle surface occupied by stagnant cap 
frequency of formation at constant flow, constant pressure 
natural frequency of shape oscillation, Eq. (7-30) 
stagnant fraction of particle volume 
frequency of ~vake shedding 
shear rate, Eq. (10-30): velocity gradient in continuous phase 
functions defined in Table 11.2 
Grashof number (either Gr, or Gr,) 
thermal and composition Grashof numbers. defined by Eqs. (10-13) and (10-14) 
gravitational acceleration (scalar, vector) 
function defined by Eq. (8-21) 
distribution coefficient, Eq. (1-39): dimensionless group defined by Eq. (7-7); 
distance below free surface 
functions defined in Table 11.2 
heat transfer coefficient 
coordinate directed verticall!, upwards 
heat transfer coefficient for particle in stagnant medium 
functions defined in Table 11.2 
dimensionless moment of inertia defined by Eq. (6-1 1) 
re la t i~e  intensit] of turbulence defined by Eq. (10-431 



Nomenclature 

value of I, required to induce critical transition at given Reqnolds number, Re 
imaginary part of complex error function. Table 11.1 
orthogonal unit vectors: i generally in direction of particle motion 
dimensionless group defined b! Eq. (7-8)  
factor for spheroids using equatorial diameter as characteristic length. Eq. (4-61):  
velocit? correction factor defined by Eq. (6-29);  K,. K,. or K, in creeping flow: 
orifice constant. Eq. (12-14)  
factor for spheroids using L' as characteristic length, Eq. (4-68):  constant defined 
bq Eq. (9-13):  dimensionless orifice constant, Eq. (12-16) 
terminal velocity of particle divided by terminal velocity of sphere of diameter d, 
terminal velocity of particle divided b> terminal velocitj of volume-equivalent 
sphere 
drag factor defined b! Eq. ( 9 - 6 )  
Sherwood number Factor defined by Eq. (9-22)  
velocity ratio defined b> Eq. (9-25)  
mass transfer factor defined bq Eq,. (9-211 
thermal conductivitq of continuous, dispersed phase 
velocity ratio defined by Eq. (9-7) 
viscosity ratio defined by Eq. (9-8)  
Knudsen number. = i d 
time-average product of surface area and overall transfer coefficient based on 
dispersed phase concentrations 
instantaneous or steady external mass transfer coefficient: volumetric shape 
factor = V ~ 1 , ~ ~ :  ratio of specific heats. = C, heat capacity at constant volume 
wave number. = 2 n  iL 
time-average external mass transfer coefficient 
volumetric shape factor of isometric particle of similar form 
time-average internal mass transfer coefficient 
mass transfer coefficient for particle in a stagnant medium 
time-average product of interfacial area and external, internal mass transfer 
coefficient 
mass transfer product for front surface 
mass transfer product for rear surface 
reference length; characteristic dimension of particle; length of cylinder, slender 
body. or slug 
characteristic length defined by Eq. (4-67)  
characteristic length defined by Eq. (6-32)  
height of closed cylindrical column 
length of jet from orifice to point of break up 
scale of turbulence 
wake length measured from rear of particle 
length of particle. s ~ d e  of parallelep~ped or cube. shortest d~stance from center of 
pdrt~cle to pa all 

characterlstzc length defined bq Eq (10-24) 
Morton number. =gp4AP pZu3 

accelerat~on modulus. = ( d  L R 2 ) ( d L R  ilt) 
displacement modulus, =s it 
Mach number, =characteristic velocity'c 
constant in Table 3.1: mass transfer flux: group defined by Eq. (12-45) 
mass transfer flux in absence of interfacial motion 
group defined by Eq. (12-45) 
group defined bq Eq ( 1  1-64): dimensionless \ e l o c ~ t ~  gradlent, =rOGp o 



Nomenclature 

S, 

5 

A X  u 
.Yu' 
S, 
Nu 
Nu' 
Nu, 
Nu,," 
Nulo" 
Nu, 
11 

p P 
Pe 
Pe' 
Pe, 
Pe, 
Pr  
P 
is 
P'h 

Ps 
PHD. ( P H D ) ~  

PI 
Prn, ~ m '  

PP 
P, 
P ,  
P o  
POP 
P* 
Q 
e 
Q' 
Q,! 

Q,,, 
Qmax 

R 

dimensionless amplitude defined by Eq. (1 1-53) 
capacitance number defined by Eq. (12-17) 
critical value of .V for bubble or drop breakup 
dimensionless diameter group, C,ReT2 = 49 Ap d3>3pv2 for sphere, 49 Ap de3 3pi.' 
for fluid particle at terminal veloci t~~ 
dimensionless history group defined b! Eq. ( 1  1-57) 
dimensionless thermal group defined by Eq. (10-29) 
dimensionless terminal velocity group. Re, C, = 3pCT3;49Ap 1: 
value of ."i, for sphere subject to secondary motion 
dimensionless frequency defined bq Eq. (1 1-52) 
Nusselt number, = hL. K t  
Nu for continuum flow (Kn + 0) at same Re and Pr 
Nu corresponding to critical transition. Eq. (10-48) 
Nu in free molecule limit (Kn + m) at gihen Ma 
local Nusselt number 
Nu in absence of turbulence at same Re 
integer, coordinate normal to partlcle surface constant defined b? Eq (5-40), 
index In Eq (12-32) 
perlmeter of pi ojected- area-equi\ den t  sphere 
perimeter of an dxis]mmetric bod? projected normdl to the axis 
projected perimeter of partlcle 
Peclet number in continuous phase, = dC 9, LC 9 or d,L 9 
Pe based on L = L C 9 
shear Peclet number = Re,Sc 
Peclet number In dispersed phase. = d L  9, 
Prandtl number. =PC, Kt 
pressure or modified pressure In continuous phase 
mean ambient pressure 
pressure in chamber for constant pressure bubble formation 
partial pressure of noncondensable gas 
hydrodynamic surface pressures in continuous. dispersed fluid 
local pressure 
modified pressure. dimensionless modified pressure 
modified pressure in dispersed phase 
pressure or modified pressure in continuous phase at particle surface 
vapour pressure of liquid 
reference pressure; modified pressure at front stagnation point: constant in Eq. (3-9) 
constant in Eq. (3-10) 
pressure or  modified pressure remote from particle 
function defined in Table 5.4: volumetric flow rate 
time-mean volumetric flow rate 
dimensionless flow rate defined by Eq. (12-3) 
volumetric flow rate at onset of atomization 
volumetric flow rate at onset ofjet formation 
volumetric flow rate for maximum jet length 
distance to surface of axisymmetric particle. Fig. 1.1: ratio of form drag to skill 
friction; dimensionless radial coordinate. = r  a: radius of cylindrical tube 
real part of complex error function; Table 11.1 
radius of curvature at nose or lowest point of particle 
prlnclpdl rddil of curvature 
dlmenslonless distance to part~cle surface, = 2 R  d, or R L 
Rayleigh number. = Gr,Pr or Gr,Sc 



Nomenclature 

Ra 

Ra, 
Re 
Re 

Re, 
Re, 
Re, 
Re, 
Re, 
Re, 
Re, 
Re, 
Re, 
R ~ T S  
Re, 
Reair 
I' 

S 

S' 
Sc. Sc, 
Sh 

Sh' 

Sh, 

Sh, 
Shs 
Sh\phere 

Sh,, 

Sh, 
S h y  
sll;ft 
Sh,' 

Sho',,., 
Sr 
7 

5 + 

T 

Ra~leigh number based on 1 
value of Ra a b o ~ e  \%hich j-poaer relationship applies 
particle Reqnolds number normall> = Ld I or L d, I 

Reqnolds number based on L dimensionless acceleration = d(Re) d~ 
critical Reynolds number 
shear Reynolds number. = Gd2 Y 

instantaneous Reynolds number. = C',,d, v 
limiting Reynolds number for creeping flow 
metacritical Reynolds number at ~vhich C, = 0.3 (Re,, > Re,) 
Rcynolds number corresponding to minimum C,. Table 10.1 
Reynolds number bdsed on dispersed phase properties, = C ti I, or I. d, 1, 

Reqnolds number correspoildlng to onset of separation 
Rejnolds number at term~nal veloclty = CTd I 
Reynolds number corresponding to Stokes termlnal \elocitq. Eq (1 1-34) 
Libratlon Reynolds number, =4a fd i 
Reyiiolds number based on LA,., 
radial coordinate in spherical or cylindrical coordinates 
settling factor. Eq. (4-2) 
settling factor based on volume-equivalent sphere 
Schmidt number in continuous, dispersed phase. =I '  9. Y, 8, 
cxternal Sherwood number. = itd $2: area-free Sherwood number for external 
reslstance, = kd, % rcslstance, = kd, % 
Sherwood number based on L' or 1 
Sherwood number for external reslstance based on ~olume-equivalent sphere. 
= ( 1 ~  4 Ae)dC 2. (m ge)(le 9 
balue of Sh dt surface of contact between mobile and stagnant parts of pdrticle 
local Sherwood number 
Sherwood number over mobile portion of interface 
area-free Sherwood number for internal resistance, =k,d,. 9, 
Sherwood number for internal resistance based on volume-equivalent sphere, 
= [(7;;i),.A,]dd% 
Sherwood number in the presence of rotation 
Sherwood number over stagnant portion of interface 
Sherwood number for sphere at the same Re 
Sherwood number with vibrations superimposed on translation 
Sherwood number for diffusion into stagnant medium. = 2 for sphere 
Sherwood number In unbounded fluld 
Sherwood number based on LA,, 
Sherwood number for diffusion into stagnant medium, based on L or I 
Sherwood number for diffusion into stagnant medium, based on L,,, 
Strouhal number, = fd  C , , f h L , , or /, ~i L , 
molecular speed ratlo defined b j  Eq (10-60) dummy time-coordinate 
dimensionless time defined b) Eq (1 1-55) 
temperature in continuous phase, dimensionless tlmes defined bq Eqs (11-40) 
dnd (12-56) 
dimensionless temperature, = ( T  - T,) (T, - T,) 
\ d u e  of dimensionless time at vhlch droplet shatters 
temperature in dispersed phase 
surface temperature 
temperature in continuous phase remote from particle 
dimensionless group used bq Tadaki and Maeda, = R ~ . v J ~ . ~ ~  
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C ,  
L , .  t, 
C f g  
C,. C, 

LPl - 

C R .  C R  
CR,  
L ,  

Llr 

u n .  (u,,Ip 
uor 

L ~ R  

11,. 

ut. (ut), 
U,. U? 

l l x .  ll?. u: 
110 

v 
V ' .  V" 
c,, , vc, 

time: particle thickness. i.e. minimum distance betvieen two parallel planes 
tangential to opposite surPnces 
dimensionless time defined by Eq. (11-55) 
dimensionless time defined by Eq. (5-7) 
time available for disturbance to grow 
coalescence time 
duration of formation process 
time required for disturbance to grow. = x - '  
time required for Sh to come within 100xo/, of steady value 
velocitq of particle. normally relative to remote continuous phase, or of continuous 
phase relative to particle (scalar. vector) 
relatixe velocit) giving same Sher~vood number in an unbounded fluid 
instantaneous and time-average continuous phase velocities 
i-component of C ,  
instantaneous and time-average particle velocity 
i-component of C ,  
instantaneous and time-average velocity of particle relative to continuous phase 
i-component of C ,  
spreading velocity of surface tension-lowering material at interface 
terminal helocity of equivalent diameter spherical particle 
terminal velocity of particle 
terminal heloclt) of spher~cal particle gnen by Stokes law =qd2 A p  18p 
termlnal helocit> in unbounded fluid 
terminal \elocitj in surfdctant-free sqstem 
maximum \e loc~t>  of oscillat~ng partlcle corresponding to frequent! w 
reference \elocitq. nuld \eloc~t)  on nxis of cyl~nder far from particle 
time d e r i k n t ~ ~ c  of L ,  L ,  = t iC  t i t  d L R  t i t  

local Hu~d \elocitq hector 
dimensionless >elocity vector, = u  U, 
undisturbed local fluid velocity: velocity of air stream or shock wave 
fluctuating component of velocity 
fluctuating velocity in continuous phase, = C ,  - f, 
1-elocity in continuous. dispersed phase normal to surface 
velocity of fluid through orifice 
fluctuating velocity of particle. = C ,  - C, 

- 
fluctuating relative velocity, = C R  - U R  
r-component of u  
velocity in continuous. dispersed phase tangential to surface 
velocity in conti~luous phase parallel. normal to surface 
Cartesian components of u  
0-component of u  
volume of particle 
dimensionless volumes defined by Eqs. (12-2) and (12-21) 
volume of bubble formed at orifice under constant iioa. constant prcssure 
conditions 
chamber \ olume 
drift ~ o l u m e  
volume of indentation at rear of particle 
sphere volume 
volume of closed wake 
dimensionless volumes contributed by successive stages of bubble formation 
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dimensionless \olumes contributed b) successiFe stdges of bubble formation in a 
fluidized bed 
1,elocity vector representing deviation of continuous phase from uniform stream 
equatorial surface velocit! due to rotation 
log,, S,. Table 5.3: log,, (C,,ReT2)' 3 :  ratio of instantaneous particle ~elocity to 
terminal ~elocity. = C C ,  
complex error function. Table 11.1 
dimensionless fluid and relative velocities defined by Eq. (1 1-56) 
diinensionless particle velocity. Eq. (11-14) and Table 11.1 
Weber number. = CT2dep G or tr2d,p a 
Weber number based on radius of spherical cap. = CT2up a 
log,, Re: maximum v,idth of particle: component mass fraction 
d~mensionless mass fraction. =(it - 11 ,) (\I, - u ,) 
surface, remote component mass fraction 
dimensionless boundarq-layer coordinate parallel to surface. = 2 . ~  d, or x L: 
dimensionless displacement, Eq. (1 1-42): function of B and A,. Table 11.1 
maximum value of dimensionless boundary-layer coordinate. X 
Cartesian boundary layer coordinate parallel to surface; index defined by- Eq. (6-2): 
distance travelled by particle; distance along jet. Eq. (12-29) 
dimensional. dimensionless Cartesian coordinate 
ratio of terminal velocitq to terminal velocity in Stokes flow, = CT C,,; function 
of B and A, in Table 11.1: ratio of bubble volumes formed under constant pressure 
and constant flow conditions 
weighting factors for mass transfer at mobile and stagnant portions of an interface. 
Eg. (3-91) 
Cartesian boundar) layer coordinate normal to surface: distance measured ver- 
tically upwards from point 0 or lowest point on particle surface 
dimensional. dimensionless Cartesian coordinate 
total degree of circulation, Eq. (3-25): distance of particle from end of closed 
column: complex function in Table 11.1. = ( X  + iY), 7 

dimensional, dimensionless Cartesian coordinate 
thermal diffusivity, = K ,  PC,: fraction of particle surface area aft of maximum 
perimeter in a plane normal to flow, = L,,, L': angle between surface normal and 
direction of gravity; function in Table 11.1: exponential growth rate of disturbance 
dimensionless displacement from axis, = b  R ;  phase shift, Eq. (11-50); function 
in Table 11.1; constant in Eq. (12-32) 
thermal and composition compressibility coefficients; Eqs. (10-10) and (10-11) 
vortex strength for circulating sphere divided by strength of corresponding Hill's 
vortex; retardation coefficient defined by Eq. (7-10) 
density ratio; =p, p :  Euler's constant, =0.5772157 . . . 
value of density ratio above which functions r and are complex 
drag ratio, Eq. (4-1): skirt thickness 
conductance factor, Eq. (4-56) 
added mass coefficient. Eqs. (1 1-22) and (I 1-30) 
mean drag on spheroid in steady motion i drag on sphere of radius a at same Re 
(based on d )  
drag on spheroid in i direction in steady motion t drag on sphere of radius n at 
same Re (based on d )  
mean drag ratio based on volume-equivalent sphere 
drag ratio (i-dircction drag) based on volume-equivalent sphere 
histor! coefficient. Eqs. (1 1-22) and (1 1-30) 
drag ratio based on projected perimeter-equivalent sphere 
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/.a? 

i'. i i p  

ii' 
Pe 
ii\ 

factor introduced by O'Brien. Eq. 14-38) 
frequency difference. =(f,\ - f Y )  2 
excess pressure drop due to particle 
Factor introduced b) O'Brien. Eq. (4-39) 
absolute value of density difference between particle and continuous phase. 

= Ibp - 0 1  
absolute ~ a l u e  of surFdce to bulk density difference. = ' p .  - p,l 
surface or interfacial tension difference 
thickness of fictitious mass transfer film. Eq. (4-64): thickness of disk: cell depth: 
length scale defined by Eq. (11-8) 
penetration depth. = , 7~91 
parameter in Table 3.1: permittivity: ratio of amplitude of area oscillation to 
minimum area: effcctiLe height of surface roughness elements; dimensionless 
group defined b] Eq. (1  1-66) 
dimcusionless vorticity. = ;n C ,  
\orticit! (scalar. vector) 
vorticity at particle surface 
spheroidal angular coordinate: amplitude ratio. Eq. ( 1  1-50) 
angular coordinate. normally measured away from front stagnation point; angle 
between axis of symmetry arid direction of motion; angle defined in Fig. 4.11; 
angle of inclination of tube from ~ert ical :  coordinate of axis of rotating particle; 
angle between direction of flow and major axis of particle deformed bq shear field 
contact angle 
included angle for rear indented surface. Fig. 8.9 
separation angle measured from front stagnation point 
included wake angle for front surface. Figs. 8.1 and 8.9 
angle from front stagnation point to leading edge of stagnant cap 
viscosity ratio. = j ~ ,  

angle between vert~cal and direction of motion: dimensionless group defined b) 
Eq. (7-18); diameter ratio. = d  D or d, D: molecular mean free path; wa~clength 
of disturbance 
critical wavelength 
"most dangerous ~vavelcngth". correspondiug to maximum 2 
eigen~alue in Kronig-Brink scries. Eq. (3-82) 
viscosity of continuous. disperscd phase 
dimensionless viscosity defined by Eq. (12-4) 
elkctive viscosity defined by Eq. (12-35) 
continuous phase viscosity yielding the actual terminal velocit) when calculated 
from Stokcs' la\\-. Eq. (9-9) 
~iscosit! of watcr in Braida's experiments, 9 x l U 4  .Ys m2 

kinematic viscosit! of continuous. dispersed phase 
dummy time variable. Table 11.1 
density of co~ltinuous. dispcrsed phase 
density of gas in fluidized bed 
continuous phase density at particle surface: density of solid particles in fluidized 
bed 
density of continuous phase remote from particle 
perimcter-equi~aleut factor defined by Eq. (2-121 
interfacial or surface tension: dimensionless time defined by Eq. 11 1-1 3) 
accommodation coefficient for molecular collisions at particle surface 
surface tension in absence of surface-active contaminants 
thermal accommodation coefficient 



Nomenclature 

dimensionless time ("Fourier ~iumber"i. = 91 11'. rr (1 ' .  or I r 11': local shear stress 
deviatoric ilormal stress at interface 
shear stress at interface 
Fourier number b a d  on dispersed phase. =4C/,t (1,' 
period of rotation: relaxation time 
value of Fourier number at time r ,  
dimensionless period of oscillation. = I' im2 
velocity potential 
viscous dissipation function 
dimensionless concentration in continuous phase. = ( c  - c,) (c, - c,) or (c - c,) 
(c,,~ H - c,): angle of inclination of particle axis from vertical; spherical polar 
coordinate of axis of rotating particle 
dimensionless concentration in dispersed phase. =(c, - H c , )  (c,, - Hc,) 
phase lag 
initial phase angle for particle undergoing rotation 
modified circularity defined b! Eq. (4-28) 
dimensionless stream function. = $ C,L2 
Stokes stream hlnction for conti~luous phase relative to particle: sphericit!. = .4, A 
stream function for particle motion through stagnant fluid 
Harkins' correction factor, Fig. 12.4 
operational sphericity. Eq. (2-8) 
stream function in dispersed phase 
working sphericity. Eq. (2-10) 
angular vclocity of rotating particle 
angular frequent! of oscillation 
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A 
Acceleration modulus 

definition of. 285 
influence of. 296 

Accelerated motion, 264. 285-3 18, 335. 346 
Accommodation coefficient, 273 

thermal, 278 
Accumulation of surfactants, 36. 38, 195 
Added mass 

in arbitrarily accelerated motion, 316 
during bubble formation, 324, 325 
toefficient, 292, 296, 316, 317, 323, 325 
conditions for neglect of. 275, 3 W 3 0 1 ,  309. 

317 
fluid spheres, 295, 304, 305 
rigid spheres. 275, 287, 291. 296. 297 
spheroids. 292-293 

Adjusted sphere, 274-275 
Aerodynamic heating, 277, 278 
Aging. see Accumulation of surfactants 
Aiding flow. 256259  
Amplitude 

of imposed oscillatory flow, 309. 3 14 
of natural occillations of fluid particles. 188, 

191. 197 
of secondary motion of rigid particles, 103, 

115, 148-149, 156 
Amplitude ratio, 264-265, 307-308, 310-31 1 ,  

313 
Analog) between heat and mass transfer, 1 1 ,  12 
Angular velocity, 259, 261 
Annular channels. 238 

Arbitrarily shaped particles 
conductance. 90 
drag at low Reynolds number, 87-88 
motion at low Reynolds number, 70-71, 

87-88 
natural convection, 254-255 
terminal velocity, 157-162 
transfer at low Peclet number. 91 
transfer with variable concentration, 92-94 

Archimedes number, 113f, 206 
Aspect ratio, see also Deformation 

of bubbles and drops in contaminated liquids, 
181-182 

of bubbles and drops in pure liquids, 182-1 83 
definition of, 17, 75. 80 
of drops in air, 170. 182-184 
of spheroids. 75, 143, 147, 294 

Asymptotic expansions. see Matched asymptotic 
expansions 

Atomization, see Formation of drops 
Attached eddy, see Wakes 
Axisymmetric particles. 1 6 - 1  7 

drag at low Reynolds number, 83-85 
in free fall, 70-73 
rotation, 260, 263 
in shear field. 263 

B 
Basset history term. see Historq effects 
Bernoulli's equation. 7 ,  338 
Best number. 113 
Biot number, 62, 94 
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Bodies of revolution. see hisymmetric parti- 
cles 

Boiling heat transfer, 236, 337 
Bond criterion, see Surface-active impurities 
Bond number, 26f 
Boundary conditions. 3. 4 ,  9. 3 6 3 1  

concentration. 10, 12. 13, 47, 52, 88, 117 
stress, 5 ,  31, 39, 42. 44, 286 
temperature. 1 1 ,  12 
velocity, 4, 31. 98, 222. 252. 286 

Boundary layer approximation, 9-10, see also 
Thin concentration boundary layer 

application to natural convection, 252. 255. 
258 

for fluid spheres, 136134 ,  135-136 
for rigid spheres, 50, 99. 120f 

Boundary layer separation 
on arbitrarily shaped particles, I62 
on cylinden. 154 
effect of fluid compressibility on, 275 
effect of freestream turbulence on, 262. 268 
effect of rotation on, 262, 263 
effect of surface roughness on, 245 
effect of surfactants on, 135, 175 
on fluid particles, 126, 132, 134, ,175, 185, 

210 
in natural and mixed convection, 251, 257 
on rigid spheres. 99, 100, 102, 107-109,222. 

245, 263 
on spheroids, 143 

Boundary layer stripping, 346 
Boundary layers 

concentration, 1 1, 13, 92, 246 
interaction with shock waves, 275 
internal. 132, 205 
momentum, 9-10 
temperature, 10, 246 
thickness. 99, 100, 254, 272 
transition, 109, 120, 245, 262. 266. 316 
turbulent. 109, 121, 245, 269 

Boussinesq approximation, 249 
Breakup of bubbles, 339-347 

by impingement, 347 
maximum stable size. 341-342, 344 
in oscillating flow fields, 314 
by Rayleigh-Taylor instability, 339-342 
by resonance, 188, 342 
in stagnant media, 339-342 
in turbulent flow fields. 269, 3 4 4 3 4 5  
b) velocity gradients, 261, 342-344 

Breakup of drops, 339-347 
in air, 171, 341-342 
in air blasts, 346 

by collision, 346-347 
by electric fields, 346 
falling in gases, 171, 203, 341-342 
by impingement, 347 
maximum stable size, 341-342, 344 
by Rayleigh-Taylor instability, 339-342 
by resonance. 188, 342 
in stagnant media, 171, 203, 33%342 
in turbulent flow fields, 269. 342, 344-345 
by celocity gradients, 261, 342-344 

Breakup of liquid threads, 333 
Brownian motion, 70. 71. 272 
Buoyancy, 255, 312, 324, 333, see also Natural 

convection 

C 
Capacitance. 8 S 8 9  
Capacitance number, 329 
Capillary pressure. see Surface tension pressure 

Increment 
Cavitation, 337. 338 
Chamber volume, effect on bubble formation. 

322, 329, 330 
Chardcteristic lengths, 92. 162, 163, 254 
Circularity, 20 

operational, 2 1 
modified, 80 

Cluster of particles. 164 
Compressibility effects, 271-272, 275-278, 338 

on drag, 275-278 
on heat transfer, 279 

Concentration contours, 1 18, 137. 1 5 6 1 5  1 
Conductance 

for arbitrary axisymmetric shapes, 90 
definition, 89 
for panicles of various shapes. 89 
for slender bodies, 90 

Conductance factor, 90 
Cones 

compressibility effects. 275 
in creeping Row, 74. 83 
free fall at higher Reynolds number, 165 
shape classification, 17 

Contact angle, 22, 324. 338 
Contamination. see Surface-active impurities 
Continuity equation 

overall, 3. 4. 9 ,  13. 14, 97, 250 
species, 10, 12, 47, 52. 88. 116, 250 

Continuous phase, definition of, 2 
Coriolis forces, 263 
Creeping flow. 8-9 

accelerating fluid sphere, 295 
disk released from rest. 294 
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drag on accelerating rigid sphere. 287-291 
natural convection, 25C257 
noncontinuum flow, 273 
panicle in oscillating fluid, 286287 .  307-309 
particle orientation in, 18 
particle rotation and fluid shear, 259-261 
relevance at nonzero Reynolds numbers. 88. 

297, 318 
rigid axisymmetric particles. 73, 83-85 
rigid spheres released from rest, 288-292 
rigid spheroids released from rest, 292-294 
slender bodies, 82 
spheres in steady motion, 3Cb35. 47-51 
spheroids in steady motion, 75-77 
wall effects. 222, 223-226. 231-232 

Critical range of f l o ~ ,  110. 114, 223, 267. 268, 
316 

Critical transition 
effect of acceleration on, 316 
effect of freestream turbulence, 266-267 
effect of rotation. 262-263 
effect of surface roughness, 244245 .  262. 

263 
spheres, 109-1 10, 223 
spheroids, 143 

Crossflow. 25C258 
Cubes, 17 

compressibility effects. 278 
drag at low Reynolds number, 87 
noncontinuum effects. 275 
orientation in free fall, 165 
transfer, 89. 164 

Curvilinear trajectories, 3 16 
Cylinders, 17 

axial resistance, 79-80. 83 
compressibility effects on heat transfer, 

278-279 
drag, 74, 79-80, 87, 153-156, 160-161 
in free fall or rise, 153-156 
freestream turbulence effects, 269-271 
natural convection. 258, 278 
noncontinuum effects, 275, 278 
rotation. 260. 264 
roughness effects, 245 
secondary motion, 1 5 4 1 5 6  
in shear field. 260 
time variation of concentration, 94 
transfer. 89, 90, 93, 94, 15&157, 163, 164 
treated as slender bodies, 82, 90 

D 
D' Alembert's paradox, 8 
Davies and Taylor equation, 205 

Deformation. 32, see also Aspect ratio, Shapes 
of accelerating drops. 305 
of air bubbles in water. 172 
during bubble formation, 324 
during drop formation, 331 
onset of. 44, 125, 179-180. 305 
due to shear field, 263, 342-344 
due to turbulence, 269 
due to wall effects, 231, 233. 235, 240 
of water drops in air, 170 

Degree of circulation. 41 
Density ratio 

effect in accelerated motion, 285. 288-291. 
293-295. 298, 309 

effect on secondary motion of rigid particles, 
115, 143. 154. 156 

effect on terminal velocity anddrag. 1 1 4 1  16, 
156, 161, 162 

Diameter 
equilibrium, 337-338 
e q u i ~  alent, 18 
hydraulic. 226. 236 
hydraulic equi~alent, 77, 79 
image-shearing, 18 
projected area, 18. 21. 159 
statistical intercept, 18, 2 1 

Diffusion equation. see Continuity equation. 
species 

Dilation, see Oscillation of bubbles and drops 
Dimple, see Indentation on base of bubbles and 

drops 
Disks, 17 

accelerated motion of. 294 
drag, 74, 76, 80, 145-148, 160 
free fall, 148-149 
motion at low Reynolds number, 74 
motion at higher Reynolds number, 143-149 
rotation. 260 
secondary motion, 143. 148-149 
transfer. 91, 152-153. 163 
wakes, 143-144 

Dispersed phase. definition of, 2 
~ i s ~ l a c e m e n t  modulus. 285, 297 
Drag, .reedhl~o Drag coefficient, Form drag, 

Skin friction 
in accelerated motion. 287, 296, 312, 314, 

315-316 
calculation from stream function, 73-74 
during bubble formation, 324, 326 
during drop formation. 333 

Drag coefficient 
in accelerated motion, 305, 315, 318 
for air bubbles in water. 171 
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Drag coefficient (conrinued) 
compressibility effects, 275-278 
for curvilinear trajector?, . 3 16 
for cylinders, 1 5 4 1 5 6  
for disks, 14S147  
for fluid spheres, 33, 13C-134 
free convection effects. 2 5 6 2 5 8  
free-molecule, 276 
inviscid. 277 
for rigid spheres, 35, 43, 99, 103, IlCL113 
for rigid spheroids. 78, 1 4 6 1 4 7  
shear and rotation influence, 26C263 
spherical-cap fluid particles. 206 
turbulence effects, 2 6 6 2 6 8  
wall effects, 226-227 
water drops in air, 17C-171, 341-342 

Drag factor (wall effects), 223 
Drag ratio (nonspherical particles) 

cylinders at low Reynolds number. 79-81 
definition, 69 
orthotropic particles at low Reynolds number, 

85-87 
spherically isotropic padicles at low Reynolds 

number, 87 
spheroids, 7 6 7 7 ,  147-148, 292 

Drift, 31, 35, 42, 74f 

E 
Eddies. see Wakes, Turbulent flow 
Ellipsoidal rigid particles, 75, 82. see also 

Spheroids 
Ellipsoid of revolution, see Spheroids 
Ellipsoidal fluid panicles, 23-26. 169-199. 

232-233, 240 
Ellipsoidal-cap bubbles, see Spheroidal-cap fluid 

particles 
Elongation ratio, 19 
Enclosed vertical tubes, 2 3 S 2 4 0  
End effects, 225 
Energy dissipation, 11, 132, 189, see also 

Aerodynamic heating 
Energy equation, 3 ,  11, 12, 303 
Energy spectrum of turbulence. 268, 269, 

344345  
Entrainment, see Drift 
Eotvos number 

definition, 26 
use in correlating shapes of fluid particles, 18 1 

Equivalent sphere, 18, 69, 158 
Error distribution solutions, see Galerkin's 

method 
Euler equation, 7 

External resistance to transfer, .see also the 
indi~idual shape 

effect of surface-active impurities. 38, 63-66. 
192, 1 9 4 1 9 6 ,  214, 216 

ellipsoidal fluid particles, 192-197 
Extraction efficiency, 54 

F 
Fall from rest. see Initial motion 
Falling sphere viscometr!,, 223. 228 
Fibres. 74. see also Slender bodies 
Flatness ratio. 19 
Flattening. see Deformation 
Floating bubbles and drops, 22 
Flow visualization 

of boundary layer separation. 109, 266f 
evaluation of. 264 
for flou past spheres. 103-105, 109,222, 261 
for flow past spheroids and disks. 143 
of forming bubbles and drops. 323. 332 
hydrogen bubble technique, 212, 339 
of internal circulation, 3 6 3 8 ,  189, 210 
mixed free and forced convection, 258 
ofwake motion, 103, 109, 184185,211,212 

Fluctuations, see Oscillations 
Fluidized beds 

breakup of bubbles in, 339, 346 
bubble formation and initial motion, 305f, 

32S330  
bubble properties in. 203, 216-218 
slug properties in, 236, 237f 

Fluid particles, definition of, 2 
Fore-and-aft symmetry 

of flow fields, 8. 30, 31,40.42,  43, 100, 222 
of fluid particles, 23, 26, 170 
of rigid particles, 17, 72, 83, 164 

Form drag, 99 
for fluid particles, 33, 130 
for rigid spheres at low Reynolds number, 35 
for rigid spheres at higher Reynolds number, 

103, 108, 110 
for rigid spheroids. 77, 78, 146147 .  293 

Formation of bubbles, 321-330. 334-339 
chamber volume, effect of. 322, 329 
at circular orifices, 322-330, 3 3 4 3 3 7  
coalescence during, 327-328, 329 
constant flow conditions, 322, 324-328, 332 
constant frequency, 325, 327, 330 
constant pressure conditions. 322. 328 
constant volume, 325 
by electrolysis, 337, 339 
by entrainment, 339 
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in floaing fluid, 334 
in fluidized beds, 329-330 
at inclined orifices, 334 
intermediate conditions. 325, 329 
in liquid metals, 327 
mass transfer during. 335-337 
models for, 323-330 
models for transfer during. 335-337 
at noncircular orifices, 334 
by phase change, 337-338 
by Rayleigh-Taylor instability, 338 

Formation of drops, 321-322. 330-339 
atomization, 32 1-322, 33 1 
at circular orifices, 332-337 
coalescence during, 334 
in flowing fluid, 334 
at inclined orifices, 334 
internal circulation during, 335, 336 
by jet disintegration, 333-334 
mass transfer during, 335-337 
models for, 331-333 
models for transfer during. 335-337 
at noncircular orifices, 334 
by phase change, 337-338 
by Rayleigh-Taylor instability. 338 

Fourier number, 52, 94 
Fractional approach to equilibrium, 54, 191 
Free convection, see Natural convection 
Free-molecule regime, 272-276, 278-279 
Freestream turbulence, see also Turbulent flow 

effect on critical transition, 110, 114, 262, 
266267  

effect on heat and mass transfer, 120, 162, 
26%27 1 

effect on lift in Magnus effect, 262 
effect on panicle motion and drag, 262. 

264-269, 306, 315, 318 
Frequency 

of bubble fornation, 325, 327, 330 
of eddy shedding, 106108 ,  185, 213, 305, 

311, 342 
of imposed oscillations, 309-31 3, 314 
natural, 187-188, 197, 305, 314. 342 
of secondary motion oscillations, 150, 156, 

187-188, 197 
Fresh surface model, 197, 199, 335 

G 
Galerkin's method, 125, 130, 133-134, 135 
Galileo number, 113f 
Generation of fluid particles, see Formation of 

bubbles, Formation of drops 

Glide-tumble regime, 149 
Guard heating, 122-1 23 

H 
Hadamard-Rybczynski solution for fluid 

spheres, 30-33, 38. 47, 50, 58. 137 
Hailstonea, 1 14. 143, 1-17, 165, 245f 
Harkins correction factor, 325. 331-332. 333 
Heat transfer coefficient, see Mass transfer 

coefficient. Analog) between heat and mass 
transfer 

History effects 
in arbitraril) accelerated motion, 316 
during bubble formation, 324 
coefficient, 292, 296. 316, 317 
conditions for neglect of, 265-266, 275, 

300-301, 311. 316, 317 
spheres, 275. 287-291, 296, 297 
spheroids, 292-294 

Hydraulic equivalent sphere, 77 
Hydrostatic pressure, 22. 180, 250 
Hypersonic velocities, 276 

I 
Immobile interface,see Surface-active impurities 
Impulsive motion. 98, 286 
Inclined cubes, 239 
Indentation 

on base of bubbles and drops, 26, 204. 208, 
215, 216, 305 

on leading surface of bubbles and drops. 339 
Infinite cylinders. see Cylinders 
Initial motion. 286-295 

disks, 294 
drops, 295, 305 
fluid spheres. 295, 304-305 
particles in gases, 302-304 
particles in liquids, 29E-300 
rigid spheres, 286292  
rigid spheroids, 292-294 
spherical-cap bubbles, 305-306 
two-dimensional bubbles. 305 

Instability, see also Breakup of bubbles, 
Breakup of drops 

of accelerating drops, 346 
growth rate of disturbances, 333, 34G341 
Helmholtz type in fluid skirts, 209 
most dangerous wavelength, 333 
Rayleigh type. 330, 333, 344 
Rayleigh-Taylor type, 338, 339-342 
of wakes, 103. 143 

Intensity of turbulence. 162, 164, 266-271, 312 



Interfacial barriers to mass transfer, 248-249 
Interfacial con~ection, 2 4 6 2 4 8  
Interfacial resistance. see Interfacial barriers to 

mass transfer 
Interfacial tension. 5 

determination of, 22. 325 
importance in bubble and drop formation. 325, 

327, 333 
importance in stabilizing fluid panicles, 339, 

344 
Interfacial turbulence, 247-248 
Internal circulation 

asymmetry, 35. 37-38, 127, 130, 134 
in deformed fluid particles, 171, 209-210 
effect of surface acti\e impurities on, 36-41, 

128, 171. 175, 189 
effect of viscosit~ ratio on, 41. 133, 171 
effect on boundary laqer separation and uake 

formation, 126 
effect on resistance to transfer, 192, 194, 

197-198 
in fluid spheres, 36, 127-129, 133 
in forming bubbles and drops, 332, 335, 336 
onset of, 41 

Internal resistance to transfer. see also the indi- 
vidual shape 

effect of internal circulation. 197-198 
effect of surface active impurities, 38. 63-66. 

189-190, 198 
oscillation effect. 190, 198-199 

Irregular particles, see Arbitrarily shaped parti- 
cles 

Irrotational flow, see Potential flow 
Isometric particles, 17, 161-162. 165 

J 

Jets 
breakup, 33C331,  333-334 
formation, 322, 324, 33C-331. 333-334 
length, 330, 331. 334 

K 
Kinetic theory of gase3, 272, 277-278 
Knudsen number, 27 1 
Kronig-Brink solution, 58, 59, 60, 62, 65-66, 

137, 197 

L 
Laplace's equation, 7, 88 
Laser-Doppler anemometry, 264 
Lens-shaped particles, 74 
Levitation, 312, 313, 339 

Lift. 229, 259f. 261, 263, 301, 316. 317 
Lift coefficient, 262. 316 
Liquidmetals. bubbles in. 38, 203. 216218 .  327 
Local transfer rates, see Nusselt number. Sher- 

wood numbei 

M 
Mach number. 271 
Magnus effect. 261-262 
Marangoni effect, 64, 246-249 
Mass transfer 

during formation and release of fluid particles. 
335-337 

with stagnant continuous phase, 47, 88-91 
Mass transfer coefficient 

definition for fluid particles. 191-192 
for rigid spheres in free fall or rise, 124-125 
for stagnant external phase. 47. 89-91 

Mass transfer factor. 135-136. 157. 195, 229. 
240 

Matched asymptotic expansions 
drag at low Reynolds number by, 6 4 5 ,  78. 

260 
transfer at lou Peclet number by, 48. 93 

Maximum stable size of fluid particles. see 
Breakup of bubbles and drops 

Migration of particles. 229. 259f, 260, 338 
Modified pressure. 4, 9. 3 1 ,  42, 102 
Molecular speed ratio. 277 
Moment of inertia, dimensionless, 148-149 
Morton number. 26 

N 
Natural convection, 12, 249-259 
Natural frequency of fluid particles. 187-188, 

197. 305, 314. 342 
Navier-Stokes equation, 3. 9 

numerical solutions. 46,97-99, 180,303-304 
simplified or integral forms, 130, 249 
uncoupling from energy and continuit) equa- 

tions, 12 
Needle-shaped particles. 74, 82, 90, see also 

Slender bodies 
Newman solution. 55, 58, 59, 60, 62, 65-66 
Newton's law regime, 108-109. 113. 142, 147. 

156. 162, 164, 309 
Noncontinuum effects, 271-275. 278-279 

corrections, 170 
on drag, 272-275 
on heat transfer, 278-279 

Normal drag coefficient, 3 16 
No-slip condition, 5 .  !4, 286 



Index 

Nozzles.see Formation of bubbles. Formation of 
drops 

Nucleation. 337-338 
Numerical solutions 

for flou past cylinden, I 5 6 1 5 7  
for flow past fluid spheres, 126 
for flow past rigid spheres. 46, 97-99, 100. 

103. 121. 301. 303-304 
including transfer calculation. 91. 121. 135. 

156157 ,  302-304 
Nusselt nurnber, 12. see also Sheruood number 

for accelerating spheres, 304 
influence of free convection. 257 
local, 119-1 21, 269-270 
simultaneous heat and mass transfer. 255. 

258-259 
for sphere subject to compressibility effects, 

279 
for sphere subject to noncontinuum effects, 

278-279 

0 
Oblate spheroids, see also Spheroids 

accelerated motion. 292-294 
definition, 17 
drag. 76-79, 80. 146148 ,  150 
free fall. 150 
representation of fluid particles as, 169. 180 
secondary motion, 150 
terminal velocity. 150 
transfer, 89, 92, 93, 15G153, 192-193 
use to approximate complex shapes, 74, 

164-165, 179 
Octahedra. 165 
Opposing flow. 2 5 6 2 5 9  
Orientation 

cylinders in free fall, 155 
effect on motion of nonspherical particles, 

7G71 ,  73, 79, 87 
effect on natural convection, 256 
preferred. 87, 165 

Orifice, see Formation of bubbles, Formation of 
drops 

Orifice constant, 323 
Onhotropic particles 

definition. 17 
motion of, 70-71 
drag at low Reynolds number. 85-87 

Oscillations, 114-115, 148-150, 154-156, 171. 
179, see also Oscillatory motion, Secondary 
motion, Vibration associated with secon- 
dary motion 

associated uith wakeshedding, 103. 109. 110, 
143 

of mass transfer rates, 119 
Oscillation of bubbles and drops 

due to release after formation. 194. 305. 335 
effect on external resistance to transfer, 192, 

196197  
effect on internal resistance to transfer. 190, 

198-199 
effect on transfer rates during formation. 335 
onset of, 175, 176, 185-186. 188, 189 

Oscillatory motion 
bubble rise in, 313-314 
drag in, 286288 ,  306, 309-3 1 1  
effect on transfer rates, 312-31 3, 3 14 
motion of particle in, 306-312 
reduction of terminal velocity. 307-312, 

313-314 
Oseen approximation, 9 ,  41-46 

drag coefficient. 43, 112 
extension to higher order, 44-46 
with particle rotation, 263 
for spheroids and disks, 77-78, 145 
stream function, 42 
surface vorticity, 42, 51 
wall effects. 226 

P 
Parallelepipeds, see also Square bars, 17, 79, 83, 

85-87, 94 
Panicle. definition of, 1 
Panicle rotation, see Rotation 
Panicle shape factors. see Shape factors 
Peclet number. 10 
Pendant drops, 22 
Penetration theor).. 213 
Perimeter-equivalent factor, 22, 83. 85, 90 
Phase shift, 264-265. 307-308. 310, 313 
Plane bubbles, see Two-dimensional bubbles 
Plasma jets, 277, 316 
Point force approximation technique,see Slender 

bodies 
Potential flow, 6, 7. 305 

pressure distribution, 8, 99, 129, 181, 207 
past spheres, 8, 33. 132. 287, 305 
past spheroids, 181, 189, 192, 205 
surface velocity, 8, 135, 212 
transfer, 135. 137. 194, 213 

Prandtl number, 12 
Pressure, see Modified pressure, Surface pres- 

sure distribution 



Index 

Pressure drop for panicle mobing through tube, 
22S229  

Pressure gradient drag, 306, 309, 315, 317 
Principal axes of translation, 70-71 
Principal translational resistances. 71, 72. 75. 

80, 87 
Prisms, 164, 165 
Prolate spheroids, see u1.s~ Spheroids 

accelerated motion of, 292-294 
definition. 17 
drag, 7 6 7 9  
time variation of concentration, 94 
transfer, 89, 92, 93, 150 
treated as slender bodies, 82 

Pulsations, see Oscillatory motion. Vibration 
Pure systems 

internal circulation, 38, 41, 189 
secondary motion, 188 
shapes of fluid particles in, 182-1 83. 189 
terminal velocity and drag. 38, 41, 134, 171, 

1 7 6 1 7 8  
transfer, 51, 62. 137, 192, 1 9 4 1 9 6  
wakes, 185 

R 
Raindrops, 126, 127, 134, 170. 346. see ulso 

Water dropa in air 
Random wobbling. see Wobbling motion 
Rarefied gases, 272, 279 
Rayleigh instability, see Instabilit). Rayleigh 

t?' pe 
Rayleigh number, 251 
Rectangular parallelepipeds. see Parallelepipeds 
Relative roughness, 244 
Relaxation time, 266, 343 
Release, see also Formation of bubbles. Forma- 

tion of drops 
effect on secondaq motion. 188 
effect on transfer, 194, 197, 335, 337 

Resonance, 188. 31 I ,  342 
Retardation coefficient, 38 
Reversibility 

of creeping flow solutions, 9, 42 
of overall transfer, 88 

Reynolds number, 26 
critical, 110, 143, 266267 .  316 
internal. 30, 130, 205, 295 
lower critical, 103 
metacritical. 267 
rotational, 264 
shear, 259 

Rossby number, 262f 

Rotation, see also Tumbling motion, S e c o n d a ~  
motion 

effect on transfer, 263-264 
of particles in flou field. 70. 156. 164. 

259-264, 3 15 
tube rotation, 239 

Roughness 
effect on flow and drag, 244-245. 262 
effect on heat and mass transfer. 164. 245-246 

S 
Scale of turbulence. 264. 266. 312 
Schmidt number, I 1  
Screw motion, 259. 262-264 
Secondarb motion 

accelerating spheres. 301 
air bubbles in water, 172-1 73 
cylinders in free fall, 154156  
disks in free fall, 143, 148-149 
effect of rotation on, 263 
effect on drag, 108, 115. 188 
effect on terminal ~ e l o c ~ t y ,  115, 188 
ellipsoidal bubbles and drops, 185-1 88 
oblate spheroids in free fall, 150 
in oscillating fluid. 31 1 
spheres in free fall. 1 14-1 16 
spherical-cap bubbles, 2 I 1-212 
wall effects on. 233 

Separation. see Boundary layer separation 
Separation angle. 99. 103, 109. 117, 119-121, 

126127  
Sessile drops and bubbles, 22 
Settling factor, 69, 79 
Settling velocity, see Terminal velocity 
Shapes, 16-22, see also Deformation. Aspect 

ratio classification 
freely moving fluid panicles, 2 6 2 8 .  179-1 83, 

235, 237 
static bubbles and drops, 22 
water drops in air, 170. 183-1 84 

Shape factors, 17-22, 83 
Shape oacillations,~ee Oscillation of bubbles and 

drops 
Shear field, 26G261, 342-344 
Shewood number 

cylinders at low Reynolds and Peclet numbers, 
93 

definition, 12, 191-192 
ellipsoidal fluid panicles, 191-194 
fluid spheres, 5&51, 135, 137 
local. 49-50, 93, 117-121, 15G151 
natural convection, 252-259 



Index 

in oscillating fluid, 312-313 
rigid spheres at lou Reynolds number, 47-53, 

117 
rigid spheres at higher Reynolds number, 

117-124 
simultaneous heat and mass transfer. 255 
sphere subject to rotation, 263-264 
wall effects, 229-23 1 

Shock waves, 275. 346 
Simultaneous heat and mass transfer. 255. 

258-259 
Sinusoidal fluidmotion, 264, 286,306-310,312 
Skin friction, 99 

for fluid particles, 33, 130 
for rigid spheroids, 77, 78, 146-147, 293 
for spheres at Low Reynolds number, 33f, 35 
for spheres at higher Reynolds number, 103, 

109, 110 
Skirts, 208-209 

definition of, 26 
formation, 204, 208 
influence on transfer, 216 
influence on wakes, 2 10 
length, 209 
occurrence, 27, 208 
thickness. 208-209 
wall effects, 2 3 4 2 3 5  

Slender bodies, 74,80,82,90,.seralso Cylinders 
Slip flow regime. 116, 272-275, 278 
Slug flow, 26, 2 3 6 2 3 9  
Spectral distribution, see Energy spectrum of 

turbulence 
Spheres 

accelerated motion, 2 8 6 2 9 1 ,  295-304, 
3 0 6 3  16 

compressibility effects, 275-278, 279 
flow at low Reynolds number, 3 6 6 6  
flow at higher Reynolds number, 97-116, 

125-135 
freestream turbulence effects, 265-271 
natural convection, 251-254, 255, 257-258, 

278 
noncontinuum effects, 271-274, 278-279 
numerical solutions for, 46, 97-99, 121, 301, 

303-304 
rotation, 2 6 6 2 6 4  
roughness effects, 2 4 4 2 4 5  
in shear field. 2 6 6 2 6 2  
steady-state transfer with stagnant continuous 

phase, 47, 89 
transfer at low Reynolds number, 4 6 6 6 .  117 
transfer at higher Reynolds number, 1 17-125, 

135-137, 163, 164 

transfer uith unsteady external resistance, 
51-53, 137 

transfer with ~ariable  particle concentration. 
53-63, 94, 137 

ball effects. 221-228. 229-231, 231-232, 
240 

Spherical-cap bubbles and drops, 26, 203-219, 
234-236, 240 

external flow field, 212 
initial motion of. 305-306 
internal circulation, 209-2 10 
skirt formation, 204, 208-209 
surface pressure distribution, 207 
terminal velocity, 204-207 
transfer, 213-216 
wakes and wake angles, 204, 216212  
wall effects, 234236 ,  240 

Spherical cap rigid particles, 74, 21C211 
Spherical fluid particles, see Spheres 
Spherically isotropic particles 

detinition, 17 
motion at low Reynolds number, 70 
drag at low Reynolds number, 87 

Sphericity, 20, 80, 83 
as correlating pardmeter for terminal vel- 

ocities, 87, 158-159. 161-162 
operational, 21 
visual, 87 
working, 21 

Spheroidal-cap fluid particles, 26, 203-219 
Spheroids, 17.see also Oblate spheroids, Prolate 

spheroids 
accelerated motion of. 292-294 
drag at low Reynolds number, 74-79, 83, 

85 
noncontlnuum effects, 275 
Oseen approximation for, 77-78 
ratio of form drag to skin friction, 78, 147 
in shear field, 260 
streamlines and concentration contours, 

143-144, 15C151 
transfer, 91-93, 156153 ,  163 
wake formation and character, 143-144 

Spin, see Rotation, Top spin 
Spiral trajectories 

of fluid particles, 172, 188. 189, 195 
of rigid particles, 70, 114, 315, 317 

Splitting, see Breakup of bubbles and drops 
Square bars, 80f. 8 S 8 7 ,  164 
Stagnant cap, 39. 64-66, 127f 
Standarddrag curve. 116113 ,  125, 169f. 171. 

272, 277. 315 
Static bubbles and drops, 22 
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Statistical projected length, 20-21 
Stokes flow. see Creeping flou 
Stokes's law, see Terminal veloci? 
Stoke\ number. 264. 307f 
Stream function 

awisqmmetric creeping flow, 9 
definition. 6 
fluid spheres in creeping flou, 30-3 1 
Oseen approximation for rigid spheres. 42 
rigid spheres by matched expansions. 45. 5 1 
rigid spheres in oscillatory motion, 286-287 

Streamlines 
around accelerating spheres, 302 
definition. 6 
for flow past rigid spheres. 34, 100, 1 18 
for flow past spheroids. 143-144. 150-151 
for fluid spheres, 31-32, 128 
for spherical-cap and spheroidal-cap bubbles. 

210. 212 
Strouhal number. 106-107. 149, 173. 185, 213 
Supercritical flou range. 1 10, 1 16, 223. 245, 

263. 267-268 
Supersonic velocities. 275-276 
Support interference. 1 12. 120, 275 
Surface-actibe impurities, 38-41. 134-135. see 

also Marangoni effect 
effect on break up of bubbles and drops, 344 
effect on external resistance to transfer, 38. 

63-66, 190-195, 214, 216 
effect on internal circulation of fluid spheres. 

35-41, 134-135 
effect on internal circulation of deformed fluid 

particles. 171, 175, 189. 209-210 
effect on internal resistance to transfer. 63-66 
effect on shape of fluid particles, 33, 40 
effect on surface \elocities. 128, 175 
effect on terminal velocity of fluid spheres, 

35-36, 38-41, 135 
effect on terminal velocitq of deformed fluid 

particles, 171, 174-175, 178, 179,238,305 
effect on transfer during formation, 337 
effect on wakes and vortex shedding. 175, 

184-188 
interfacial barrier; to mass transfer. 248-249 

Surface area of drops in air, 183 
Surface pressure distribution 

on fluidparticles, 129-130. 1XCL18 1,205,207 
potential fou, ,  8, 99. 181, 207 
on rigid spheres. 42. 44, 99, 100, 102, 

108-1 10 
Surface roughness. t e e  Roughness 
Surface shear stress, see Skin friction 

Surface stretch model. 197. 199. 335 
Surface tension. see Interfacial tension 
Surface tension pressure increment. 5 ,  22, 31. 

180. 322 
Surface ~eloci ty.  8. 64. 128. 132. 135. 136 
Surface viscosity. 5 .  36, 249 
Surface vorticity distribution 

for spheres. 33. 34. 42, 46. 49. 99. l W l 0 6 .  
127 

use in calculating skin friction drag, 99 
use in calculating transfer rates, 13. 49. 5 1 .  

122 
Surfactants, see Surface-actibe impurities 

T 
Temperature gradients, 276, 277. 278 
Terminal velocity 

air bubbles in water, 40. 171-172 
arbitrarily shaped panicles at higher Reynolds 

number. 157-1 62 
bubbles and drops in pure slstems, 28. 33, 

176-178 
contaminated bubbles anddrops, 26. 173-177, 

179 
drops in gases, 178-179 
effect of densit) ratio for rigid particles. 

115-1 16. 156, 162 
freestream turbulence effect\. 266 
Hadamard-Rybcrqn5kj L alue. 33 
oblate spheroids, 148. 150 
nonspherical particles at lou Reynolds 

number. 73, 87 
randomly orientated particles at low Reynolds 

number, 73 
rigid particles in oscillating fluid, 307-312 
slugs, 236-239 
spheres. 33-36, 1 1  3-1 16, 296 
spherical-cap buhbles and drops. 26. 204207  
Stokes's law value, 35. 41, 307 
wall effects. 223-228. 233-236 
water drops in air. 169-170. 179 

Tetrahedra, 165 
Thermal number. 257 
Thin concentration houndar) laqer approach. 12 

applied to fluid spheres. 5G51 ,  135. 240 
applied to rigid sphere\. 48-49. 122, 230 
applied to spheroids. 91-92 
applied to slugs, 241 

Top \pin, 259-262, 264 
Toroidal bubbles. 306 
Toroidal rigid particles. 74 



Trajectories of accelerating particles. 289-292. 
293.297,298,300,303,311,3I5,3I5-3I8 

Transition regime (between slip and free- 
molecule flows), 272-274, 278 

Transonic velocities, 275 
Tumbling motion. 72. 149. 156. 277 
Turbulent flou. see ulso Freestrearn turbulence. 

Intensit) of turbulence 
breakup of bubbles and drops in, 342. 3 4 6  

345 
in natural convection, 258 

Two-dimensional bubbles 
in fluidized beds and liquid metals, 216 
initial motion of, 305 
slugs. 238 
terminal velocity. 207 
wakes and wake angle, 204, 2 12 

Two-dimensional shapes. 163 

U 
Cnderwater explosion bubbles, 203. 3 14. 338 
Unstead) motion, see Accelerated motion, O5cil- 

lations. Oscillatory motion, Formation of 
bubbles, Formation of drops 

v 
Velocity correction factor, 158, 161 
Velocit) gradients. see ~11.so Shear 

effect on break-up of bubble5 and drops. 
342-344 

Velocit) potential, 7 
Velocity ratio; 223, 230 
Vibration, see c11so Oscillation\ of bubbles and 

drops, Oscillaton motion 
analog) to fluid particle oscillation. 187-1 88 
effect on resistance to transfer. 190-191 

Virtual mass. see Added mas\ 
Viscosity ratio influence 

on accelerated motion, 295 
oninternalcirculation. 41. 127. 133, 189. 231 
on ratio of foml drag to skin friction, 130 
on secondary motion, 185-1 86 
on shape of fluid particles. 26-28, 183 
on terminal velocity, 2 6 2 8 ,  33, 17S174  
on transfer. 47, 51, 53, 54 
on wakes, 127. 185 

Viscous dissipation. see Aerodynamic heating, 
Energq dissipation 

Volumetric shape factor 
as correlating parameter for terminal velocit) 

and drag. 80, 159-161 

definition. 18 
values for specific shapes, 159 

Vortex, see Internal circulation, Vortex shedding 
Vortex balls, I07 
Vortex shedding. see Wake shedding 
Vorticit). 6 ,  see also Surface vorticity distribu- 

tion 
contours for flow p a t  spheres, 100-101, 

128-129 
generation and diffusion, 103, 132, 185, 

287-288, 305-306 

w 
Wakes, see nlso Wake shedding 

accelerating spheres. 301. 305 
air bubbles in water, 172 
angle for large bubbles, 204, 206 
attached recirculatory. 102-103, 119. 2 1 0 -  

21 1 ,  222, 258 
concentration type. 117, 121 
contribution to overall transfer rate, 1 19, l22f. 

162-163. 213-216, 258 
cylinders. 154 
dimensions, 46, 100. 103, 127, 143-144,268 
effect of imposed oscillations. 31 I 
ellipsoidal bubbles and drops, 184-1 85 
fluid spheres, 126127  
forming bubbles, 324 
instability, I03 
onset for spheres. 46. 102. 126 
particles in a shear field, 261 
particles subject to rotation, 261, 263 
periodicity, 108, 185 
rigid spheres, 10@1 10 
spheroids, 143 
shape and structure. 103. 154. 185-186, 

210-211. 262 
at supersonic and hypersonic velocities. 276 
volume. 103. 143. 175, 184-185, 210-21 1, 

235. 258 
wall effects, 109, 222. 233, 234-235 

Wake shedding 
air bubbles in Rater, 173 
cylinden. 154 
frequency, 106108 ,  115. 185. 213. 311 
inducement of secondary motion, 110. 1 15, 

187-188, 210-211, 301, 305 
influence of mode of injection on. 338 
influence on transfer, 119-121, 189.213-214 
onset, 103, 175. 184-185, 210, 222, 268, 305 

Wall effects, 221-241 
on accelerating particles, 288 



Wall effects (continued) Wetting, 322, 325, 331 
on fluid particles, 26, 175, 181, 231-241 Wobbling motion. 26, 70, 188, 342 
on rigid particles, 109, 147f, 222-231 
on transfer rates, 162, 229-23 1 ,  240-241 Z 

Water drops in air, 169-17 1, 179, 188,315,346, Zig-zag trajectories 
see also Raindrops fluid particles, 172. 185, 188, 189, 195, 305 

Weeping from orifices, 329 rigid particles. 114. 3 11 
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