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To the memory of

GERRY AND HEATHER RATCLIFF

Streams at some seasons
Wind their way through country lanes of beauty
And are dry.

Butterflies still hover

Down the rocky bed

And weeds grow strong and
Guard the pebbled way.

SARAH CHURCHILL
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Preface

A vast body of literature dealing with bubbles, drops, and solid particles has
grown up in engineering, physics, chemistry, geophysics, and applied mathe-
matics. The principal objective of this book is to give a comprehensive critical
review of this literature as it applies to the fluid dynamics, heat transfer, and
mass transfer of single bubbles, drops, and particles. We have tried primarily to
provide a reference text for research workers concerned with multiphase phe-
nomena and a source of information, reference, and background material for
engineers, students, and teachers who must deal with these phenomena in their
work. In many senses, bubbles and drops are the chemical engineer’s elemen-
tary particles. Inevitably the book has a bias toward the concerns of chemical
engineers since each of the authors is a chemical engineer. However, we have
attempted to keep our scope sufficiently broad to be of interest to readers from
other disciplines. It became clear to us while preparing this book that workers
in one area are commonly oblivious to advances in other fields. If this book
does no more than bring literature from other fields to the attention of research
workers, it will have accomplished part of our purpose.

A related objective of this book is to unify the treatment of solid particles,
liquid drops, and gas bubbles. There are important similarities, as well as sig-
nificant differences, that have often been overlooked among these three types of
particle. Workers concerned with liquid drops, for example, sometimes fail to
recognize the relevance of parallel work on bubbles or solid particles. Confu-
sion has been created by differing—sometimes conflicting—nomenclature. To a
large extent, we have written the book because we wished it had already
existed.

An important limitation of this book is that we treat only phenomena in
which particle—particle interactions are of negligible importance. Hence, direct
application of the book is limited to single-particle systems or dilute suspensions.

xi



x11 Preface

Understanding the behavior of single particles is, however, a solid foundation
upon which to build knowledge of multiple-particle systems. In addition, the
literature on single particles is already so extensive that it warrants a book of
its own.

Other limitations of our treatment should also be mentioned. Generally, we
are concerned with bubbles, drops, and solid particles moving freely under the
action of body forces (primarily gravity) in Newtonian fluids, but some work
on stationary rigid bodies in flowing fluids is also applicable. We make little
reference to direct applications or devices which use the phenomena under con-
sideration, concentrating instead on the fundamentals of the phenomena. We
make no mention of flexible and porous solid particles, and little mention of
electrical and magnetic fields affecting particle motion and transfer processes.
Coverage of static drops and bubbles, acoustical fields, phenomena involving
change of phase, and noncontinuum effects is relatively scant, but reference is
made in each of these cases to other works.

The fundamental principles and equations governing the behavior of bubbles,
drops, and solid particles in Newtonian fluids are summarized in Chapter 1.
Some readers may find the treatment too cursory here and in later chapters, so
we provide extensive references where more detailed discussion may be found.
Chapter 2 contains a summary of parameters used to characterize the shape of
rigid particles, and of the factors which determine the shape of bubbles and
drops. In Chapters 3-8 we treat the behavior of solid and fluid particles under
steady incompressible flow in an external phase of very large extent. Since the
sphere is of special importance in studies of bubbles, drops, and particles, two
chapters are devoted to spherical particles. Bubbles and drops assume spherical
shapes if either interfacial tension forces or continuous phase viscous forces are
considerably larger than inertial effects. These conditions are obeyed-in practice
by small fluid particles. In addition, many solid particles may be approximated
as spherical. An understanding of the behavior of spheres is therefore vital to
the consideration of deformed fluid and solid particles. Chapter 3 deals with
slow viscous flow past spherical particles, while Chapter 5 deals with flow at
higher Reynolds numbers. Chapters 4 and 6 are devoted to nonspherical rigid
particles at low and high Reynolds numbers, respectively. Nonspherical fluid
particles are treated in Chapters 7 and 8.

The remaining chapters, 9-12, are devoted to effects which complicate the
relatively simple case of a particle moving steadily through an unbounded fluid.
Chapter 9 deals with the effects of rigid walls bounding the external fluid, with
emphasis on ducts of circular cross section. Chapter 10 treats a series of factors
which can influence motion or transfer rates, including turbulence, natural con-
vection, surface roughness, and noncontinuum effects. However, effects of
electrical charging at the interface are not included since they assume major
significance only for particle—particle interactions. Chapters 11 and 12 relate to
unsteady flows, the former to cases in which the particle volume is constant
and the latter to processes whereby bubbles and drops grow, shrink, or divide.
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Chapter 1

Basic Principles

I. INTRODUCTION AND TERMINOLOGY

Bubbles, drops, and particles are ubiquitous. They are of fundamental im-
portance in many natural physical processes and in a host of industrial and
man-related activities. Rainfall, air pollution, boiling, flotation, fermentation,
liquid-liquid extraction, and spray drying are only a few of the phenomena
and operations in which particles play a primary role. Meteorologists and
geophysicists study the behavior of raindrops and hailstones, and of solid
particles transported by rivers. Applied mathematicians and applied physicists
have long been concerned with fundamental aspects of fluid-particle inter-
actions. Chemical and metallurgical engineers rely on bubbles and drops for
such operations as distillation, absorption, flotation, and spray drying, while
using solid particles as catalysts or chemical reactants. Mechanical engineers
have studied droplet behavior in connection with combustion operations, and
bubbles in electromachining and boiling. In all these phenomena and processes,
there is relative motion between bubbles, drops, or particles on the one hand,
and surrounding fluid on the other. In many cases, transfer of mass and/or
heat is also of importance. Interactions between particles and fluids form the
subject of this book.

Before turning to the principles involved, the reader should be aware of
certain terminology which is basic to understanding the material presented in
later chapters. Science is full of words which have very different connotations
in the jargon of different disciplines. The present book is about particles and
the term particle needs to be defined carefully within our context, to distinguish
it from the way in which the nuclear physicist, for example, might use the word.
For our purposes a “particle” is a self-contained body with maximum dimension
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between about 0.5 um and 10 cm, separated from the surrounding medium by
a recognizable interface. The material forming the particle will be termed the
“dispersed phase.” We refer to particles whose dispersed phases are composed
of solid matter as “solid particles.” If the dispersed phase is in the liquid state,
the particle is called a “drop.” The term “droplet” is often used to refer to small
drops. The dispersed phase liquid is taken to be Newtonian. If the dispersed
phase is a gas, the particle is referred to as a bubble. Together, drops and bubbles
comprise “fluid particles.” Following common usage, we use “continuous phase”
to refer to the medium surrounding the particles. In this book we consider
only cases in which the continuous phase is a Newtonian fluid (liquid or gas).
In subsequent chapters we distinguish properties of the dispersed (or particle)
phase by a subscript p from properties of the continuous phase which are
unsubscripted. Occasionally the dispersed and continuous phases are referred
to as the “inner” and “outer” phases, respectively.

Another distinction we use throughout the book is between rigid, non-
circulating, and circulating particles. “Rigid particles,” comprising most solid
particles, can withstand large normal and shearing stresses without appreciable
deformation or flow. “Noncirculating fluid particles” are those in which there
is no internal motion relative to a coordinate system fixed to the particle.
“Circulating particles” contain fluid which has motion of its own relative to
any fixed coordinate system. We consider only cases in which the dispersed
phase is continuous. Hence the scale of the particle must be large compared
to the scale of molecular processes in the dispersed phase.

In this book we consider as particles only those bodies which are biologically
inert and which are not self-propelling. To give some specific examples, rain-
drops, hailstones, river-borne gravel, and pockets of gas formed by cavitation
or electrolysis are all considered to be particles. However, insects and micro-
organisms are excluded by their life, weather balloons and neutrons by their
size, homogeneous vortices by the lack of a clearly defined interface, and rockets
and airplanes by their self-propelling nature and size. Our attention is con-
centrated on particles which are free to move through the continuous phase
under the action of some body force such as gravity. Thus heat exchanger tubes,
for example, are not considered—not only because of their size but also because
they are fixed in position. Some elements of our definitions are of necessity
arbitrary. For example, a golf ball satisfies our definition of a particle while a
football does not. In most cases, there is little ambiguity, however, so long as
these general guidelines regarding terminology are borne in mind.

Other terms which can be defined quantitatively are introduced in the
following sections. Some other terms, such as “turbulence,” “viscosity,” and
“diffusivity” are used without definition. For a full explanation of these terms,
we refer the reader to standard texts in fluid mechanics, heat transfer, and
mass transfer.
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II. THEORETICAL BASIS

The fundamental physical laws governing motion of and transfer to particles
immersed in fluids are Newton’s second law, the principle of conservation of
mass, and the first law of thermodynamics. Application of these laws to an
infinitesimal element of material or to an infinitesimal control volume leads
to the Navier—Stokes, continuity, and energy equations. Exact analytical solu-
tions to these equations have been derived only under restricted conditions.
More usually, it is necessary to solve the equations numerically or to resort
to approximate techniques where certain terms are omitted or modified in
favor of those which are known to be more important. In other cases, the
governing equations can do no more than suggest relevant dimensionless groups
with which to correlate experimental data. Boundary conditions must also be
specified carefully to solve the equations and these conditions are discussed
below together with the equations themselves.

A. FLUID MECHANICS
1. The Navier—Stokes Equation

Application of Newton’s second law of motion to an infinitesimal element
of an incompressible Newtonian fluid of density p and constant viscosity g,
acted upon by gravity as the only body force, leads to the Navier—Stokes
equation of motion:

p Du/Dt = pg — Vp + uVu. (1-1)

The term on the left-hand side, arising from the product of mass and acceleration,
can be expanded using the expression for the substantial derivative operator
D ¢
D +u*Vv, (1-2)
where the first term, called the local derivative, represents changes at a fixed
point in the fluid and the second term, the convective term, accounts for changes
following the motion of the fluid. The pg term above is the gravity force acting
on unit volume of the fluid. The final two terms in Eq. (1-1) represent the surface
force on the element of fluid. If the fluid were compressible, additional terms
would appear and the definition of p would require careful attention. For
discussions of these matters, see Schlichting (S1), Bird et al. (B3), or standard
texts on fluid dynamics. Equation (1-1) is written in scalar form in the most
common coordinate systems in many texts [e.g. (B3)].
In the simplest incompressible flow problems under constant property con-
ditions, the velocity and pressure fields (u and p) are the unknowns. In principle,
Eq. (1-1) and the overall continuity equation, Eq. (1-9) below, are sufficient for
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solution of the problem with appropriate boundary conditions. In practice,
solution is complicated by the nonlinearity of the Navier—Stokes equation,
arising in the convective acceleration term u * Vu.

In dimensionless form, Eq. (1-1) may be rewritten as

Du’ 1

——=—Vp, +—(V)u, 1-3
b= Vo e V) (1-3)
where the primes denote dimensionless quantities or operators formed using
dimensionless variables. Reference quantities L, U, and p, are used together
with the fluid properties to form the dimensionless quantities as follows:

u =u/U, (1-4)
X, =xy/L;y, =y/L;z,/ =z;/L;t' =tUy/L (1-5)
Pw’ = (P — Po — pgh,)/pU,’ (1-6)
LU, LU
Re =720 = =20, (1-7)
u v

where h, is a coordinate directed vertically upwards. The Reynolds number,
Re, is of enormous importance in fluid mechanics. From Eq. (1-3) it can be
interpreted as an indication of the ratio of inertia to viscous forces. For con-
venience we have defined a dimensionless modified pressure, p,,’, which gives
the pressure field due to the flow (i.e., discounting hydrostatic pressure varia-
tions). Batchelor (B1) gives a good discussion of the modified pressure. It is
useful in a wide range of problems where gravity effects can be isolated from the
boundary conditions.

2. OQverall Continuity Equation

Application of the principle of conservation of mass to a compressible fluid
yields

(Op/ot) + V- pu=0, (1-8)
which for an incompressible fluid reduces to
V-u=0. (1-9)
In dimensionless form, Eq. (1-9) becomes simply
V-u=0. (1-10)

3. Velocity Boundary Conditions

In order to solve the Navier-Stokes equations for the dispersed and con-
tinuous phases, relationships are required between the velocities on either side
of an interface between the two phases. The existence of an interface assures
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that the normal velocity in each phase is equal at the interface, i.e.,
Uy, = (Uy)p (everywhere on interface), (1-11)

where the subscript n refers to motion normal to the interface. For a particle
of constant shape and size the normal velocity is zero relative to axes fixed to
the particle.

The condition on the tangential velocity at the interface is not as obvious
as that on the normal velocity. There is now ample experimental evidence that
the fluid velocity at the surface of a rigid or noncirculating particle is zero
relative to the particle, provided that the fluid can be considered a continuum.
This leads to the so-called “no-slip” condition, which for a fluid particle takes
the form

u, = (uy), (everywhere on interface), (1-12)

where the subscript t refers to motion tangential to the surface.

Additional velocity boundary conditions are provided by the velocity field
in the continuous phase remote from the particle and the existence of points,
lines, and/or planes of symmetry. These conditions are set out in subsequent
chapters for specific situations.

4. Stress Boundary Conditions

For solid particles a sufficient set of boundary conditions is provided by the
no slip condition, the requirement of no flow across the particle surface, and
the flow field remote from the particle. For fluid particles, additional boundary
conditions are required since Eqgs. (1-1) and (1-9) apply simultaneously to both
phases. Two additional boundary conditions are provided by Newton’s third
law which requires that normal and shearing stresses be balanced at the interface
separating the two fluids.

The interface between two fluids is in reality a thin layer, typically a few
molecular dimensions thick. The thickness is not well defined since physical
properties vary continuously from the values of one bulk phase to that of the
other. In practice, however, the interface is generally treated as if it were
infinitesimally thin, i.e., as if there were a sharp discontinuity between two bulk
phases (L1). Of special importance is the surface or interfacial tension, o, which
is best viewed as the surface free energy per unit area at constant temperature.
Many workers have used other properties, such as surface viscosity (see Chapter
3) to describe the interface.

A complete treatment of interfacial boundary conditions in tensor notation
is given by Scriven (S2). If surface viscosities are ignored, the normal stress
condition reduces to

Pp + (Tnn)p - p - Tnn - O-[(l/Rl) + (1/R2):|9 (1'13)

where R; and R, are the principal radii of curvature of the surface and the
7., are the deviatoric normal stresses (B1, S1). Under static conditions Eq. (1-13)
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reduces to the Laplace equation. The tangential stress condition corresponding
to Eq. (1-13) 1s

Tnt — (Int)p = VSO-’ (1_14)

where the 7, refer to the shearing stresses and V; is the surface gradient (S2).
For a spherical fluid particle with both bulk phases Newtonian and an in-
compressible axisymmetric flow field, Egs. (1-13) and (1-14) become

ou ou, 20
—p—-2 _r 2 r_ -7 -

0 (uy 1 du, B ﬁ@ léu, _ldo
'up|:r6r<r>+r60]p 'ul:rar<r>+r60 “aq O

The final term in Eq. (1-16) is especially important for cases in which ¢ varies
around the surface of a fluid particle due to concentration or temperature
gradients (see Chapters 3, 5, and 7).

and

S.  Stream Functions, Streamlines, and Vorticity

From the definition of a particle used in this book, it follows that the motion
of the surrounding continuous phase is inherently three-dimensional. An im-
portant class of particle flows possesses axial symmetry. For axisymmetric flows
of incompressible fluids, we define a stream function, s, called Stokes’s stream
function. The value of 2my at any point is the volumetric flow rate of fluid
crossing any continuous surface whose outer boundary is a circle centered on
the axis of symmetry and passing through the point in question. Clearly y = 0
on the axis of symmetry. Stream surfaces are surfaces of constant i and are
parallel to the velocity vector, u, at every point. The intersection of a stream
surface with a plane containing the axis of symmetry may be referred to as a
streamline. The velocity components, u, and u,, are related to Y in spherical-
polar coordinates by

| G/ =1 oy
U= 26ing 00° 07 ysin0 or (1-17)
The vorticity is defined as
{=Vxu (1-18)

It can be shown that { is twice the angular rotation of a fluid element. When
£ = 0 throughout a region of a fluid, the flow in that region is said to be irrota-
tional. Flows which are initially irrotational remain irrotational if all the forces
acting are conservative. Since gravity and pressure forces are conservative, vor-
ticity generation in flow fields which are initially irrotational, such as around
a particle accelerating in a stagnant fluid, arises from nonconservative viscous
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forces. For axisymmetric flows, vorticity can be treated as a scalar function.
It is then often convenient to define surfaces of constant vorticity or lines of
constant vorticity in a plane containing the axis of symmetry. Examples of
streamlines and lines of constant vorticity are given in later chapters (for
example, in Figs. 5.1 and 5.2).

It is often convenient to work in terms of a dimensionless stream function
and vorticity defined, respectively, as

¥ =y/U,L> (1-19)
and
Z =C(L/U,. (1-20)

6. Inviscid Flow and Potential Flow Past a Sphere

In practice all real fluids have nonzero viscosity so that the concept of an
inviscid fluid is an idealization. However, the development of hydrodynamics
proceeded for centuries neglecting the effects of viscosity. Moreover, many
features (but by no means all) of certain high Reynolds number flows can be
treated in a satisfactory manner ignoring viscous effects.

For u = 0 or Re — o0, Eq. (1-1) may be rewritten

Du/Dt =g — Vp/p, (1-21)

which is the well-known Euler equation. Integration of Eq. (1-21) along either
a streamline or parallel to { for steady incompressible flows leads to Bernoulli’s
equation, i.e.,

(p/pg) + ([u|*/2g) + h, = constant. (1-22)

From Kelvin’s theorem, inviscid motions in a gravity (conservative) field
which are initially irrotational remain so. We may, therefore, write

{=Vxu=0. (1-23)
Hence u may be written as the gradient of some scalar function, i.c.,
u= Vo, (1-24)

where @ is conventionally termed a “velocity potential.” From this designation,
irrotational motions derive the name “potential flow.” For incompressible
potential flows it can be shown that Bernoulli’s equation, Eq. (1-22), applies
throughout the flow field and that @ satisfies Laplace’s equation:

V2O =0 (1-25)

If the flow is axisymmetric, i can be shown to obey the following equation in
spherical polar coordinates (B1):

r2 (0% /0r?) + 02§ /00* — cot O (oy/00) = 0 (1-26)
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Since i by definition satisfies Eq. (1-9), potential flow solutions can be found
by solving Eq. (1-26) for ¢ subject to the required boundary conditions. The
pressure field can then be found using Eq. (1-22).

Consider the case of a stationary sphere of radius a centered at the origin
in a uniform stream of velocity — U. Equation (1-26) is second order and hence
we require two boundary conditions. Remote from the sphere, the velocity
must everywhere be — U, i.e.,

W= (—=Ur?2)sin?0  as r— . (1-27)

No fluid crosses the sphere boundary. Hence the surface is a stream surface
and since this boundary also cuts the axis of symmetry

y=0 at r=a. (1-28)
Equations (1-26) to (1-28) are satisfied by

(13 V2
Y= — U(l — —3>— sin? 0. (1-29)
)2
Application of Eq. (1-17) gives

al a’
Yo (1 _ —3>cose; y = U(l +F)sin 0. (1-30)
r

Since the pressure field depends only on the magnitude of the velocity (see
Eq. (1-22)) and since the flow field has fore-and-aft symmetry, the modified
pressure field forward from the equator of the sphere is the mirror image of
that to the rear. This leads to d’Alembert’s paradox: that the net force acting
on the sphere is predicted to be zero. This paradox can only be resolved, and
nonzero drag obtained, by accounting for the viscosity of the fluid. For inviscid
flow, the surface velocity and pressure follow as

(4g)y=y =3Usin0 (1-31)
(Phr=a = Do + (pU?/2)(1 — §sin*0). (1-32)

These results are useful reference conditions for real flows past spherical
particles. For example, comparisons are made in Chapter 5 between potential
flow and results for flow past a sphere at finite Re. Other potential flow solutions
exist for closed bodies, but none has the same importance as that outlined here
for the motion of solid and fluid particles.

7. Creeping Flow

Whereas inviscid flow is a useful reference point for high Reynolds number
flows, a different simplification known as the “creeping flow” approximation
applies at very low Re. From Eq. (1-3), the terms on the right-hand side dominate
as Re — 0, so that the convective derivative may be neglected. In dimensional
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form, the resulting equation of motion is
Vpm = 1V, (1-33)

where p,, is the modified pressure introduced in dimensionless form in Eq. (1-6),
ie.,

Pm =P — Po — pgh, (1-34)

Comparison with the full Navier—Stokes equation, Eq. (1-1), shows that fluid
inertia is completely neglected in Eq. (1-33). Problems arising from the non-
linearity of the convective acceleration term are thereby avoided. However,
the order of the equation and hence the number of boundary conditions required
are unchanged.

With this simplification, the equations governing incompressible fluid motion
are Eq. (1-33) and the continuity equation, Eq. (1-9). Several important conse-
quences follow from inspection of these equations. The fluid density does not
appear in either equation. Both equations are “reversible” in the sense that they
are still satisfied if u is replaced by —u, whereas the nonlinearity of the Navier—
Stokes equations prevents such “reversibility.” If we take the divergence of
Eq. (1-33) and apply Eq. (1-9), we obtain

V2p,, =0, (1-35)

so that the modified pressure is a harmonic function. For axisymmetric flows,
we may write Eq. (1-33) in terms of the Stokes stream function as

E*Y =0, (1-36)
where E? in spherical polar coordinates is

, 0% 1 3* coth o

Fowtew e w (=37
The creeping flow approximation has found wide application in problems
such as lubrication, injection molding, and flow through porous media. Its
application to rigid and fluid particles is discussed in Chapters 3 and 4. However,
a fundamental difficulty, first recognized by Oseen, arises in applying Eq. (1-33)
or (1-36) to particles in unbounded media. This difficulty, and Oseen’s attempt

to overcome it, are discussed in Chapter 3.

8. Boundary Layer Theory

As discussed above, no fluids are inviscid in practice. At high Reynolds
number, viscous effects may be insignificant throughout large regions of the
flow field and these regions may be treated as if the fluid were inviscid. However,
the effect of viscosity must in general be taken into account in thin layers
adjacent to boundaries in the flow. The essence of boundary layer theory in
fluid mechanics, applicable only at high Re, is that viscous effects are considered
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to be restricted to thin layers called boundary layers and that certain simpli-
fications can be made in the boundary layer because of its thinness. Usually
derivatives with respect to the streamwise coordinate are neglected relative
to those in the transverse direction. An analogous approach may be applied to
heat and mass transfer at high Peclet numbers (see below) where we refer to
temperature and concentration boundary layers. There are a number of excellent
books on boundary layer theory [e.g. (S1)] to which the reader is referred.

B. HEAT AND MASS TRANSFER
1. The Species Continuity Equation

Application of the principle of conservation of mass to a binary system
consisting of a non-reactive solute in dilute solution in an incompressible
fluid yields

D¢/Dt = 9 Ve, (1-38)

where 2, the diffusivity, is assumed constant. The driving force for diffusion
is provided by molar concentration gradients. Hence Eq. (1-38) provides a
good description of diffusion in most liquids, since the density is essentially
constant, and in gases when the molecular weight of the solute is similar to
that of the host gas. Alternate forms of the species continuity equation based on
other driving forces are given by Bird et al. (B3) and Skelland (S4). Multi-
component diffusion is considered by Cussler (C1) and Bird et al. (B3).

In this book we limit our treatment to dilute solutions so that the diffusional
mass flux is small. In this way the existence of diffusion does not appreciably
alter the fluid motion, so that the velocity and stress boundary conditions can
be considered to be unaltered. Treatments of diffusion with high mass fluxes
appear elsewhere (B3, S3, S4).

Of the many possible boundary and initial conditions for Eq. (1-38), we
consider in this book only uniform concentration at the particle surface, uniform
concentration in the continuous phase far from the particle, and uniform initial
concentrations in each phase. In addition, the interface is taken to be at an
equilibrium described by a linear relationship between the concentrations in
each phase:

¢, =Hc (everywhere on interface). (1-39)

Equation (1-38) in dimensionless form becomes
Dy 1
Dt Pe

(V')*e (1-40)

where the dimensionless time and spatial coordinates are given by Eq. (1-5).
A new dimensionless group, the Peclet number,

Pe = LU,/2 (1-41)
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appears in Eq. (1-40). Pe can also be written as the product of the Reynolds
number, defined in Eq. (1-7), and the Schmidt number, Sc = v/Z, i.e.,

Pe = ReSc. (1-42)

The concentration is made dimensionless in one of several ways depending
upon the situation considered. For example, for steady transfer to the continuous
phase from a particle at constant concentration, the boundary conditions
considered in this book are

remote from particle: c¢=c¢

00 2

(1-43)

at particle surface: c=c (1-44)

-
It is then convenient to define the dimensionless concentration as

d) = (C - coo)/(cs - coo)' (1'45)

Other forms of ¢ appropriate to different physical situations are introduced in
subsequent chapters.

2. The Energy Equation

Application of the first law of thermodynamics to an infinitesmal element
of incompressible Newtonian fluid of uniform composition and constant prop-
erties yields

pC(DT/Dt) = K, V2T + ud,, (1-46)

where @, the dissipation function, represents the rate at which the tangential
and deviatoric normal stresses do work on the element of fluid. ®, may also
be viewed as the rate at which the internal energy of the fluid is increased due to
viscous dissipation. Explicit forms for @, are tabulated in standard texts [e.g.
(B3, S1)]. The dissipation function becomes important in high-speed flows and
in flows of fluids with extremely large viscosities (e.g., molten polymers). For
almost all situations considered in this book, the simple form of the energy
equation suffices with the dissipation term deleted, i.e.,

(DT/Dt) = (K,/pC) V>T. (1-47)

Equation (1-47) is identical in form to the species continuity equation, Eq. (1-38),
and this leads to close analogies between heat and mass transfer as discussed
in the next section.

Parallel to the boundary conditions discussed above for the species continuity
equation, we consider in this book only uniform temperature on the surface
of the particle, uniform temperature in the continuous phase remote from the
particle and uniform initial temperatures in each phase. Hence

T=T, (everywhere on interface). (1-48)
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Other types of boundary conditions are discussed in standard works on heat
transfer [e.g. (E1, K1)].

Putting the energy equation into dimensionless form yields an equation
identical to Eq. (1-40) with

Pe = LUypC/K, (1-49)
or
Pe = RePr. (1-50)

Thus the Prandtl number, Pr = uC,/K,, plays the same role in heat transfer
as the Schmidt number, Sc, in mass transfer.

3. Egquivalence of Sherwood and Nusselt Numbers

Since all properties have been assumed constant in Egs. (1-1), (1-38), and
(1-47), and the solute concentration has been assumed small, the Navier—Stokes
equation may be solved independently of the species continuity and energy
equations. We treat only one exception where the velocity field is considered
to be affected by heat or mass transfer. This exception, natural convection, is
covered in Chapter 10.

The formal analogy between heat and mass transfer under the conditions of
no dissipation, low mass flux and constant properties can be completed as
follows. Equations (1-38) and (1-39) and the boundary conditions considered
in this book apply to heat transfer if one replaces ¢ by pC,T, ¢, by p,C,, T,
H by p,C,,/pC,, Z by the thermal diffusivity o« = K;/pC,, Z, by o, = K;,/p,Cy
and the mass transfer coefficient k by h/pC;.

Since the dimensionless equations and boundary conditions governing heat
transfer and dilute-solution mass transfer are identical, the solutions to these
equations in dimensionless form are also identical. Profiles of dimensionless
concentration and temperature are therefore the same, while the dimensionless
transfer rates, the Sherwood number (Sh = kL/9) for mass transfer, and the
Nusselt number (Nu = hL/K,) for heat transfer, are identical functions of Re,
Sc or Pr, and dimensionless time. Most results in this book are given in terms
of Sh and Sc: the equivalent results for heat transfer may be found by simply
replacing Sh by Nu and Sc by Pr.

4. Thin Concentration Boundary Layer

For transfer in the continuous phase, it is possible to simplify Eq. (1-38)
when the continuous-phase Peclet number is large. For high Pe the concen-
tration varies only in a thin layer adjacent to the particle surface. In this region
the gradient of concentration normal to the surface is much larger than the
gradient parallel to the surface. The thin concentration boundary layer approxi-
mation consists of neglecting diffusion parallel to the surface and retaining
on the right-hand side of Eq. (1-38) only the term involving the derivative normal
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to the surface. Formally this requires Pe — oo, which, for most practical situa-
tions, means Sc — oo for any finite Reynolds number. Surprisingly, this ap-
proximation is often reasonable down to Sc of order unity. Use of the thin
concentration boundary layer approximation, sometimes called the asymptotic
solution for Sc — o0, does not require that Re be large or that the momentum
boundary layer approximation (see above) be made.

Two particularly useful equations can be derived by applying the thin
concentration boundary layer approximation to steady-state transfer from an
axisymmetric particle (L2). The particle and the appropriate boundary layer
coordinates are sketched in Fig. 1.1. The x coordinate is parallel to the surface
(x = 0 at the front stagnation point), while the y coordinate is normal to the
surface. The distance from the axis of symmetry to the surface is R. Equation
(1-38), subject to the thin boundary layer approximation, then becomes

u (0c/0x) + u,(0c/dy) = D(0*c/dy?) (1-51)
with boundary conditions
at y=0 c=c, (1-52)
at y— oo c=cCg,, (1-53)
at x=0 C=Cy. (1-54)

Axisymmetric
Particle

Fic. 1.1 Coordinates for the thin concentration boundary layer approximation.

In the thin layer adjacent to the particle surface the overall continuity equation
may be written (S1)
O(uR)/0x + d(u,R)/0y = 0. (1-55)

Since we only require u, and u, near the surface, the following approximations
may be used. For a solid particle we write

ungsyv (1'56)

where {, the surface vorticity, is given by

gs =(aux/ay)y=07 (1—57)
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since (Cu,/éx),— = 0 for all x from the normal velocity boundary condition,
Eq. (1- 11) For a fluid particle

Uy = Uy, (1-58)

where u, is the interfacial velocity discussed above. In general, {; and u, are
functions of x. The normal velocity u, is determined from u, through the
continuity equation, Eq. (1-55).

Combination of Egs. (1-51) to (1-55) with either Eq. (1-56) or (1-58) yields
an equation which may be solved to give concentration profiles from which
mass transfer rates may be found. For a solid particle the average Sherwood
number is

/2 2/3
Sh, = &A—/AA— 0641f fx“[“%ﬂ} dX} Pel/3, (1-59)

where
X = 2x/d, (1-60)
R =2R/d, (1-61)
Pe=d.U/9. (1-62)

Here X, is the maximum value of X and A, is the surface area of the volume
equivalent sphere. For a fluid particle the average Sherwood number is

kA/A,) M 12
Sh — (——/9—* ~0. 798[ N <”‘>x2 dX} Pell?, (1-63)

€

Equation (1-63) is valid as long as the x direction velocity is essentially equal
to the tangential velocity throughout the concentration boundary layer. This
requires (L2) that

d, (ou
She » =~ . 1-64)
2ul<6y >y=0 (

As we shall see in Chapter 3, this places severe restrictions on the range of
Kk = p,/u for which Eq. (1-63) can be applied. Equations equivalent to Eq. (1-63)
have been derived for fluid particles from another point of view (B2, S5).
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Chapter 2
Shapes of Rigid and Fluid Particles

I. INTRODUCTION

Natural and man-made solid particles occur in almost any imaginable shape
from roughly spherical pollen and fly ash through cylindrical asbestos fibers to
irregular mineral particles. Bubbles and drops, on the other hand, adopt a
smaller range of shapes, and although they are often axisymmetric, they are
spherical only under special circumstances. A nonspherical particle may have
planes and axes of symmetry, but it cannot possess the unique point-symmetry
of the sphere. Thus a nonspherical particle presents problems which are more
complex than those arising for the sphere. This chapter presents a summary of
methods of classifying and quantifying the shapes of particles. A method is also
presented for distinguishing which of three overall shape regimes a fluid particle
adopts in unhindered motion under the influence of gravity.

1. CLASSIFICATION OF PARTICLE SHAPES

A. SYMMETRY

It is convenient to classify symmetric particles into several general groups.
A shape may belong to more than one group, and this overlap generally makes
it easier to predict flow properties, motion in free fall or rise, etc. The most useful
divisions are as follows.

1. Axisymmetric Particles

This group comprises bodies generated by rotating a closed curve around an
axis. Spheroidal particles (also called ellipsoids of revolution) are of particular
interest, since they correspond closely to the shapes adopted by many drops and

16
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bubbles and to the shapes of some solid particles. A spheroid is an ellipsoid of
revolution, generated by rotating an ellipse about one of its principal axes.
If this is the minor axis, the body is said to be oblate; otherwise the spheroid is
prolate.

Axisymmetric shapes are conveniently described by the “aspect ratio” E,
defined as the ratio of the length projected on the axis of symmetry to the
maximum diameter normal to the axis. Thus, E is the ratio of semiaxes for a
spheroid, with E < 1 for an oblate spheroid and E > 1 for a prolate spheroid.

2. Orthotropic Particles

A body has a plane of symmetry if the shape is unchanged by reflection in the
plane. Orthotropic particles have three mutually perpendicular planes of
symmetry. An axisymmetric particle is symmetric with respect to all planes
containing its axis, so that it is orthotropic if it has a plane of symmetry normal
to the axis, i.e., if it has fore-and-aft symmetry.

3. Spherically Isotropic Particles

This group comprises regular polyhedra and all shapes obtained by sym-
metrically smoothing or cutting pieces from these bodies. It includes isometric
orthotropic particles, i.e., shapes for which the half-body obtained by cutting
the particle along a plane of symmetry is the same whichever plane is chosen for
the cut. Particles obtained by symmetrical deformation of a regular tetrahedron
are “spherically isotropic” (see Chapter 4), even though they are not orthotropic.

Some simple examples may help to clarify these classes of symmetry. Circular
cylinders, disks, and spheroids are axisymmetric and orthotropic; cones are
axisymmetric but not orthotropic; none of these are strictly spherically iso-
tropic. Parallelepipeds are orthotropic, but the cube is the only spherically
isotropic parallelepiped. Regular octahedra and tetrahedra are spherically
isotropic; octahedra are orthotropic whereas tetrahedra are not.

B. SHAPE FACTORS

Most particles of practical interest are irregular in shape, and so do not fall
into the above categories. A variety of empirical factors have been proposed to
describe nonspherical particles and correlate their flow behavior. Empirical
description of particle shape is provided by identifying two characteristic
parameters from the following (B3):

(i) volume, V
(i) surface area, 4
(iii) projected area, A,
(iv) projected perimeter, P,

The projected area and perimeter must be determined normal to some specified
axis. For axisymmetric bodies, the reference direction is taken parallel or normal
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to the axis of symmetry (see Chapter 4). Many naturally occurring particles have
an oblate or lenticular form. In this case, the reference direction is usually taken
parallel to the particle thickness ¢, the minimum distance between two parallel
planes tangential to opposite surfaces. This choice has some immediate practical
advantages. If the particle is observed or photographed at rest on a flat hori-
zontal surface (such as a microscope slide), then the outline usually defines 4,
and P,. In the intermediate Reynolds number range (see Chapter 6), an oblate
particle tends to fall with its greatest area horizontal, so that correlations based
on these A, and P values are useful. They are less reliable in creeping flow or at
high Re where other orientations may be adopted.

An “equivalent sphere” is defined as the sphere with the same value of one of
the above measures. The commonest referent is the volume-equivalent sphere,
which many authors describe as the equivalent sphere without further definition.
The “particle shape factor” is defined as the ratio of another measure from the
above list to the corresponding value for the equivalent sphere. Of the many
possible shape factors, those which have proved most useful are described below.
All shape factors are open to the criticism that a range of bodies with different
forms may have the same shape factor, but this is inevitable if regular or complex
shapes are to be described by a single parameter.

1. Volumetric Shape Factor

Heywood (H5) proposed a widely used empirical parameter based on the
projected profile of a particle. The “volumetric shape factor” is defined as

k = V/dA3, (2-1)

where d, = /44, /n is the “projected area diameter,” the diameter of the sphere
with the same projected area as the particle.

A number of methods have been suggested for obtaining an estimate for d,
without determining A:

(i) The diameter may be estimated by comparison with a graticule super-
imposed on the image of the particle. This method has the disadvantage that it
is open to subjective operator error. Generally it leads to overestimation of d,,
especially for elongated particles (H6).

(i) Two images of the particle are displaced until they just touch, as shown
in Fig. 2.1a. The displacement gives the “image-shearing diameter.” This method
greatly reduces operator error. Moreover, a number of values can be obtained
for a given particle, corresponding to different orientations of the image relative
to the direction of displacement. The mean of these values gives a good estimate
for d, (H6).

(iti) A line with random orientation is drawn to bisect the projected area.
The intercept of the outline on this line, shown in Fig. 2.1b, gives the value of the
“statistical intercept diameter” proposed by Martin et al. (M1). This method is
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Image Statistical
Shearing Intercept
Diameter Diameter

(@) (b)
F1G. 2.1 Methods of estimating d,, the projected area diameter: (a) image shearing method
[after Heywood (H6)]; (b) statistical intercept method [after Martin et al. (M1)].

subject to operator error since the position of the line bisecting the area is judged
subjectively. A number of such measurements can, however, be made with
different orientations; the geometric mean gives d, (H6).

Automatic techniques for characterizing particle shape without operator error
are also under development, based primarily on fiber optics with automatic
signal processing. Kaye (K1) has given a useful review of recent developments.

Even if an estimate for d, is available, the volumetric shape factor can only
be evaluated if the particle volume is known, and this may not be readily
available for naturally occurring particles, or if a distribution of particle sizes
or shapes is present. Heywood (H4) suggested that k may be estimated from the
corresponding value, k., of an isometric particle of similar form by the rela-
tionship

k= ke/(e\/22). (2-2)
The parameters ¢, and e, are obtained from:

(i) the thickness, t, defined above.

(i) the breadth, b, defined as the minimum distance between two parallel
planes which are perpendicular to the planes defining the thickness and tan-
gential to opposite surfaces.

(ii1) the length, [, projected on a plane normal to the planes defining ¢ and b.
The “flatness ratio” is then

e; = b/t (2-3)
and the “elongation ratio” is

e, = l/b. (2-4)
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Values of k, for some regular shapes and approximate values for irregular shapes
are given in Table 6.3. Equation (2-2) is exact for regular shapes such as spheroids
and cylinders, and the group (el\/—e'z)‘1 has itself been proposed as a simple
shape factor (C1, M2).
2. Sphericity

Wadell (W1) proposed that the “degree of true sphericity” be defined as
A, surface area of volume-equivalent sphere
A surface area of particle

Y= , (2-5)
so that =1 for a true sphere. Although the sphericity was first introduced
simply as a measure of particle shape, it was subsequently claimed to be useful
for correlating drag coefficients (W3). There is some theoretical justificatjon
for the use of Y as a correlating parameter for creeping flow past bodies whose
geometric proportions resemble a sphere, but for other circumstances its use
is purely empirical. The more the aspect ratio departs from unity, the lower
the sphericity. For irregular particles, it is difficult to determine  directly.

3. Circularity
Wadell (W1) also introduced the “degree of circularity”:

¢ = P, _ perimeter of projected-area-equivalent sphere  7mdy (2-6)

P, projected perimeter of particle P,

Unlike the sphericity, ¢ can be determined from microscopic or photographic
observation. Use of ¢ is only justified on empirical grounds, but it has the
potential advantage of allowing correlation of the dependence of flow behavior
on particle orientation. For an axisymmetric particle projected parallel to its
axis, ¢ is unity.

Determination of the perimeter may be avoided if Feret’s “statistical projected

Statistical
Projected
Length

FIG. 2.2 Method of estimating d,, the projected perimeter diameter [after Feret (F1)].
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length” (F1) is employed. As for Martin’s intercept diameter, a line with random
orientation is drawn across the projected area. The length of the particle pro-
jected onto this line as shown in Fig. 2.2 gives the statistical projected length.
Provided that the profile is not re-entrant, the mean of a number of such deter-
minations gives the “projected perimeter diameter,” d,,, the diameter of a sphere
with the same projected perimeter as the particle (W6). The circularity is then
given by

¢ =dy/d,. (2-7)
4. Operational Sphericity and Circularity

Since the sphericity and circularity are so difficult to determine for irregular
particles, Wadell (W1) proposed that i and ¢ be approximated by “operational
shape factors”:

volume of particle /3
l//Gp = . 1 s (2'8)
volume of smallest circumscribing sphere |
projected area of particle /2
fop = . —— (2-9)
area of smallest circumscribing circle

For rounded particles the operational sphericity, ,,, is well approximated
(K2, P3) by (e,e,) ™ /?, which is exact for ellipsoids. However, i/, is not generally
a good approximation to iy. Aschenbrenner (A2) showed that a better approxi-
mation to Y is given by a “working sphericity” obtained from the flatness and
elongation ratios by a result derived for a specific truncated polygonal form:

12.8(e e,?)?
1+ e(14e)+ 61 + e, 21 + e2)

This parameter has been found to correlate well with the settling behavior of
naturally occurring mineral particles (B4).

The operational circularity, ¢,,, is sometimes called the “projection spher-
icity,” since Wadell (W2) suggested that ¢, provides an estimate of i based on
a two-dimensional projection. However, ¢, does not approximate  for regular
bodies, and is virtually uncorrelated with settling behavior for natural irregular
particles (B4). Quick methods for evaluating ¢,, are available. It may be deter-
mined as

Yy = (2-10)

¢op = da/(diameter of circumscribing circle), (2-11)

where d, is the projected-area diameter determined, for example, by image-
shearing or from the Martin intercept diameter previously described. Ritten-
house (R1) has given a series of calibrated outlines for irregular particles covering
the range 0.45 < ¢,, < 0.97. Pye and Pye (P3) showed that for rounded particles
¢op is approximated closely by e; '/?, an exact relation for ellipsoids.
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5. Perimeter-Equivalent Factor

For axisymmetric bodies with creeping flow parallel to the axis of symmetry,
Bowen and Masliyah (B3) found that the most useful shape parameter was
based on the sphere with the same perimeter, P’, projected normal to the axis.
Their shape factor is given by

surface area of particle A

_ ; : -2 1
surface area of perimeter-equivalent sphere A4,

It is shown in Chapter 4 that X is also a valuable correlating parameter for

motion normal to the axis, and for diffusional mass and heat transfer.

1. SHAPE REGIMES FOR FLUID PARTICLES

Bubbles and drops tend to deform when subject to external fluid fields until
normal and shear stresses balance at the fluid—fluid interface. When compared
with the infinite number of shapes possible for solid particles, fluid particles at
steady state are severely limited in the number of possibilities since such features
as sharp corners or protuberances are precluded by the interfacial force balance.

A. StATIC BUBBLES AND DROPS

Bubbles or drops which are prevented from moving under the influence of
gravity by a flat plate are termed “sessile” (see Fig. 2.3a and 2.3b). When bubbles
or drops remain attached to a surface with gravity acting to pull them away,
they are called “pendant” (see Fig. 2.3c and 2.3d). Floating bubbles or drops,
shown in Fig. 2.3, are those which sit at the interface between two fluids.

The profiles of pendant and sessile bubbles and drops are commonly used in
determinations of surface and interfacial tensions and of contact angles. Such
methods are possible because the interfaces of static fluid particles must be at
equilibrium with respect to hydrostatic pressure gradients and increments in
normal stress due to surface tension at a curved interface (see Chapter 1). It is
simple to show that at any point on the surface

o 2oL L 213
(pp pgy—rfRO R, R,/ (2-

where y is measured vertically upwards from point O on the axis of symmetry
where the radius of curvature of the surface is R, while R; and R, are the
principal radii of curvature at the point of interest. The above equation shows
why the radius of curvature must increase on proceeding away from O for
pendant drops or bubbles while decreasing for sessile bubbles or drops. When
substitutions are made for R, and R,, a second-order ordinary differential
equation results which must be solved numerically (B1). The recent book by
Hartland and Hartley (H3) provides complete and accurate tabulations as well
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y

(73
“a)
Sessile Drop

(
Sessile Bubble or Drop

Pendant Drop (d)
Pendant Bubble or Drop

Floating Bubble or Drop

FiG. 2.3 Shapes of static bubbles and drops: (a),(b) sessile; (c),(d) pendant; (e) floating. (Shading
denotes more dense fluid in each case.)

as a general review, approximate solutions, numerical methods, and treatment
of menisci and stationary particles subject to applied forces. Another useful
review of this subject, including also the case of fluid particles at equilibrium in
centrifugal fields, has been prepared by Princen (P1). Many standard texts on
surface chemistry [e.g. (A1)] also contain discussions of the use of pendant and
sessile drops in determining interfacial tensions.

B. BuUBBLES AND DROPS IN FREE MOTION

Bubbles and drops in free rise or fall in infinite media under the influence of
gravity are generally grouped under the following three categories:

(a) “Spherical”: Generally speaking, bubbles and drops are closely approxi-
mated by spheres if interfacial tension and/or viscous forces are much more
important than inertia forces. For our purposes, fluid particles will be termed
“spherical” if the minor to major axis ratio lies within 10% of unity. Spherical
fluid particles in free rise or fall are discussed in Chapters 3 and 5.

(b) “Ellipsoidal”: The term “ellipsoidal” is generally used to refer to bubbles
and drops which are oblate with a convex interface (viewed from inside) around
the entire surface. Photographs of bubbles and drops in this regime are given in
Fig. 2.4a, b, and d. Tt must be noted that actual shapes may differ considerably
from true ellipsoids and that fore-and-aft symmetry must not be assumed.
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FiG. 2.4 Photographs of bubbles and drops in different shape regimes. All photographs repro-
duced with the permission of the publisher and author, if previously published.



F1G. 2.4 (continued)

Dispersed Continuous
Fig.  Ref. fluid fluid M d, (cm) Eo Comments
a (P2)  water air 1.7 x 1072 058 45  see Chapter 7
b air water 31 x 107 0.6 5  see Chapter 7;
note wobble
c (D1)  air water 3.1 x 107 4.2 240  see Chapter 8
d (B2)  air aqueous sugar 8.2 x 107# 1.4 32 very flat
solution ellipsoid
e (B2) air aqueous sugar 5.5 4.1 290  see Chapter 8
solution
f (W5)  chloroform  aqueous sugar 1.2 x 10° 5.1 70  see Chapter 8
solution
g (B2) air aqueous sugar 45 43 320  smooth skirt;
solution see Chapter 8
h (W5) air paraffin oil 0.34 5.8 780  wavy skirt;
see Chapter 8
i (BS) air mineral oil 2.6 x 1073 >D N.A.  Frp, =0.33,
D =26cm;

see Chaoter 9
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Moreover, ellipsoidal bubbles and drops commonly undergo periodic dilations
or random wobbling motions which make characterization of shape particu-
larly difficult. Chapter 7 is devoted to this regime.

(c) “Spherical-cap” or “ellipsoidal-cap”: Large bubbles and drops tend to
adopt flat or indented bases and to lack any semblance of fore-and-aft symmetry.
Such fluid particles may look very similar to segments cut from spheres or from
oblate spheroids of low eccentricity; in these cases the terms “spherical-cap”
and “ellipsoidal-cap” are used. If the fluid particle has an indentation at the rear,
it is often said to be “dimpled.” Large spherical- or ellipsoidal-caps may also
trail thin envelopes of dispersed fluid referred to as “skirts.” Photographs of
freely rising fluid particles in this regime are shown in Fig. 2.4c, e, f, g and h.
Spherical- and ellipsoidal-caps with and without skirts are treated in Chapter 8.

When bubbles and drops rise or fall in bounded media their shape is affected
by the walls of the container. If the bubble or drop is sufficiently large, it fills
most of the container cross section and the “slug flow” regime results. A photo-
graph of a slug flow bubble is shown in Fig. 2.4i. The effect of bounding walls
is treated in Chapter 9.

For bubbles and drops rising or falling freely in infinite media it is possible
to prepare a generalized graphical correlation in terms of the E6tvds number,
Eo; Morton number,* M; and Reynolds number, Re (G1, G2):

Eo =g Ap d.%/o, (2-14)
M = gu* Ap/p*a?, (2-15)
Re = pd. U/u. (2-16)

The resulting plot is shown in Fig. 2.5. Figure 2.5 does not apply to the extreme
values of density ratio, y = p,/p, or viscosity ratio, k = u,/u, found for liquid
drops falling through gases. Drops in gases are considered explicitly in Chapter
7. Aside from this exclusion, the range of fluid properties and particle volumes
covered by Fig. 2.5 is very broad indeed. Since Re is the only one of the three
groups to contain the terminal velocity, Fig. 2.5 may be used to estimate terminal
velocities as well as the shape regime, although more accurate predictive correla-
tions are usually available. It is notable that p, does not play an important role
in determining terminal velocities and shape regimes since it does not appear

T When the Hungarian alphabet was reformed in the 1920°s, Edtvds (pronounced Ertversh)
was given special dispensation to keep the archaic spelling. For convenience, we drop the umlauts
from now on. In the present context, the name appears to have originated with Harmathy (H2).
This group is sometimes referred to as the Bond number.

¥ We have called this group the Morton number throughout this book, although it was used prior
to Haberman and Morton (H1) by Rosenberg (R2) who refers to an even earlier user. In the
literature, the group is often simply referred to as the M-group or property group, and its inverse
as the P-group.
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in any of the three groups used to construct Fig. 2.5. The role of u, may be
significant, however, for very pure (surfactant-free) systems or for large fluid
particles in high M liquids. These cases are considered in Chapters 3 and 8.

Figure 2.5 shows boundaries between the three principal shape regimes
described above, as given by Grace et al. (G2). While the boundaries between
the principal shape regimes are somewhat arbitrary, it is clear that bubbles and
drops are ellipsoidal at relatively high Re and intermediate Eo while the
spherical- or ellipsoidal-cap regime requires that both Eo and Re be large.
Various subregimes may also be mapped (B2, W4), and some of these are
included in Fig. 2.5. Again the boundaries are somewhat arbitrary. Nevertheless,
Fig. 2.5 is a useful tool for demonstrating the wide range of bubble and drop
behavior considered in the following chapters.
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Chapter 3

Slow Viscous Flow Past Spheres

I. INTRODUCTION

The system considered in this chapter is a rigid or fluid spherical particle
of radius a moving relative to a fluid of infinite extent with a steady velocity U.
The Reynolds number is sufficiently low that there is no wake at the rear of the
particle. Since the flow is axisymmetric, it is convenient to work in terms of the
Stokes stream function s (see Chapter 1). The starting point for the discussion
is the “creeping flow approximation,” which leads to Eq. (1-36). It was noted
in Chapter 1 that Eq. (1-36) implies that the flow field is “reversible,” so that
the flow field around a particle with fore-and-aft symmetry is also symmetric.
Extensions to the creeping flow solutions which lack fore-and-aft symmetry
are considered in Sections II, E and F.

II. FLUID MECHANICS

A. FLuID SPHERES: HADAMARD—RYBCZYNSKI SOLUTION

One of the most important analytic solutions in the study of bubbles, drops,
and particles was derived independently by Hadamard (H1) and Rybczynski
(R5). A fluid sphere is considered, with its interface assumed to be completely
free from surface-active contaminants, so that the interfacial tension is constant.
It is assumed that both Re and Re, are small so that Eq. (1-36) can be applied
to both fluids, i.e.,

E*Y = E*y, =0. (3-1)

The boundary conditions require special attention. Taking a reference frame
fixed to the particle with origin at its center, they are

30
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(a) Uniform stream flow in the —z direction at large distances from the
sphere:

Y/t — —(U/2)sin?0  as r— oo; (3-2)
(b) No flow across the interface:
v =y,=0 at r=a; (3-3)
(c) Continuity of tangential velocity across the interface:
oyjor = oy Jor  at r=a; (3-4)
(d) Continuity of tangential stress across the interface:
A -
%(:—2 2—1”) - %(riz 02”:) at r=a, (3-5)

where k = p,/u is the viscosity ratio.
(e) Continuity of normal stress across the interface:

of 1 W\ 20 o/ 1 oy, B
p—2”5<r2sinoae>+a—pp 2“par<r2sin0 20 at r=a, (36)

where p and p, are the modified pressures in each phase (see Chapter 1) and
the term 20/a results from the pressure increment associated with interfacial
tension.

The solution of Eq. (3-1) with boundary conditions (3-2) to (3-5) may be
found in a number of standard texts [e.g. (B2, L3)], and is

_ Ur’sin*f a2 + 3k) Ka®
V= [1 2l +w) 2P0+ KJ’ 39
Ur?sin* 0 r?
=S >

The internal motion given by Eq. (3-8) is that of Hill’s spherical vortex (H6).
Streamlines are plotted in Figs. 3.1 and 3.2 for x = 0 and k = 2, and show the
fore-and-aft symmetry required by the creeping flow equation. It may also be
noted in Fig. 3.2 that the streamlines are not closed; for any value of «, the
solution predicts that outer fluid is entrained along with the moving sphere.
This entrainment, sometimes known as “drift,” is infinite in creeping flow. This
problem is discussed further in Chapter 4.

The solution given by Egs. (3-7) and (3-8) is derived using only the first four
boundary conditions (L3); i.e. without considering the normal stress condition,
Eq. (3-6). The modified pressures can be obtained from Eq. (1-33) and are
given by

p=po + [uUacos6(2 + 3x)/2r*(1 + x)], (3-9)
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FIG. 3.1 Streamlines relative to spherical fluid particle at low Re: Hadamard-Rybczynski
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FIG. 3.2 Streamlines for motion of fluid sphere through stagnant fluid at low Re caused by
translation of spherical fluid particle: Hadamard—Rybczynski solution.

Py = Pop — [Su,Urcos 0/a*(1 + k)], (3-10)

where p, and p,, are constants. Even though Egs. (3-9) and (3-10) are derived
without considering Eq. (3-6), the latter is also satisfied if p,, — po = 20/a.
Thus the problem is not overspecified, and the assumed spherical shape is
consistent with the other assumptions in the derivation. This leads to the
important conclusion that bubbles and drops are spherical when the creeping
flow approximation is valid, and only deform from a spherical shape when
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inertial terms become significant. A further corollary is that it is not necessary
for surface tension forces to be predominant for a bubble or drop to be spherical.
Moreover, as we shall see below, surface-active contaminants may cause marked
changes in internal circulation and drag for a bubble or drop, but the effect
on shape is negligible at low Reynolds numbers. Thus if Reynolds numbers
are very low, bubbles and drops remain spherical no matter how small the
surface tension forces. The onset of deformation of fluid particles is discussed
in Chapter 7.

The pressure distribution given by Eq. (3-9) is an odd function of 6, so that
the particle experiences a net pressure force or “form drag.” Integration of the
pressure over the surface of the particle leads to a drag component given by

8 (24 3k
Co: _ﬁ% . K). (3-11)

This result may be contrasted with potential flow past a sphere, where the
streamlines again have fore-and-aft symmetry but p is an even function of 8
so that there is no net pressure force (see Chapter 1). Additional drag components
arise from the deviatoric normal stress:

Cpa = 32/[3Re(1 + )] (3-12)
and from the shear stress:
16 «
D3 — R_e (T:?) (3'13)
The overall drag coefficient is the sum of these three contributions:
2F 8 (2 + 3k
C, = b _ "~ -14
P npU%a? Re<].+rc>’ (3-14

so that Cpy; = Cp/3 for all k. For a gas bubble (k = 0) the shear component,
Cps, is zero and the deviatoric normal stress plays a very important role in
determining the overall drag.’

The terminal velocity of a fluid particle in creeping flow is obtained by
equating the total drag to the net gravity force, 4na>® Ap g/3, giving:

2ga*Ap/ 1+«
Ur=- . -
3o \2+ 3k (3-15)
Finally, the vorticity at the interface is
Usinf/2 + 3k
= . -16
2= (05 516

It is an interesting semantic question whether Cp, should be regarded as a component of form
drag or of skin friction.
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B. RIGID SPHERES: STOKES'S SOLUTION

Stokes’s solution (S9) for steady creeping flow past a rigid sphere may be
obtained directly from the results of the previous section with x — co. The
same results are obtained by solving Eq. (3-1) with Eqs. (3-4) to (3-6) replaced
by the single condition that u, = 0 at r = a. The corresponding streamlines are
shown in Figs. 3.3a and 3.4a. As for fluid spheres, the particle causes significant

(a)

///

S

A

A
i

(b)

Fi1G. 3.3 Streamlines relative to rigid sphere at low Re: (a) Stokes’s solution; (b) Oseen approxi-

=—

(a)

i/

\j

=

(b)

F1G. 3.4 Streamlines for motion of rigid sphere through stagnant fluid at low Re: (a) Stokes’s
solution; (b) Oseen approximation.
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streamline curvature over a very extensive region, and there is infinite drift.
On the axis of symmetry, the fluid velocity falls to half the sphere velocity
almost two radii from the surface. The corresponding distance for potential
flow is 0.7 radii.

From Egs. (3-11) to (3-14), the total drag coefficient is given by “Stokes’s law™:

Cps = 24/Re. (3-17)

Two thirds of this drag arises from skin friction, one third from form drag, and
the component due to deviatoric normal stress is zero. The corresponding
terminal velocity follows from Eq. (3-15) as:

Uzs = 2ga* Ap/9u = gd* Ap/18u. (3-18)
The surface vorticity obtained from Eq. (3-16) is
{,=3Usin0/2a. (3-19)

C. EXPERIMENTAL RESULTS: FLUID SPHERES

The Hadamard—Rybczynski theory predicts that the terminal velocity of a
fluid sphere should be up to 509, higher than that of a rigid sphere of the same
size and density. However, it is commonly observed that small bubbles and
drops tend to obey Stokes’s law, Eq. (3-18), rather than the corresponding
Hadamard-Rybczynski result, Eq. (3-15). Moreover, internal circulation is
essentially absent. Three different mechanisms have been proposed for this
phenomenon, all implying that Eq. (3-5) is incomplete.

Bond and Newton (B3) found that small bubbles and drops followed Stokes’s
law while, with increasing diameter, there was a rather sharp increase in velocity
toward the Hadamard—Rybczynski value. They suggested that a circulating
particle requires energy locally to stretch interfacial area elements over the
leading hemisphere, while these shrink over the rear surface. It was hypothesized
that this process caused additional tangential stresses to retard the particle
and that surface tension played the dominant role in determining whether Uy
followed Eq. (3-15) or (3-18). They proposed that internal circulation could
only occur for Eo > 4. This has come to be known as the “Bond criterion.”
That it gave fair agreement with observed bubble or drop sizes at which the
terminal velocity was midway between the Stokes and Hadamard—Rybczynski
values probably reflects the fact that the degree of contamination by surface
active substances is often roughly proportional to the surfactant-free interfacial
tension, og (D3, G7). However, subsequent experimental work [e.g. (G1, G2,
G3, L5)] has shown that the Bond criterion is not always applicable. Harper
et al. (H5) and Kenning (K1), on the other hand, have shown that the surface
energy argument is valid if tangential gradients of temperature and hence
surface tension are considered. However, the effect is much too small to account
for the immobile interfaces of small bubbles and drops.
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Boussinesq (B4) proposed that the lack of internal circulation in bubbles
and drops is due to an interfacial monolayer which acts as a viscous membrane.
A constitutive equation involving two parameters, surface shear viscosity and
surface dilational viscosity, in addition to surface tension, was proposed for
the interface. This model, commonly called the “Newtonian surface fluid model”
(W2), has been extended by Scriven (S3). Boussinesq obtained an exact solution
to the creeping flow equations, analogous to the Hadamard—Rybczinski result
but with surface viscosity included. The resulting terminal velocity is

_ggazApr 1+x+Clu
T3 u |24 3k+3C/H)

where C is equal to the surface dilational viscosity divided by 1.5 times the radius.
Although Eq. (3-20) reduces to Egs. (3-15) and (3-18) for C =0 and C = oo,
respectively, the transition between these results with decreasing radius is in
practice much sharper than predicted [e.g. (B3)]. A further difficulty with
surface viscosity is that it is very difficult to obtain reliable measurements
(01, W2).

The most reasonable explanation for the absence of internal circulation for
small bubbles and drops was provided by Frumkin and Levich (F1, L3).
Surface-active substances tend to accumulate at the interface between two fluids,
thereby reducing the surface tension. When a drop or bubble moves through a
continuous medium, adsorbed surface-active materials are swept to the rear,
leaving the frontal region relatively uncontaminated. The concentration gra-
dient results in a tangential gradient of surface tension which in turn causes a
tangential stress (see Eq. (1-14)) tending to retard surface motion. These gra-
dients are most pronounced for small bubbles and drops, in agreement with
the tendency for small fluid particles to be particularly subject to retardation.
Models relating to surface contamination are discussed in the next section.

The surface contamination theory implies that all bubbles and drops, no
matter how small, will show internal circulation if the system is sufficiently
free of surface-active contaminants. Experimental evidence tends to support
this view. For example, Redfield and Houghton (R2) took considerable pains
to purify systems in which air bubbles rose in aqueous dextrose solutions, and re-
ported excellent agreement with the Hadamard—-Rybczynski drag relationship.
Similarly, Levich (L3) reports that mercury drops falling through pure glycerine
have velocities which are 50%, greater than the Stokes value. Observations at
higher Reynolds numbers also confirm this theory qualitatively (B1, E1, E2, LS5).

Internal circulation patterns have been observed experimentally for drops
by observing striae caused by the shearing of viscous solutions (S7) or by
photographing non-surface-active aluminum particles or dyes dispersed in the
drop fluid [e.g. (G2, G3, J2, L5, M1, S1)]. A photograph of a fully circulating
falling drop is shown in Fig. 3.5a. Since the internal flow pattern for the
Hadamard—Rybczynski analysis satisfies the complete Navier—Stokes equation

Ur

(3-20)
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& :('O)l‘( o

F1G. 3.5 Internal circulation in a water drop falling through castor oil [from Savic (S1), repro-
duced by permission of the National Research Council of Canada]: (a) d = 1.77 cm, Uy = 1.16
cm/s, exposure 1/2 s, fully circulating; (b) d = 1.21 cm, Uy = 0.62 cm/s, exposure 1 s, stagnant
cap at top of drop.

(H3, T1), it is unimportant that the Reynolds number of the internal motion
was rather large for many flow visualization studies which set out to verify
the Hadamard—Rybczynski predictions, so long as the Reynolds number based
on the continuous fluid properties was small and the fluid particle spherical.
The observed streamlines show excellent qualitative agreement with theory,
although quantitative comparison is difficult in view of refractive mdex differ-
ences and the possibility of surface contamination. When a trace of surface-active
contaminant is present, the motion tends to be damped out first at the rear of
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the bubble or drop (G3, H7, M1, S1). A photograph reproduced in Fig. 3.5b
demonstrates that the internal vortex for a falling drop is pushed forward,
leaving a stagnant region at the rear where the contaminant tends to accumulate.
Similar asymmetry has been noted by others (G9, L5).

D. EFrFECT OF SURFACE CONTAMINANTS

Traces of surface-active contaminants may have a profound effect on the
behavior of drops and bubbles. Even though the amount of impurity may be
so small that there is no measurable change in the bulk fluid properties, a
contaminant can eliminate internal circulation, thereby significantly increasing
the drag and drastically reducing overall mass- and heat-transfer rates. Systems
which exhibit high interfacial tensions, including common systems like air/water,
liquid metals/air, and aqueous liquids/nonpolar liquids, are most subject to
this effect (D2, L5). The measures required to purify such systems and the
precautions needed to ensure no further contamination are so stringent that
one must accept the presence of surface-active contaminants in most systems
of practical importance. For this reason, the Hadamard—Rybczynski theory is
not often obeyed in practice, although it serves as an important limiting case.

Accounting for the influence of surface-active contaminants is complicated
by the fact that both the amount and the nature of the impurity are important
in determining its effect (G7, LS5, R1). Contaminants with the greatest retarding
effect are those which are insoluble in either phase (L5) and those with high
surface pressures (G7). A further complication is that bubbles and drops may
be relatively free of surface-active contaminants when they are first injected
into a system, but internal circulation and the velocity of rise or fall decrease
with time as contaminant molecules accumulate at the interface (G3, L5, R3).
Further effects of surface impurities are discussed in Chapters 7 and 10. For
a useful synopsis of theoretical work on the effect of contaminants on bubbles
and drops, see the critical review by Harper (H3). Attention here is confined
to the practically important case of a surface-active material which is insoluble
in the dispersed phase. The effects of ions in solution or in double layers adjacent
to the interface are not considered.

The first attempt to account for surface contamination in creeping flow of
bubbles and drops was made by Frumkin and Levich (F1, L3) who assumed
that the contaminant was soluble in the continuous phase and distributed over
the interface. The form of the concentration distribution was controlled by one
of three rate limiting steps: (a) adsorption-desorption kinetics, (b) diffusion in
the continuous phase, (c) surface diffusion in the interface. In all cases the
terminal velocity was given by an equation identical to Eq. (3-20) where C,
now called the “retardation coefficient”, is different for the three cases. The
analysis has been extended by others (D6, D7, N2).

Since the Frumkin—Levich approach predicts symmetrical internal circu-
lation, various workers have tried to account for the asymmetry clearly shown
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in photographs such as Fig. 3.5. Savic was the first to attempt an analysis by
assuming that the contaminant was strongly surface active and insoluble in
both phases. The equations solved and the boundary conditions imposed were
Egs. (3-1) to (3-4) with the tangential stress condition replaced by:

for r = a; 0<0<0,1,=0, (3-21)
forr = a; 0o <0 <m uy=0, (3-22)
where 6, is the “stagnant cap angle,” measured from the nose of the bubble or

drop. Note that Eq. (3-21) restricts the direct applicability of Savic’s analytic
results to cases in which k — 0. The terminal velocity is

2. ga® Ap
Ur=-=
79
Savic’s calculated values of Y, along with values obtained subsequently (D5, HS),

are plotted in Fig. 3.6. Also shown is an asymptotic solution (H4) for a small
stagnant cap 3n/4 < 0 < n):

Y = L.5/(1 + 2(x — 0,)%/3n). (3-24)

Y(0o) = UrsY(0o). (3-23)

Savic estimated cap angles from his photographs and the resulting predictions
using Fig. 3.6 showed good agreement with experimental terminal velocities.

15 T T
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> cap ]
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Angle excluded by stagnant cap, 8,

FiG. 3.6 Effect of stagnant cap on terminal velocity of a bubble or inviscid drop.

By assuming that the surface tension on the surface of a fluid sphere varied
from the surfactant-free value, o, at the nose to zero at the rear, Savic also
deduced a relationship between velocity and Eotvos number, shown in Fig. 3.7,
which agrees qualitatively with the experimental results of Bond and Newton.
Modifications of this approach for cases where the maximum change in local
interfacial tension is less than o, have been devised for bubbles (D5, G7) and
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for drops (Ul). Griffith (G7) treated a surface-active monolayer distributed
under the influence of the shear at the interface. The difference between the
interfacial tension between the pure fluids and the equilibrium value with the
surfactant present may then be denoted by A¢” and the corresponding modified
Eotvos number by Eo’. Davis and Acrivos (D5) assumed that the supply of
surfactant is unlimited, so that the minimum surface tension corresponds to the
condition at which the surface film collapses. The difference between this value
and the surfactant-free value, assumed to prevail at the nose, may be denoted by
Ac*, and the corresponding Eotvos number by Eo*. The resulting curves are
shown in Fig. 3.7.

1S[TTTT d
U

Urs Griffith (G7)_|
— \ Y(Ed)
L Y -

[ Savic(St) Davis & Acrivos (D5)
Y(Eo) Y (Eo*)

10 ([ | L Lty |

5 10 20 50 100 200

EOTVOS NUMBER; Eo, Eo’,orEo*
F1G. 3.7 Effect of surfactant on the terminal velocity of small bubbles and drops.

Subsequent theoretical work has allowed the contaminant to distribute itself
over the interface under the influence of fluid shear as expressed through Eq.
(1-16). Schecter and Farley (S2) showed that a drop or bubble would remain
spherical and Eq. (1-15) could be satisfied only for a particular variation of
interfacial tension around the periphery. Using this variation led to symmetrical
circulation. Wasserman and Slattery (W2) assumed that the surface contaminant
diffused to the particle from the continuous phase and was convected along the
interface. A perturbation solution was obtained for an air bubble of 0.0022 cm
diameter in water containing a trace of isoamyl alcohol. The contaminant had
little effect on bubble shape, while it drastically reduced the terminal velocity.
Noting these results Levan and Newman (L2) derived stream functions for
creeping flow of a spherical fluid particle with an arbitrary variation of inter-
facial tension. These stream functions can be used for any mechanism of con-
taminant transport to and along the interface. Applying their stream functions
to Wasserman and Slattery’s example showed that the interfacial contaminant
concentration was highest and the interfacial velocity lowest near the rear
stagnation point.
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Following a suggestion made by Davies (D2, D4), we define a “degree of
circulation” Z such that the terminal velocity of a spherical bubble or drop in
slow viscous flow is given by

Uy = Url(l + Z)2), (3-25)

where U g is the Stokes terminal velocity defined by Eq. (3-18). Griffith assumed
that the effects of viscosity and surface contamination could, to a first approxi-
mation, be separated, so that

Z =22 + 392y — 1)}, (3-26)

where the first bracketed term accounts for the influence of the viscosity of the
dispersed phase and follows directly from the Hadamard-Rybczynski analysis,
and the term in Y accounts for surface effects. Griffith’s values for Y, plotted in
Fig. 3.7, give good agreement with experimental results except for one or two
anomalous cases.

Figure 3.7 together with Egs. (3-25) and (3-26) provide an approximate but
rational means of estimating the effect of surface-active impurities for bubbles
and drops at low Reynolds numbers. If the contaminant is strong (i.e., for a large
surface excess of surfactant) and its type and amount can be characterized in
terms of Ag’, the difference in interfacial tension between the pure and equili-
brated phases, Griffith’s curve can be used to estimate Y. If the amount of
surfactant is relatively large and the value of ¢ at which the surface film collapses
is known, the Davis and Acrivos curve should be used. When the amount and
types of contaminant are unknown, the Savic curve in Fig. 3.7 describes the
limiting case where the surface is so fully contaminated that the surface tension
varies from its value for a pure system at the front to zero at the rear. For the
other limit of a very pure system, Y should be taken as 1.5. For cases of inter-
mediate but unknown purity, transition from rigid to circulating behavior
occurs for Eo lower than the Savic values, and there is presently no alternative
to using the Bond criterion, which corresponds to a maximum reduction in
interfacial tension of 10% to 459 (D5).

E. OSEEN’S APPROXIMATION

There is a fundamental difficulty, first noted by Oseen (O2), in applying the
creeping flow equations to particles in unbounded media. In the creeping flow
solution given by Egs. (3-7) and (3-8), the ratio of neglected inertia terms to
retained viscous terms is O[Re(r/a)]. For any finite Re, the neglected terms
dominate at large distances from the sphere, and the creeping flow approxima-
tion is only valid for distances less than order a/Re. To remove this inconsistency,
Oseen suggested that the Navier—Stokes equation should be linearized by
simplifying, rather than neglecting, the inertia term. The continuous phase
velocity U is written as (v — Ui) so that v represents the deviation from the
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uniform stream, — Ui. For steady flow

D—I{EV'VV—Ui'VV. (3-27)
Dt

The final term in Eq. (3-27) dominates at large distances from the body. Since
this is the region in which inertial effects are significant, Oseen suggested that
the nonlinear term v - Vv be neglected. Equation (1-33) then becomes

Vp=pu V3 + pUi- Vy, (3-28)

which is generally called Oseen’s equation. The additional term, pUi - Vv,
removes the property of “reversibility,” so that solutions no longer possess
fore-and-aft symmetry.

For a rigid sphere, the boundary conditions are

v—0 as  r— oo, (3-29)
v=Ui at r=a. (3-30)
Lamb (L1) has given an approximate solution:

Ur? sin? 6 a’ 3Ua? J r Re
[ + F] + W(l — cos 9)[1 - eXpl——4a—(1 + cos 6)}].
(3-31)

Corresponding streamlines are shown in Figs. 3.3b and 3.4b. Like the creeping
flow result, the Oseen solution predicts infinite “drift.” For large r the velocity
is unbounded, but the divergent terms are O[Re?] and formally beyond the
range of the Oseen approximation. For r « a/Re, the stream function may be

approximated as
Ur? sin® 0 3a a r Re
=1l -4 — — -32
3 [1 2r+2r3+0<a>J (3-32)

The modified pressure at the surface is:
U R
p=E"13cos 0+ (3cos? 6 —1)|. (3-33)
2a 4

Equations (3-32) and (3-33) differ from the Stokes solution only in the Re terms.
The contribution to p is symmetrical about the equator, so that the form drag
is the same for the two solutions.

The vorticity at the surface is given by

i R
gszws‘ig Rl pd R Zcos ol (3-34)
2a 4 4

and is shown in Fig. 3.8. By comparison with Stokes’s solution, vorticity is
increased over the leading hemisphere and reduced over the rear. In the outer
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Fi1G. 3.8 Dimensionless vorticity, {sa/U, at surface of rigid sphere: —— Oseen, Eq. (3-34);---

Proudman and Pearson (P3), Eq. (3-38); — Woo (W5) (numerical).

part of the flow, vorticity is small except for a wake-like region behind the
particle. The vorticity distribution leads to a drag coefficient greater’ than the
Stokes law value (Cpg,):

24 3
Cp = ﬂ[1 +1e ReJ (3-35)
or
Cp 3
D _1=_"Re -
o o Re (3-36)

A plot of (Cp/Cps, — 1) against Re gives a particularly sensitive indication of
departures from Stokes law (M3). Figure 3.9 compares the recommended
correlation of reliable drag data with Oseen’s solution and other approxima-
tions. As Re — 0, the drag approaches zero via the Oseen drag, Eq. (3-35),
rather than via the Stokes’ drag, emphasizing that the Stokes solution is strictly
invalid for Re # 0. This implies that there is never true fore-and-aft symmetry
in the flow field, and is particularly important for the motion of interacting
particles (S8).

' The difference is of smaller order than the error in either solution and Eq. (3-35) is exact to
O(Re) (P3). In fact, the Re term in (Cp/Cpg — 1) can be deduced from the Stokes drag alone for
any three-dimensional body symmetrical about a plane normal to the direction of motion (C6).
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Table 3.1. Curve numbered 7 is a correlation of available data (see Chapter 5). Shaded region
represents range of experimental scatter.

Equation (3-33) shows how the inertia term changes the pressure distribution
at the surface of a rigid particle. The same general conclusion applies for fluid
spheres, so that the normal stress boundary condition, Eq. (3-6), is no longer
satisfied. As a result, increasing Re causes a fluid particle to distort towards an
oblate ellipsoidal shape (T1). The onset of deformation of fluid particles is
discussed in Chapter 7.

F. FURTHER EXTENSIONS TO THE CREEPING FLOW SOLUTIONS

Figure 3.9 shows that Eq. (3-36) is applicable only for Re < 0.1. Several more
complete series solutions to Eq. (3-28) have been obtained (G5, S5) including
one to 24 terms (V2). The expression of Goldstein involving terms to Re® is
shown in Table 3.1. Figure 3.9 shows that this series diverges rapidly from the
experimental correlation for Re > 4. Although series solutions are more accu-
rate representatives of the Oseen drag, the Oseen drag itself is only an approxi-
mation to the true drag. To improve the approximation Lewis and Carrier (L4)
proposed a semiempirical modification of the Oseen equation in which the
final term in Eq. (3-28) is multiplied by a parameter ¢ which may be a function
of Re. The drag result is given in Table 3.1 and plotted in Fig. 3.9 with their
suggested value of ¢ = 0.43. Although the approximation is better, the form of
the dependence on Re is not improved.

Rather than obtaining accurate solutions to Oseen’s approximate equation,
Proudman and Pearson (P3) suggested a technique to obtain successive approxi-
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TABLE 3.1

Drag Coefficient Expressions at Low Reynolds Number

No. Approximation from (Cp/Cpsr) — 1 Reference
1 Oseen equation, Eq. 3 Re Oseen (02)
(3-28) 16
2 Oseen equation, Eq. 3 19 71 Goldstein (G5)
—Re— ——Re?+ ———Re?
(3-28) 167 7 1250 T 20a08 ¢
30179, 122519
- Re® + e’
34406400 550502400
3 Modified Eq. (3-28) 3¢ . Lewis and
(see text) 1_6Re ¢ =043(C3) Carrier (L4)
4 Navier—Stokes 3 9 5. Re 5 Proudman and
equation, Eq. (1-1) 16 Re + %Re ln—é + O[Re?] Pearson (P3)
5 Navier—Stokes

360 Breach (C7)

’ R 2 Re?| InR na— 323 Chester and
equation, Eq. (1-1) 16 e+@ e’l InRe +y +—3—n

27
——Re*In| -= | + O[Re?
* 640 < 2 ) [Re’]
where 7 = Euler’s constant = 0.5772157 . ..

6 Navier-Stokes 3 N 9 e+ 1 9_ 548 N Sm
. — e+ = & ~In e
equation, Eq. (1-1) 16° " 160° / 360 8

27
3| ) +ofe
+ 6408 n<2> +0[&’]
where & = Re(Cpp/Cpg) ™"
m=5(P4)

Proudman (P2)

mations to the Navier—Stokes equation. Since different forms for the stream
function are appropriate in the region near the sphere and in the outer part of
the flow field, two separate expansions were used. The “inner” or “Stokes”
series was chosen to satisfy the boundary condition at r = a, while the “outer”
or “Oseen” series satisfied the condition for r — oo. Alternate terms in each
expansion were generated by “matching” the series in a region of supposed
common validity. For a rigid sphere, the two-term inner series gives (V1):

U ) a 3Re a a?
=—(— 24— = . (3-
1/ 1 (r — a)? sin 0[2 + - p + 6 {( + r>(1 +cos 0) + " cos 0}] (3-37)
Figure 3.8 shows the corresponding vorticity at the surface of the sphere:

3U sin 0 3 4
=7 R - ,
g, 5 [1 T e{l + 3 cos 0}] (3-38)
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For Re > 16, the vorticity from Eq. (3-38) becomes negative over part of the
rear hemisphere, indicating a recirculatory wake. In practice, recirculation
starts at Re = 20 (see Chapter 5). Moreover, the predicted length of the wake at
higher Re agrees well with experiment, although the width is less well predicted.
Unfortunately, these predictions are fortuitous. Wake formation occurs at Re
beyond the range where perturbations to Stokes’s solution are valid, and inclu-
sion of higher terms in the inner series eliminates the recirculatory wake (V1).
Comparison with the numerical solution of Woo (W5) shows that Eq. (3-38)
gives a close representation of the surface vorticity for Re < 0.5. Even at
Re = 1.0, the error is less than 4%,

The drag coefficient corresponding to the two-term approximation is the
Oseen value, Eq. (3-35). The addition of a further term yields expression 4 in
Table 3.1. Figure 3.9 shows that this expression fits the data within about 1.5%,
for Re < 0.7, but divergence is rapid at higher Re. The series was extended to
terms of order Re® (C7); see Table 3.1. Figure 3.9 shows that the additional
terms make the fit worse. Similar conclusions apply for fluid spheres (A3, GO6).
Proudman suggested that the divergence might result from the unsuitability
of Re as the expansion parameter. He proposed instead expansion in terms of a
semiempirical parameter ¢; see Table 3.1. His result, with the value m =5
suggested by Pruppacher et al. (P4), is plotted in Fig. 3.9. Agreement with the
data is better than for any of the other analytic results, but deviation is still
marked for Re > 3.

Thus, analytic solutions for flow around a spherical particle have little value
for Re > 1. For Re somewhat greater than unity, the most accurate representa-
tion of the flow field is given by numerical solution of the full Navier—Stokes
equation, while empirical forms should be used for Cp,. These results are dis-
cussed in Chapter 5.

III. HEAT AND MASS TRANSFER

There are no solutions for transfer with the generality of the Hadamard-
Rybczynski solution for fluid motion. If resistance within the particle is impor-
tant, solute accumulation makes mass transfer’ a transient process. Only
approximate solutions are available for this situation with internal and external
mass transfer resistances included. The following sections consider the resistance
in each phase separately, beginning with steady-state transfer in the continuous
phase. Section B contains a brief discussion of unsteady mass transfer in the
continuous phase under conditions of steady fluid motion. The resistance within
the particle is then considered and methods for approximating the overall
resistance are presented. Finally, the effect of surface-active agents on external
and internal resistance is discussed.

* See Chapter 1 for discussion of the equivalence of heat and mass transfer.
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A. EXTERNAL RESISTANCE—STEADY STATE

For axisymmetric flow with constant properties, the diffusion equation may
be written (see Eq. (1-38)) as:

de e _FLof 00y 1 af. 0
Yo T rao‘ﬂ[ar(r 6r)+sin006 | (3-39)

For a rigid sphere or a fluid particle with negligible internal resistance and
constant concentration, the boundary conditions are:

c=c at r=a, (3-40)
C—Cy as r— o0, (3-41)
oc/o =0 at 0=0 and 0=m. (3-42)

Section I shows that the dimensionless external velocity field (u,/U, u,/U) is
a function of dimensionless position (r/a, ) and « for creeping flow. The dimen-
sionless concentration defined in Eq. (1-45) is a function of these quantities and
of the Peclet number, Pe = 2aU/%. Hence the Sherwood number, Sh = 2ka/Z,
is a function of k and Pe (with additional dependence on Re unless the creeping
flow approximation is valid). The exact solution of Egs. (3-39) to (3-42) with
the Hadamard-Rybczynski velocity field is not available for all values of Pe
and «k, but several special cases have been treated.

1. Stagnant Continuous Phase

When the velocity is everywhere zero, diffusion is in the radial direction only.

Equation (3-39) reduces to
o ,0c
with boundary conditions given by Egs. (3-40) and (3-41). Since there is no
dependence on 0, local and average values of Sh are equal and

Shy =2, (3-44)

where the subscript denotes stagnant fluid. Equation (3-43) may also be regarded
as the limiting form of Eq. (3-39) for 2 — o« (Pe — 0); i.e., convective terms in
the diffusion equation are neglected, just as inertia terms in the Navier—Stokes
equation are neglected in the creeping flow approximation. Thus, Sh, may be
considered analogous to the drag coefficient in creeping flow.

2. Rigid Sphere in Creeping Flow

Equation (3-39) has been solved for steady Stokes flow past a rigid sphere
(B6, M2). The resulting values of Sh, obtained numerically for a wide range of Pe,
are shown as the k = oo curve in Fig. 3.10. For small Pe, Sh approaches Sh,,
while for large Pe, Sh becomes proportional to Pe!/3. The numerical solution
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provides a standard for assessing the validity of asymptotic solutions for Pe — 0
and Pe — cc.

Brenner (B6) pointed out that similar problems arise in obtaining Eq. (3-44) as
in the low Re approximation for fluid flow. The neglected convection terms
dominate far from the particle, since the ratio of convective to diffusive terms
is O[Pe(r/a)]. An asymptotic solution to Eq. (3-39) with Pe — 0 was therefore
obtained by the matching procedure of Proudman and Pearson discussed above.
Brenner’s result for the first term in a series expansion for Sh may be written:

(Sh/Shy) — 1 = LPe. (3-45)

Equation (3-45) is analogous to the Oseen correction to the Stokes drag, and
is accurate to O[ Pe]." It applies for any rigid or fluid sphere at any Re, provided
that Pe — 0 and the velocity remote from the particle is uniform. Figure 3.10
shows that Eq. (3-45) is accurate for Pe < 0.5. Acrivos and Taylor (A2) extended
the solution to higher terms, but, as for drag, the additional terms only yield
slight improvement at Pe < 1.

Levich (L3) obtained an asymptotic solution to Eq. (3-39) for Pe — oo, using
the thin concentration boundary layer assumption discussed in Chapter 1.
Curvature of the boundary layer and angular diffusion are neglected (i.e., the
last term in Eq. (3-39) is deleted), so that the solution does not hold at the rear
of the sphere where the boundary layer thickens and angular diffusion is
significant. The asymptotic boundary layer formula, Eq. (1-59), reduces for a
sphere to:

1/2 2/3
Sh = 0.641 Pe”{ fo<%" sin? 9) d()] . (3-46)

T Furthermore, just as for drag, the Pe term in (Sh/Sh, — 1) can be deduced from Sh, alone for
any particle symmetric about a plane normal to the direction of motion (B6).
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Substitution of the Stokes surface vorticity, {, from Eq. (3-19) yields
Sh = 0.991 Pe!/3. (3-47)

Figure 3.10 shows that Eq. (3-47) gives Sh approximately 109, too low for
Pe = 103, while the deviation becomes worse at lower Re. Acrivos and Goddard
(A1) used a perturbation method to obtain the first-order correction to Eq.
(3-47):

Sh = 0.991 Pe!/® + 0.92. (3-48)

Figure 3.10 shows that Eq. (3-48) lies within 3% of the numerical solution for
Pe > 30.

It is convenient to have a relationship for Sh valid for all Pe in creeping flow.
The following equation agrees with the numerical solution within 29/:

Sh=1+(1+ Pe)'”. (3-49)

Equation (3-49) can be used for Re < 1 even though the Stokes surface vorticity
is not accurate for Re > 0.1. This fortuitous result follows because mass transfer
is much less sensitive than drag to errors in {,.

Figure 3.11 shows the local Sherwood number, Sh,., for the limits of high
and low Pe. Values for Pe = 0.1 are not symmetrical about the equator, and
show the greatest transfer rates over the leading surface indicating that the
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Fic. 3.11 Local Sherwood number for rigid sphere in Stokes flow: (1) Exact numerical solution:
Pe = 10%; (2) High Pe asymptotic solution (L3): Pe = 10%; (3) Low Pe asymptotic solution (A2):
Pe =0.1.
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concentration field lacks fore-and-aft symmetry. The local Sherwood number
always exceeds Sh, = 2, indicating that convection increases the transfer rate
at all points on the surface. For high Pe, on the other hand, the solute is swept to
the rear so that the local concentration gradient is reduced and Sh, . < Sh,
(H2, S6), as shown by the curves for Pe = 10°. The boundary layer solution
unrealistically predicts that Sh,, falls to zero at the rear stagnation point due to
neglect of angular diffusion.

loc

3. Fluid Sphere in Creeping Flow

For fluid spheres with k = 0, Eq. (3-39) has been solved numerically with the
Hadamard—Rybczynski velocity field (O1), and the resulting variation of Sh
with Pe is shown in Fig. 3.10. The values are approximated within 6% for all
Pe by

Sh =1+ (1 + 0.564 Pe2/3)3/4, (3-50)

For Pe — 0 an asymptotic solution through the matching procedure has been
obtained for all x (B6). As for solid spheres its range of applicability is limited
to Pe < 1.

For a fluid sphere with Pe — oo the thin concentration boundary layer
approximation, Eq. (1-63), becomes

1/2
Sh = 0.798 Pe”z[fon (MU)T':“ sin? 0 dH—J . (3-51)

Inserting the Hadamard-Rybczynski form for u, yields®

Sh = 0.651\/Pe/(1 + x) (3-52)

which agrees with the numerical solution for k = 0 within 10% for Pe > 100.
From Egs. (1-64) and (3-52), this approximation applies if

Pe » 243k + )X(1 + x). (3-53)
The Hadamard-Rybczynski results are applicable if Re < 1, so that
Sc>» 2403k + 1)1 + k). (3-54)

For liquids of low viscosity, Sc is of order 10°, so that Eq. (3-54) is satisfied for
Kk < 2;thus Eq.(3-52) is valid for bubbles or drops of low viscosity. Experimental
data on dissolution of small low-viscosity drops (W1) and bubbles (C1) with

" The dependence of Sh on Pe/(1 + k) at high Pe results because the Hadamard--Rybczynski
analysis gives dimensionless velocities (u,/U, u,/U) proportional to (1 + x)~! within and close to
the particle (Egs. (3-7) and (3-8)). Similar dependence is encountered for unsteady cxternal transfer
(Section B.2), and for internal transfer at all Pe (Section C.4). These results do not give the rigid
sphere values as k — oc, because of fundamental differences between the boundary layer approxi-
mations for the two cases (see Chapter 1), and are only valid for k < 2.
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« < 2 agree with Eq. (3-52) if the particle is spherical and there is negligible
interfacial contamination.

Although no exact solution valid for all k and Pe is available, an approximate
solution using the integral boundary layer approach has been given (BS). The
curves for intermediate x in Fig. 3.10 were prepared by locating them between
the exact solutions for x = 0 and x = oo, using the relative spacings from this
approximate solution. As x increases, the variation of Sh at high Pe changes
from Pe!/2 to Pe'/?. Although this procedure is not exact, the curves in Fig. 3.10
are recommended for predicting Sh for any x with Re < 1.

4.  Extension to Larger Re

The preceding results can be extended beyond the creeping flow regime by
using any of the flow fields discussed in Sections II.E and IL.F. For moderate to
high Sc, say Sc > 1, the layer of variable concentration lies near the sphere, and
only stream functions accurate in this region give improved results. The Oseen
stream function only differs significantly from the Stokes stream function in
the outer field, and is not useful for extending the theoretical prediction of Sh to
finite Re. However, the Proudman and Pearson solution can be used to extend
the range of the solutions for rigid spheres. Since the inner stream function
contains Re, the value of Sh is a function of a set of two dimensionless groups
from among Re, Sc, and Pe.

Gupalo and Ryazantsev (G10) followed the analysis of Acrivos and Taylor
(A2) with the Proudman-Pearson stream function rather than Stokes flow.
For Sc > 10, the two predictions for Sh agree within 19/, while for Sc = 1 they
differ by at most 8%, for Pe < 1. The results of Gupalo and Ryazantsev, although
valid to higher Re, are still restricted to Pe — 0, so that this extension is of little
practical value.

The asymptotic solution for Pe — oo embodied in Eq. (3-46) can be extended
to finite Re in a similar way. The Oseen value for surface vorticity, {, predicts
little effect of Re. However, the Proudman and Pearson expression for (,
Eq. (3-38), yields:

Sh = 0.991 Pe'?[1 + (Re/4)]°-27 (3-55)
where the integral has been approximated by a simpler form which agrees
within 2%;. Equation (3-55) extends the range of the boundary layer solution up

to Re = 1 but, as with drag predictions, the Proudman and Pearson approach
has little value at higher Re.

B. UNSTEADY EXTERNAL RESISTANCE

If a particle is suddenly exposed to a step change in the composition of the
continuous phase, or if the surface composition undergoes a step change to a
new constant value, the rate of mass transfer becomes a function of time even
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if the fluid motion is steady and the fluid properties are constant. During un-
steady transfer, the concentration field is governed by:

dc 0c ugdc @0 ,0c 1 o[.  oc
a + u, ar + 0 r—2[5<r (’)—r> + sn 0 @<sm 0 %>i| (3-56)

The boundary conditions of Egs. (3-40) to (3-42) apply for t > 0, with the
additional condition
c=c at t=0,r=a (3-57)

a0

Considering the order of magnitude of terms in Eq. (3-56), we see that for any
finite @ there will be times short enough that the terms in u,, uy, and (0/00) are
small relative to the others. Thus, at very short times, unsteady transfer is not
affected by convection, and the time variation of Sh is identical to that in a
stagnant medium. It is convenient to express the results in terms of the dimen-
sionless time t = Zt/a?, sometimes called the Fourier number," which may be
regarded as the ratio of real time to the time for diffusion to become established.
For long times, Sh approaches the steady values in Fig. 3.10.

1. Stagnant Continuous Phase

For a stagnant medium or with 2 — 0, Pe — 0 and Eq. (3-56) reduces to

de_2 ﬁ<r2 6c>. (3-58)

ot rPor\ or
The instantaneous Sherwood number follows as
Sh = 2(1 + 1/y/m7). (3-59)

The dimensionless time, 7, for Sh to come within 100x%, of the steady value
indicates the duration of the unsteady state; for Pe = 0,7, ; = 31.8,and 7, =
2.35. Diffusivities in gases are of order 10* times diffusivities in liquids; hence,
for particles with equal size and equal exposure, transient effects in a stagnant
medium are much more significant in liquids.

2. Solutions for Larger Pe

For a rigid or circulating sphere in creeping flow, Sh may be written as a
series expansion in Pe and t, valid for small Pe and 7 (C8, K2, K5). The first
term in Pe is O Pe?]. Hence, Eq. (3-59) for small = and Eq. (3-45) for long times
are both valid to O[ Pe]. The results of Konopliv and Sparrow (K2) and Choud-
hury and Drake (C8) for rigid or circulating spheres with Pe < 0.5 are approxi-
mated within 5% for all times by:

2 1/2
Sh=2+ [P_e + i} . (3-60)
4 T

t For heat transfer the Fourier number is at/a®. The heat transfer analogs of the mass transfer
dimensionless groups can be found by making the substitutions described in Chapter 1.
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Thus the effect of fluid motion is to reduce the unsteady period; e.g., 74 is
reduced by a factor of 3 on raising Pe from zero to 0.5.

Unsteady transfer with Pe — co has been treated using the thin concentration
boundary layer assumptions. With this approximation, the last term in Eq. (3-56)
is deleted. Hence, for small t where the convection term is negligible, the transfer
rate for rigid or circulating spheres is identical to that for diffusion from a plane
into a semi-infinite region:

Sh,_o = 2/i/nt. (3-61)

The range over which Eq. (3-61) provides a useful approximation may be
evaluated by comparison with more detailed solutions.

Complete solutions are available for Pe — co for rigid spheres (K4) and for
fluid spheres (C5, R4) subject to the limitation of Eq. (3-54). Approximations
good within 3% are, for rigid spheres:

Sh = Pe1/3[0.956 + ( (3-62)

2 5711/5
mws) }

and for fluid spheres:

Pe L\
- , / : -63
Sh 1+K[o117+<2 - Pe” (3-63)

The duration of the unsteady period, denoted by t,., the time required for Sh
to come within 100x%; of the steady value, is different for rigid and fluid spheres.
For a rigid sphere at high Pe, 7, oc Pe” %3, From Stokes’s law, Eq. (3-18),
Uy oc a?; hence 1, is independent of particle size for a given fluid. However,
for a fluid sphere, 1, oc (1 + k)/Pe; thus Uqt,/a is a constant, and a given
fractional approach to steady state is achieved when the particle has moved
a fixed number of radii, e.g.,

Usto.r/a = 1.8(1 + x). (3-64)

Approximate values of Sh for intermediate Pe may be obtained by using
Eq. (3-61) until Sh equals the steady-state value of Fig. 3.10. For larger 7 this
steady-state value is used. Although this approximation underestimates the
duration of the unsteady period, the error in Sh is not large. In terms of the
time-averaged Sh or the total mass transferred, the error is less than 159 for all
times.

C. TRANSFER WITH VARIABLE PARTICLE CONCENTRATION

When mass diffuses into or out of a fluid particle, the concentration within
the particle changes with time. Therefore the time derivatives must be retained
in the diffusion equations for both internal and external fluids. The internal
and external concentration fields are related at the interface. If there is no
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chemical reaction at the interface, the species mass fluxes on each side are equal.
A second condition on interfacial concentrations is given by Eq. (1-39). If we
assume constant properties in each phase and axial symmetry, the concentration
fields are described by Eq. (3-56) with & replaced by &, within the particle.
Assuming that each phase is initially at uniform concentration, the boundary
conditions are:

¢, =Ccpoand c=c, at t=0, (3-65)

oc,/or =0 at r=0, (3-66)

coCy as r— oo, (3-67)

¢,=Hc and 91,%29% at r=a for >0, (3-68)
0c,/00 = dc/od = 0 at 0=0 and 0=nm. (3-69)

The profiles of the dimensionless concentrations:
(Dp = (Cp - Hcoo)/(cpo - Hcoo)’ ®= (C - Coo)/(ch/H - Cﬂo) (3'70)

are then governed by Pe, H, 7,,/%, and 1, as well as by Re and x which determine
the dimensionless velocity fields.

Since the concentration within the particle varies with time, instantaneous
mass transfer rates are difficult to measure. Experimental data are frequently
presented in terms of the fractional approach to equilibrium:

F=1- (T)p = (CpO - _ép)/(ch - Hcoo)’ (3'71)
where ¢, is the average concentration within the particle at time ¢, ie., the
concentration obtained by mixing the dispersed fluid. As ¢ increases, F increases
from zero to unity. This group is sometimes termed the “extraction efficiency,”
but the definition of Eq. (3-71) applies for transfer both into and out of the
particle.

1. Approximation for Short Times

It was noted in Section B that, for finite Pe and short times, Eq. (3-56) is
dominated by the first term on each side. Mass transfer is then determined by
unsteady diffusion, and fluid motion has no effect on F. Only the region near
the interface is affected, and diffusion occurs as if it were between two semi-
infinite media, giving' (C4):

T 1
F=6 |2 ——— |, 3-72
ﬁ[l + H\/@p/@] ( )

 For heat transfer the group H\/,@ip/g becomes \/ppC,pK;p/pC(K‘.
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where 7, is Z,t/a*. Immediately after t = 1, = 0, the concentration outside the
interface changes to:

¢ =(Co + Con/ Do/ DN + HT | T). (3-73)
For semi-infinite media, this interface concentration remains constant, but for a

particle it changes with time towards c,. . Equations (3-72) and (3-73) are com-
pared with more complete solutions below.

2. Stagnant Phases

If the fluids are stagnant (i.e., Pe = Pe, = 0), the concentration profiles display
angular symmetry and the fractional approach to equilibrium is a function only
of H, %,/%, and t or 1,,. The corresponding solution for F (K3, P1) is shown in
Figs. 3.12-3.14, for a wide range of values of these parameters. Fluid motion
always increases F for given 7, so that these solutions give a lower limit for the
fractional approach to equilibrium.

Figure 3.12 shows the variation of F with t, when H = 1. As & %,/ decreases,
the curves approach a limiting case solved much earlier, (N1), often called the
Newman solution. This corresponds to negligible external resistance, and Eqs.

1 7I|||||1] I |_|—HH|| [
Dy /D =00 5 i
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ok o3 » =
05— = 50, |
- 100 I
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F16. 3.12 Variation of fractional approach to equilibrium F with dimensionless time, T
%,1/a*, for a sphere in stagnant surroundings with H = 1.
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FiG. 3.13  Variation of fractional approach to ethbnum F with dimensionless time, 7, =
& ,t/a* for a sphere in stagnant surroundings with H < 1 and @ Yo% < 1.
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FiG. 3.14 Variation of fractional approach to equilibrium F with dimensionless time, t =
%t)a?, for a sphere in stagnant surroundings with HZ,/% > 1.

(1-39) and (3-73) show that, as H\/,@p/_@ — 0, the concentration inside the
interface approaches Hc,, . At the other extreme, H\/%,/% > 1, the external
resistance controls and the concentration within the particle is nearly uniform.
The short-time solution, Eq. (3-72), gives a good approximation for F < 0.2.
Figure 3.13 shows F(t,) for H <1 and %,/ < 1. In this case the results are
brought closer together by using H,/%,/% as parameter, as suggested by
Eq. (3-72), and calculations for different combinations of H and % ,/% lie within
39, of the curves shown. Typical results for larger H and &,/% are shown in
Fig. 3.14.

3. Limiting Cases

It was noted above that the external resistance may sometimes be neglected
relative to the internal resistance. Criteria for the importance of the external
resistance can be developed from Eq. (3-72) for short times, and for long times
from the steady-state external resistance taking the internal resistance as
roughly a/% . The external resistance is negligible for short times when

H%,/% « 1 (3-74)
and for long times when

H%,/% « Sh. (3-75)

The short-time criterion is the more stringent except when H » land ,/2 « 1.
External resistance controls and the concentration within the particle is uniform
when the inequalities in Eqgs. (3-74) and (3-75) are reversed. Even if the external
resistance is not negligible relative to the internal resistance, it may be possible
to assume constant external resistance, i.e., quasi-steady behavior. Comparison
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between the external transient time from Section B and the time constant for a
particle with uniform concentration shows that the quasi-steady assumption
is justified if

H(Sh) » 1. (3-76)

Table 3.2 summarizes these criteria, and indicates the section in this chapter
where each limiting case is discussed.

TABLE 3.2

Transient Transfer to Spheres: Criteria for Limiting Cases

Significant external resistance

Negligible external Quasi-steady
resistance Transient (H Sh > 1)

Section C.5.a Section C.5.b

Negligible internal resistance Short times: H\/QJQ_' > 1

(particle concentration uniform) Long times: HZ,/% > Sh
Section C.4 General case

Significant internal resistance Short times: H+/ ;@—p/@ « 1 (Section C.2 Section C.6

Long times: HZ,/% « Sh for Pe — 0)

4. Negligible External Resistance

If the external resistance is negligible, it is only necessary to solve Eq. (3-56)
for the dispersed fluid with boundary conditions given by Egs. (3-65), (3-66),
(3-69) and

¢, = He,, at r=a for t>0. (3-77)

These equations have been solved for rigid (N1) and circulating spheres (J1, K6,
W3, W4) in creeping flow. Since the dimensionless velocities within the particle
are proportional to (1 + )~ ' (see Eq. (3-8)), F is a function only of 7, and
Pe, /(1 + k). In presenting the results, it is instructive to consider the instan-
taneous overall Sherwood number, Sh,, as well as F. The driving force is taken
as the difference between the concentration inside the interface, Hc,,, and the
mixed mean particle concentration, T, giving

a =f Oc -2 de 2 dF
h = —— —p i Gd = —B= - . —7
= THe, fO(@r ),za SO = e THe) &, 3= Fdr, O

P
Hence the time-averaged Sherwood number is

Sh, = —21In(1 — F)/3c,. (3-79)
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Figure 3.15 shows the variation of F with 7, for several values of Pe, /(1 + k).
For a stagnant sphere, Pe /(1 4 x) = 0 and Newman (N1) obtained

6 & 1
F=1-—= Y —exp(—n’n’ty), (3-80)
T a=1 N
2n* & 2.2 - |1 2 2
Sh,, =5 Y exp(—nntt,) | Y p exp(—n’n’ty). (3-81)
n=1 n=1

For a circulating sphere with Pe, /(1 + k) — cc, the time required for diffusion
is much greater than that for fluid circulation, so that surfaces of uniform con-
centration coincide with the Hadamard-Rybczynski streamlines. Kronig and
Brink (K6) showed that the solution is then

; % exp(—164,7,) (3-82)

32 ® ,
=2 A 2}, exp(— 1647, A exp(—164,7,).  (3-83)
P

Corresponding values for F, evaluated by finite differences from the governing
equations, are shown in Fig. 3.15. As Pe, increases, circulation causes F to rise
more rapidly, but the effect is not large: 7, for a given F decreases by at most a
factor of three as Pe,, /(1 + «) increases from zero to infinity. In fact, the Kronig—
Brink curve in Fig. 3.17 is closely approximated by Eq. (3-80) with & replaced
by 2.5%,,. Thus circulation causes an effective diffusivity at most 2.5 times the
molecular value. For negligible external resistance, the short-time approxima-
tion given by Eq. (3-72) becomes

F=6/t,/m. (3-84)

1 SRR RRIL IR
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F1G. 3.15 Variation of fractional approach to equilibrium with dimensionless time for spheres
in creeping flow with negligible external resistance.
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Equation (3-84) lies within 109 of the Newman solution for t, < 10~2, and
within 109 of the Kronig-Brink curve for r, < 10~*.

Figure 3.16 shows the time variation of Sh,. Although Sh, cannot easily be
measured, it is useful for displaying the interaction of diffusion and circulation.
The period of the local maxima and minima shown in Fig. 3.16 is inversely
proportional to Pe /(1 + x). As a fluid element circulates along the surface of
the particle and up through its center, solute diffuses to it from the region of the
stagnation ring. A fluid element originally near the surface of the drop and
depleted in solute is enriched in solute before it returns to the neighborhood of
the surface. Thus the flux remains higher than it would have been if there were no
diffusion from the stagnant regions of the drop. This is reflected by an increase
in dF/dr, (Fig. 3.15) and a maximum in Sh,,. For long times, Sh,, approaches an
asymptotic value, shown in Fig. 3.17. For the Newman solution the steady
asymptotic value is

(Shy)e,o, = 27%/3 = 6.58, (3-85)
while for the Kronig—Brink solution

(Shy), o = 327, = 17.66. (3-86)

0 0,02 0,04 0,06 0,08 01
Tp
F1G. 3.16 Variation of instantaneous overall Sherwood number with dimensionless time for
spheres in creeping flow with negligible external resistance.
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FiG. 3.17 Asymptotic value of overall Sherwood number at long times for spheres in creeping
flow with negligible external resistance.

The asymptote is within 5% of the Newman value for Pe /(1 + k) < 10 and
within 5%, of the Kronig-Brink value for Pe /(1 + x) > 250. Figure 3.16 shows
that the steady state is reached sooner for higher Pe,/(1 + k). However, for
7, > 0.15, Shy, is close to its steady asymptotic value for all Pe /(1 + k). For
Pe,/(1 4+ k) > 1000 little error is incurred by using the Kronig-Brink result,
since Shy is within 159 of the Kronig-Brink value even with oscillation.
Experimental data at low Re for heat transfer (C2) and extraction from single
drops (B7, G4, J3) agree with the Kronig-Brink analysis if care is taken to
eliminate the external resistance, to exclude surfactants, and to correct for end
effects.

5. Negligible Internal Resistance

When the internal resistance is negligible, the particle concentration is uni-
form and its time variation can be related to the external concentration gradient
by a mass balance on the diffusing species:

dF/dt = (3Sh/2H)(1 — F) (3-87)
with the initial condition
F=0 at t=0. (3-88)

a. Transient External Resistance With the time variation of the external
resistance unspecified, the problem posed by Eq. (3-87) reduces to diffusion and
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Fi1G. 3.18 Variation of fractional approach to equilibrium with time for a sphere in stagnant
surroundings (Pe = 0) with negligible internal resistance (H%,/% > 25).
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F1G. 3.19 Variation of fractional approach to equilibrium with time for rigid spheres with

negligible internal resistance in creeping {low at high Pe.

convection in the external phase subject to a time-varying boundary condition.
It can be solved with any of the step function solutions in Section B using
Duhamel’s theorem, to give the variation of F with t (A4, C4, K4, K5). The
solution for a sphere in stagnant surroundings, Eq. (3-59), yields the results in
Fig 3.18, valid for HZ,/% > 25'(K3). Figures 3.19 and 3.20 show corresponding
results for rigid (K4) and circulating (D1) spheres in creeping flow at high Pe,
obtained from the step function solutions. A solution is also available (K5) for
rigid spheres with Pe < 1.

" For heat transfer the group HZ,/% becomes K, /K.
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Fi1G. 3.20 Variation of fractional approach to equilibrium with time for circulating spheres with
negligible internal resistance in creeping flow at high Pe.

b. Quasi-Steady External Resistance In the cases shown in Figs. 3.18 to
3.20, the curves approach a limit corresponding to the quasisteady case as H,
HPe'3, or HPe'/? becomes very large. If the external resistance is assumed
constant at its steady value, the solution to Egs. (3-87) and (3-88) is

F =1 — exp(—3t Sh/2H) = 1 — exp(—3t, Bi), (3-89)

where Bi, the Biot number, is ka/HZ,,." The appropriate value of Sh is given by
Eq. (3-44) for stagnant fluids (Fig. 3.18), by Eq. (3-47) for rigid particles (Fig. 3.19),
and by Eq. (3-52) for circulating spheres (Fig. 3.20).

6. Comparable Resistance in Each Phase

Except for stagnant fluids, discussed in Section C.2, there are no general solu-
tions for the case where the transient resistances in both phases are significant.
If the external resistance is assumed constant, Eq. (3-56) must be solved with
boundary conditions given by Egs. (3-65), (3-66), (3-69), and

dc,/0r =Bi(Hc,, — ¢,)/a (3-90)

Solutions have been obtained for a rigid sphere with Pe, = 0 (G8), and the
results are shown in Fig. 3.21. We have complemented these with solutions for
a sphere circulating with the Hadamard-Rybczynski velocities at Pe /(1 + k) —
oo, assuming Sh,,. proportional to sin f and with the overall mean Sh used to
define Bi. These results are shown in Fig. 3.22. For Bi - o (ie., negligible
external resistance), the limiting curves are the Newman solution in Fig. 3.21
and the Kronig—Brink solution in Fig. 3.22. For Bi < 0.2 the internal resistance

T For heat transfer, Bi = ha/K,,.
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FiG. 3.21 Variation of fractional approach to equilibrium with time for stagnant spheres
(Pe, =0) with constant external resistance.
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F1G. 3.22  Variation of fractional approach to cquilibrium with time for circulating spheres with
Pe, /(1 + k) — oo and constant external resistance.

is negligible, so that the particle concentration is uniform and Eq. (3-89) can be
used to predict F.

D. EFFECT OF SURFACE CONTAMINANTS

Surface contaminants affect mass transfer via hydrodynamic and molecular
effects, and it is convenient to consider these separately. Hydrodynamic effects
include two phenomena which act in opposition. In the absence of mass trans-
fer, contaminants decrease the mobility of the interface as discussed in Section
IL.D. In the presence of mass transfer, however, motion at the interface may be
enhanced through the action of local surface tension gradients caused by small
differences in concentration along the interface. This enhancement of surface
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motion, often called the Marangoni effect (S4), is considered in more detail in
Chapter 10. The molecular effects are interfacial resistances to mass transfer
which may arise from the interaction of surface contaminants with the species
being transferred. The magnitude of the interfacial resistance depends upon
the nature of the transferring substances and the contaminants.” Here we assume
that the contaminants cause no additional resistance to transfer. Finite inter-
facial resistances are considered briefly in Chapter 10.

1. External Resistance—Steady State

The effect of surface contaminants on mass transfer has been calculated using
the models of Frumkin and Levich (F1, L6), Schecter and Farley (S2), and
Savic (G7, S1) (see Section 11.D). The following crude but systematic method
of estimating the effect of surface contamination on mass transfer is based on
Savic’s stagnant-cap approach, analogous to the treatment of terminal velocity.
The values of the velocity ratio, Y, and angle excluded by the stagnant cap, 6,
are estimated from Fig. 3.7 and Huang’s curve in Fig. 3.6. The Sherwood
number for the mobile interface, Shy, is obtained by treating it as part of a
fully circulating sphere, and is therefore taken from Fig. 3.10 at the appropriate
k and Pe. An approximate upper limit for transfer through the stagnant cap
is obtained by treating it as a portion of a rigid sphere at the same Pe, so that
the appropriate Sherwood number, Sh, is obtained from Fig. 3.10 or Eq. (3-49).
The overall Sherwood number is then estimated as

Sh = Yy Shy + Y4 Shg. (3-91)
Use of Savic’s surface velocities in Eq. (3-51) yields for high Pe:
Sh = 0.651 Pe'/2/3(Y — 1)/, (3-92)

which suggests that the weighting factor for mass transfer through the mobile
interface can be approximated by

Yy =/3(Y — 1)/Y. (3-93)

Similarly, Y; follows from the Levich solution for a rigid sphere in creeping
flow at high Pe as

Yo =1 —/(0p — sin 04 cos O)/m. (3-94)
2. Transfer with Variable Particle Concentration

Dispersed phase resistances are increased when surface contaminants reduce
interfacial mobility. Huang and Kintner (H9) used Savic’s stagnant-cap theory
in a semiempirical model for this resistance. A simpler quasi-steady model is
proposed here, analogous to that for continuous phase resistance. The Sherwood

¥ It is unlikely that appreciable molecular resistance to heat transfer across fluid-solid or fluid-
fluid interfaces can be caused by surface contamination.
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numbers for the cap and the mobile portion of the sphere are obtained as
functions of 7, from the Newman and Kronig-Brink solutions described in
Section C.4. It is assumed that the cap angle is constant with time and that the
spherical segment bounded by the cap is stagnant and occupies a fraction fyg
of the sphere volume:

Sfvs = (1 +c0s00)[2 + cosOy(1 — cosb,)]/4. (3-95)

Mass balances for the mobile and stagnant portions of the particle then give
(1 = fyvs)(dFy/dry) = 3Shy(1 — fus)(1 — Fy) — 3Sh, fy(Fy — Fy),  (3-96)
fvs(dFg/dry,) = 3Shg fas(1 — Fy) + 3Shy fa(Fy — Fo), (3-97)

where the subscripts M and S indicate the mobile and stagnant portions of the
particle, I indicates the plane separating these portions, f.g is the fraction of
the particle surface occupied by the stagnant cap, and f,; is the area of contact
between the two portions of the particle expressed as a fraction of the surface
area of the sphere. The mean approach to equilibrium is

F=(1— fyg)Fy + fvsFs. (3-98)

It is further assumed that the resistances between the two portions of the sphere
are additive:
Sh;™* = Shy ! + Shg™ 1, (3-99)

with Shy; and Shg given by Eqgs. (3-81) and (3-83). For uniform initial composi-
tion, the initial condition is

Fy=Fs=0 at t,=0. (3-100)

P

These equations have been solved numerically to give the variation of
F with 7, shown in Fig. 3.23 for several values of the angle excluded by the
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FiG. 3.23  Variation of fractional approach to equilibrium with time for fluid particles with
contaminated interface and Pe, /(1 + x) - o 0, = angle excluded by stagnant cap.
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stagnant cap, 0. Results lie between the solutions of Newman and Kronig and
Brink. This model can easily be extended to include changes of cap angle with
time.
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Chapter 4

Slow Viscous Flow
Past Nonspherical Rigid Particles

I. INTRODUCTION

In this chapter, we extend the discussion of the previous chapter to non-
spherical shapes. Only solid particles are considered and the discussion is
limited to low Reynolds number flows. The flow pattern and heat and mass
transfer for a nonspherical particle depend on its orientation. This introduces
complications not present for spherical particles. For example, the net drag
force is parallel to the direction of motion only if the particle has special shape
properties or is aligned in specific orientations.

II. FLUID MECHANICS

A. GENERAL CONSIDERATIONS

It is convenient to define an “equivalent sphere” as in Chapter 2. Drag is
then related to that on the equivalent sphere either by a “drag ratio” defined
as

drag on particle
~ drag on equivalent sphere at same velocity

(4-1)

or by a “settling factor,”

terminal velocity of particle

(4-2)

~ terminal velocity of equivalent sphere with same density’
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When these factors are based on the volume-equivalent sphere,
c=A! (4-3)

in creeping flow because of the linear dependence of drag on relative velocity.

Since the net drag on an arbitrary particle is generally not parallel to the
direction of motion, a particle falls’ vertically without rotation only if it
possesses a certain symmetry or a specific orientation. The following guidelines
for solid particles with uniform density are derived from general results for
creeping flow (H3):

(i) Orthotropic particles (see Chapter 2) have no preferred orientation and
always fall without rotation. Motion is vertical only if a plane of symmetry is
horizontal.

(i) Axisymmetric particles fall vertically if the axis is vertical. If the particle
has fore-and-aft symmetry, it is orthotropic. It therefore falls vertically also if
the axis of symmetry is horizontal, and always moves without rotation. Other-
wise, it falls without rotating only when its axis is vertical; it is only stable,
however, in one of the two directions.

(ii) Spherically isotropic particles always fall vertically without rotation,
and the settling velocity is independent of orientation. This is the origin of the
name for this class of shapes.

Particles subject to Brownian motion tend to adopt random orientations,
and hence do not follow these rules. A particle without these symmetry prop-
erties may follow a spiral trajectory, and may also rotate or wobble. In general,
the drag and torque on an arbitrary particle translating and rotating in an
unbounded quiescent fluid are determined by three second-order tensors which
depend on the shape of the body:

(i) A symmetric translation tensor which describes the resistance to trans-
lational motion.
(if) A symmetric rotation tensor giving the torques resulting from rotation.
(i) An asymmetric coupling tensor which defines torques resulting from
translation and drag forces resulting from rotation.

The use of these resistance tensors is developed in detail by Happel and Brenner
(H3). While enabling compact formulation of fundamental problems, these
tensors have limited application since their components are rarely available
even for simple shapes. Here we discuss specific classes of particle shape without
recourse to tensor notation, but some conclusions from the general treatment
are of interest. Because the translation tensor is symmetric, it follows that every
particle possesses at least three mutually perpendicular axes such that, if the
particle is translating without rotation parallel to one of these axes, the total

" The same guidelines apply to rising particles with density less than that of the surrounding fluid.
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drag force is also parallel to the axis (H3). These axes are usually called “principal
axes of translation.” If the particle is translating with velocity U parallel to
principal axis i, then the drag is given by

Fp = —ucU, (4-4)

where the three values of ¢; are termed the “principal translational resistances.”
For an orthotropic particle, the principal axes are normal to the planes of
symmetry. For an axisymmetric particle, the axis of symmetry is one of the
principal axes.

Particles which are orthotropic, axisymmetric, or spherically isotropic possess
a point about which the coupling tensor is zero. In this case, pure translation
in creeping flow never causes a torque component of drag. The resistance to
any translation can then be estimated by a simple procedure described by
Dahneke (D1), relying on the linearity of the governing equations. The total
drag is obtained by adding the drag components due to the components of
velocity parallel to each of the principal axes of translation. Thus, if the principal
axes are defined by the three orthogonal unit vectors i, j, k, the total drag
resulting from translation at velocity U is given by

FD = _ﬂ[icl Ul + jCZUZ + kC3U3]. (4"5)

For a large number of identical particles with random orientations, the mean
resistance is obtained by integrating Eq. (4-5) over the range of orientations
(H3). The mean resistance follows as

c=3)c;7 e e (4-6)

while the mean direction of settling is parallel to the gravity field. The resistance
given by Eq. (4-6) is used to describe the translational motion of dilute sus-
pensions of small particles of arbitrary shape and random orientation (e.g. as
a result of Brownian motion).

B. AXISYMMETRIC PARTICLES
1. General Considerations

a.  Resistance to Translation Consider an axisymmetric particle translating
with steady velocity U through a stationary unbounded viscous fluid. The
orientation of the particle is defined as shown in Fig. 4.1 by the angle 6 between
its axis of symmetry and the direction of motion. In the plane of Fig. 4.1, the
principal axes of translation are parallel and perpendicular to the axis of
symmetry. Therefore the components of drag along the principal axes follow
from Eq. (4-5):

parallel to the axis of symmetry:

Fpy = —ucUcos; (4-7)
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FiG. 4.1  Arbitrary axisymmetric particle in steady translation.

perpendicular to the axis of symmetry:
Fp, = —pc,Usin 6, (4-8)

where ¢, and ¢, are the principal resistances for translation parallel and normal
to the axis of symmetry. The net drag is then

Fp = —pU[c;? cos? 0 + ¢,?sin? 0]1? (4-9)
at an angle ¢ to the axis of symmetry such that
tan ¢ = (c,/cy) tan 0. (4-10)

Thus the drag resulting from any translation can be determined if the two
principal resistances are known. The principal resistances of common axisym-
metric shapes are given in subsequent sections.

b. Motion in Free Fall or Rise For the particle to move steadily in free fall
or rise, two conditions must be met:

(i) The total drag ¥ must be directed vertically to counterbalance the
net gravity force acting on the particle.

(i) The point on the axis of symmetry through which Fy, acts, C in Fig. 4.1,
must coincide with the center of mass (assuming the particle has uniform
density).

For a particle without fore-and-aft symmetry, condition (ii) is generally met
only when the axis is vertical: hence such particles fall with a “tumbling” motion.
However, if the particle has fore-and-aft symmetry of shape and density, both
Fp and immersed weight must act through the point where the plane of sym-
metry cuts the axis; condition (ii) is automatically satisfied, and the particle
falls without rotation. Condition (i) then determines the direction of motion.
The angle ¢ becomes the inclination of the axis from the vertical, so that the
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particle falls at an angle to the vertical given by
i=¢ —0=tan"'[(c; — ¢;)tan d/(c, + ¢, tan? p)]. (4-11)

As a general guide, ¢, is usually less than ¢, for a prolate particle, so that 0 < ¢
and the direction of motion is between the axis and the vertical. On the other
hand, an oblate body usually has ¢; > ¢, so that the direction of fall is between
the vertical and the equator. The settling velocity follows from Eq. (4-9):

_gAp V[ 1+ (citang/c,)* V2
e 1 + tan® ¢ ’
where V' is the particle volume and Ap the density difference between the
particle and the fluid. The component parallel to the axis of the particle is

gApV

U

(4-12)

Ucos =— (4-13)
peia/1 + tan? ¢
while the vertical component is
ApV ', tan?
Ucos ) =98PVt an’g ) (4-14)
ucicy | 1+ tan®¢

For a dilute suspension of identical particles oriented randomly, the mean
resistance follows from Eq. (4-6):

c=3/c;7" +2¢,7 Y, (4-15)
so that the mean settling velocity is
_ Ap V|1 2
=22 [—+~]. (4-16)
3” Cq Cy

c.  Translation Parallel to the Axis of Symmetry Many more results have
been reported in the literature for the axial resistance ¢; than for the normal
resistance ¢, of axisymmetric particles, since axisymmetric flows are more
tractable than three-dimensional flows. The equation of motion for creeping
flow parallel to the axis of symmetry, Eq. (1-36), may be expressed in various
orthogonal curvilinear coordinate systems (H3). For a frame of reference fixed
to the particle with origin on the axis of symmetry, the boundary conditions
are Eq. (1-27) and

y=0 on the surface of the particle, 4-17)
oy/on =0 on the surface of the particle, (4-18)

where n is a coordinate normal to the surface.
A useful theorem due to Payne and Pell (P3) enables the drag on an axisym-
metric body to be calculated directly from the stream function ' for steady
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motion of the body through stagnant fluid’:
Fp=8nu lim {y/'/rsin? 0}. (4-19)

This theorem could have been used to obtain the drag for fluid and solid spheres
in Chapter 3. Explicit analytic solutions are available for bodies whose bound-
aries are easily described in relatively simple coordinate systems. Results for
spheroids and disks (O1, P3, S1) are discussed below. Solutions are also available
for lenses and hemispheres (P3), hollow spherical caps (D3, C3, P3), toroids
(P4), long spindles or needles (P5), and pairs of identical spheres (S7).

Techniques have also been developed for obtaining approximate solutions
in axisymmetric creeping flow. The general approach is to use a series expansion
for the drag or stream function, truncate the series after a number of terms,
and use the boundary conditions to evaluate the terms retained. The “point-
force approximation technique” developed by Burgers (B10) is applicable to
particles (e.g., needles or fibres) which have a large aspect ratio. The total drag
is approximated by a distributed line force along the axis of symmetry. The
force is represented by a polynomial approximation in which the constants are
determined by satisfying Eq. (4-18) as closely as possible. O’Brien (O2) expanded
the stream function as an infinite series in general spherical coordinates and
truncated after a finite number of terms. The remaining coefficients were ob-
tained by satisfying Eq. (4-18) at the same number of points on the surface of
the particle. Bowen and Masliyah (B4) improved this approach by fitting the
solution to the boundary condition in the least-squares sense over the entire
surface. Gluckman et al. (G2, G3) developed a “multipole representation tech-
nique,” by which any convex axisymmetric body is represented as an array of
oblate spheroids. Again, individual terms in the resulting series for i are deter-
mined by satisfying Eq. (4-17) and Eq. (4-18) at a finite number of points on the
surface. These approximate techniques allow reliable results to be obtained for
bodies as deformed as cylinders and cones. However, care is required in handling
plane surfaces normal to flow, e.g., the ends of a cylinder. Results obtained by
these techniques are discussed below.

2. Spheroids

Spheroidal particles can be treated analytically, and allow study of shapes
ranging from slightly deformed spheres to disks and needles. Moreover, a
spheroid often provides a useful approximation for the drag on a less regular

" This theorem lcads to an interesting result concerning “drift.” For an axisymmetric body,
the drift volume (D2), the volume enclosed between the initial and final position of a horizontal
layer of tracer fluid, is given by V; = lim,_, .(y). If the body is to have finite drag, then lim,_, . (y/'/r)
(0 < 0 < m) must be finite from Eq. (4-19). Hence ¥, must be unbounded. Therefore any axisymmetric
body with finite drag in creeping flow through an infinite medium must cause infinite drift. It
seems likely that this result should apply to bodies without axisymmetry, but no proof of this
appears to have been given.
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particle (see Section E below). Figure 4.2 shows the notation used here: the
axial dimension of the particle is 2b while the maximum dimension normal to
the axis of symmetry is 2a. The aspect ratio, b/a, of the particle is denoted by E.

a. Creeping Flow Table 4.1 gives expressions for the principal resistances
of spheroids, first obtained (G1) from Oberbeck’s general results for ellipsoids

TABLE 4.1

Resistances of Spheroids in Creeping Flow*

Oblate (E < 1) Prolate (E > 1)

Principal Resistances

1. Axial, ¢,
8na(l — E?) 8na(ﬁ2 1)
Exact: — e = o —— _-
[(1 —2E%)cos VENT - F21+ E [m’ ) )In(E + VEP =1 /\/LZ
Approx: 1.2na(4 + E) 1.2na(4 + E)
2. Normal, ¢,
167a(l — E?) 16ma(E* — 1)
Exact: - — — — — —— - — === — e e e
[(3—2E*)cos ' E/\/1 —E*] - E [(2F2 —3)In(E + JE* = D)/ JE* —
Approx.: 1.2na(3 + 2E) 1.27a(3 + 2E)

Mean Resistance (random orientation), ¢:

Exact: 6na\/1 — E*/cos™ ' E 6raE* = 1/In(E + JE? = 1)
Ratio of form drag to skin friction (axisymmetric flow), R:

Exact:  [Lcos ' E — \/l—F- l"ln(l'+\/L —1) \/l~2 -1

E2J1=E? — Leos ' E FZ\/fz"l—Hanr\/F—l

-k

1)+ E

“ After Aoi (A1), Gans (G1), Happel and Brenner (H3), Oberbeck (O1), and Payne and Pell (P3).
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(O1). Results for thin disks are obtained in the limit as E — 0. Approximate
relationships, obtained by treating the spheroid as a slightly deformed sphere
(H3, S1), are also given. The drag ratio may conveniently be expressed as the
ratio of the resistance of the spheroid to that of the sphere with the same
equatorial radius a:

A, = ¢y /6ma, (4-20)
A, = ¢,/6ma, (4-21)
A, = ¢/6ma, (4-22)

where ¢ is the mean resistance for a large number of spheroids with random
orientation, obtained from Eq. (4-15). The drag ratio is thus equal to the radius
of the sphere with the same resistance in creeping flow, expressed as a multiple
of a.

Figure 4.3 shows exact and approximate values for A,,, the axial drag ratio.
Corresponding curves for A, and A, appear in Fig. 44 with the exact values
of A,; for comparison. Due to the dependence of surface area on the axial
dimension, 2b, drag increases with E. For flow parallel to the axis, the polar
regions contribute least to the total drag, so that A,; depends less strongly
than A, on E. The approximate results give good estimates for the resistances.
The maximum deviation for oblate particles, approximately 6%, for both A,;
and A,,, occurs for disks. For prolate particles the deviation increases with
aspect ratio; for E = 5 the error is almost 10% in A,, but less than 1%, in A,;.

|
Oblate l /

10} /&
;go.s . ]’/
gost N /]
|

pet
Y,

~
//l
-
Feo

0 05 10 15 20 25
Aspect Ratio, E

FiG. 4.3 Drag ratios for spheroids in axisymmetric flow. Drag ratio A, : — Exact; ---- Approxi-
mate; —-—- Drag Component; (1) Friction; (2) Form.
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F1G. 44 Drag ratios for spheroids: — Exact; --- Approximate.

It is common practice to define a “hydraulic equivalent” sphere as the sphere
with the same density and terminal settling velocity as the particle in question.
For a spheroid in creeping flow, the hydraulic equivalent sphere diameter is
2a+/ E/A, and thus depends on orientation.

It was noted in Chapter 3 that the ratio R of form drag to skin friction for
a rigid sphere in Stokes flow is 1:2. Table 4.1 gives expressions for R due to
Aoi (Al) for flow parallel to the axis of spheroids. The ratios of form drag and
skin friction to the total drag on a sphere of radius a are RA,,;/(1 + R) and
A,1/(1 + R), respectively. These two terms are plotted in Fig. 4.3. The two
components of drag depend strongly on aspect ratio for oblate spheroids.
However, the changes are largely compensating so that the dependence of total
drag on E is weak.

The drag ratio based on the sphere with equal volume is

A, =AE13, (4-23)

Figure 4.5 shows the variation of A, with E for flow parallel and normal to the
axis, and averaged over random orientations. Except for disk-like particles, the
dependence of A, on aspect ratio is rather weak. In axial motion, a somewhat
prolate spheroid experiences less drag than the volume-equivalent sphere: A,
passes through a minimum of 0.9555 for E = 1.955. For motion normal to the
axis of symmetry, A,, takes a minimum of 0.9883 at E = 0.702. However, the
average resistance A, is a minimum for a sphere.

b.  Axisymmetric Motion at Somewhat Higher Reynolds Numbers The in-
consistency noted by Oseen (see Chapter 3) is also present in creeping flow solu-
tions for nonspherical bodies. Extensions to the Stokes solution similar to those
for a sphere in Chapter 3 have been investigated for flow parallel to the axis of
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F1G. 4.5 Drag ratios for spheroids compared to volume-equivalent spheres.

a spheroid. Motion with any other orientation is significantly harder to analyze
due to the need for three spatial coordinates. Breach (B5) applied Proudman
and Pearson’s method of inner and outer expansions to obtain:

(i) Obilate:

Cp | _3A,Re , 9A,Re’In(Re)2)
Cosi 16 160

(i) Prolate:

+ O(Re?), (4-24)

Co | _3A,Re . 9A,,2 Re? In(E Re/2)
Copse 16 160

where A, is the drag ratio defined by Eq. (4-20) with ¢, from Table 4.1 and Re
is based on the equatorial diameter, 2a. The first term on the right of each
equation gives the Oseen drag (Al, O3). The term A,,; Re is the Reynolds
number for the sphere with the same Stokes resistance as the spheroid. Within
the Oseen range, the ratio of form to friction drag is independent of A,; Re (Al).

Figure 4.6 compares Egs. (4-24) and (4-25) with selected experimental and
numerical results for spheroids. When plotted in this form, (Cp,/Cpg, — 1) is only
weakly dependent on E for A,; Re less than about unity. The drag is then very
close to the Oseen value, and Egs. (4-24) and (4-25) are accurate. Above this
range, the equations predict that the drag should exceed the Oseen value,
whereas the reverse occurs in practice. Thus, as for spheres in Chapter 3,
analytic results have little value for A,; Re > 1.

For higher Re, departure from the Oseen drag increases with increasing
aspect ratio. It is common practice to determine a hydraulic equivalent diameter

+ O(Re?),  (4-25)
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FiG. 4.6 Departure from Stokes’s drag for spheroids. Breach curves from Eqgs. (4-24) and (4-25).

for an irregular particle by measuring its terminal settling velocity under a
specific set of conditions, usually in creeping flow. Figure 4.6 shows that, even
for simple shapes, the dependence of drag on particle shape prevents the
hydraulic equivalent diameter determined at one Re from being used to predict
the settling velocity reliably at another Re. This problem is aggravated by
particle orientation effects, discussed in Chapter 6.

3. Cylinders

Analytic results for cylinders comparable to those discussed for spheroids
are not available. However, Heiss and Coull (H4) reported accurate experi-
mental determinations for cylinders, spheroids, and rectangular parallelepipeds,
and developed a general correlation for settling factors. In terms of the volume
drag ratio, A,, their results may be written:

(i) for motion parallel to the axis:

1 6220y, —
A, = exp[06 (s 1)} (4-26)

Xlﬁ \/EXC{.?AS

(if) for motion normal to the axis:

AeZ =

exp[0.576 /Yy, — D], (4-27)
X2
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where 1/ is the sphericity defined in Chapter 2, and y is a shape factor similar to
the circularity, defined as:

de
L= 3,: ~ diameter of projected-area-equivalent sphere’

diameter of volume-equivalent sphere

(4-28)

The area defining d, is projected parallel to the direction of motion. The
modified circularity y is related to Heywood’s shape factor (see Chapter 2) by

k = my3/6, (4-29)

provided that k is evaluated for the same projected area.’

For spheroids with aspect ratios between 0.1 and 10, Egs. (4-26) and (4-27)
agree closely with the analytic results in Table 4.1 (H4). For cylinders, these
results may be written explicitly in terms of the aspect ratio, E = L/d, using

W =(18E*)Y3/QE + 1), (4-30)
%1 = (3E/2)'°, (4-31)
%2 = (3/16)13/rnE~1/°. (4-32)
The principal resistances may be obtained from the drag ratios as
¢ =3nd(3E/2)' 3 A,. (4-33)

Figures 4.7 and 4.8 show experimental and numerical results for the resis-
tance of cylinders. The drag values predicted by the multipole representation
technique of Gluckman et al. (G3) lie closer to the experimental values (B2, H4)
than do the series truncation approximations of Bowen and Masliyah (B4).
Equation (4-26) gives a reasonable approximation for 0.1 < E < 10, but is
unreliable outside this range. If the drag on a cylinder is approximated by that
on a spheroid of the same aspect ratio, the value of A, for the spheroid must
be multiplied by 1.57!/3 = (.874, since the volume of the cylinder is 1.5 times
that of the spheroid. Figure 4.7 shows the resulting curve, obtained from the
exact results for spheroids in Table 4.1. The drag on a cylinder approaches that
on the spheroid as E — 0 or E — c0. For E < 0.1, the result for a spheroid gives
a close estimate for the drag on a cylindrical disk. For E > 9, the closest ap-
proximation is given by Cox’s result from slender-body theory, Eq. (4-36) below.

Figure 4.8 shows that Eq. (4-27) gives a good approximation for the drag on
a cylinder with motion normal to the axis for the range in which experimental
results are available. The curve obtained from the exact results for spheroids
can be used to estimate A, for very small or large E. The slender-body result,
Eq. (4-37), appears to be applicable for E > 3.

T Singh and Chowdhury (S4) proposed alternative correlations in terms of y and y for cylinders
and square bars. Their equations are simpler in form than Egs. (4-26) and (4-27). However, the
fit to available data is no better for 0.5 < E < 5.0, and the trend is wrong outside this range.
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4. Slender Bodies

In the “point force approximation” technique (see Section 1c), Burgers (B10)
suggested a polynomial approximation for the distributed line force along the
axis of a body of large aspect ratio:

f(x) = —8ruU[B; + By(x/L)* + By(x/L)*] (—L/2<x<LJ2), (4-34)

where the x axis is the axis of symmetry, the body has length L, and B, B,,
and Bj; are constants determined by requiring the fluid velocity induced by
the drag to counterbalance the free stream velocity as closely as possible on
the surface of the particle. The total drag is then

Fp = _L/LZ/Z f(x)dx = —8ruUL(B, + B,/12 + B3/80). (4-35)
This approach leads to expressions for the resistance to axial motion of the
form

¢y = 2nL/[InE) — «]. (4-36)

For prolate spheroids, x is predicted to be 0.50, in agreement with the result
in Table 4.1 when E — . For cylinders, Burgers obtained x = 0.72. Broersma
(B9) improved Burgers’ estimate for cylinders by taking further terms and
solving numerically. The value obtained, k = 0.80685, was subsequently con-
firmed by Cox (C5) using an asymptotic expansion. Cox’s treatment has the
advantages of leading to an estimate of the error in the approximation and of
enabling results to be obtained for curved slender bodies and for cases in which
the axis of the body is not parallel to the direction of motion. Cox showed that
the principal resistance for motion normal to the axis of symmetry is

¢y = 4nL/[InQE) + 1 — k] (4-37)

For prolate spheroids, Eq. (4-37) with k = 0.5 again agrees with the limiting
exact result for E — oo. The validity of these equations for cylinders is demon-
strated in Figs. 4.7 and 4.8. Comparison of Egs. (4-36) and (4-37) shows that
the ratio of ¢, to ¢, tends to 2 as E — oo. This result holds for any axisymmetric
particle, while ¢, < 2¢, for finite aspect ratios (W2). Consequently a needle-
like particle falls twice as fast when oriented vertically at low Re than when
its axis is horizontal.

Cox (C5) and Tchen (T1) also obtained expressions for the drag on slender
cylinders and ellipsoids which are curved to form rings or half circles. The
advantages of prolate spheroidal coordinates in dealing with slender bodies
have been demonstrated by Tuck (T2). Batchelor (B1) has generalized the
slender body approach to particles which are not axisymmetric and Clarke (C2)
has applied it to twisted particles by considering a surface distribution rather
than a line distribution.
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5. Arbitrary Axisymmetric Particles

Bowen and Masliyah (B4) give a useful discussion of the axial resistance of
various axisymmetric bodies. For particles which may be regarded as spheres
with axisymmetric deformations, simple estimates for the resistance are avail-
able. Suppose that a particle of volume V with principal resistance ¢ is obtained
by deforming a sphere of volume V, and resistance c,. It is convenient to use
two factors introduced by O’Brien (O2):

Ac = (¢, — ¢19)/C1s) (4-38)
AV = (V= V)/V.. (4-39)
For deformations with fore-and-aft symmetry,
Ac=02AV + O[(AV)?] (4-40)
while “u-deformations” (lacking fore-and-aft symmetry) give (B3)

Ac = 025AV + O[(AV)?] (4-41)

Equation (4-40) is equivalent to the approximate results for spheroids given in
Table 4.1; Figs. 4.3 and 4.4 demonstrate that the approximation is useful even
for grossly deformed spheres.

Bowen and Masliyah examined the axial resistance of cylinders with flat,
hemispherical and conical ends, and of double-headed cones and cones with
hemispherical caps, together with the established results for spheroids. Widely
used shape factors (including sphericity) did not give good correlations, while
Egs. (4-26) and (4-27) were found to be inapplicable to particles other than
cylinders and spheroids. The best correlation was provided by the perimeter-
equivalent factor ) defined in Chapter 2. With this parameter, the equivalent
sphere has the same perimeter as the particle viewed normal to the axis. Based
on their numerical results, Bowen and Masliyah obtained the correlation

Ap = 0.244 + 1.035) — 0.712) > + 0.441) . (4-42)

Figure 4.9 shows that Eq. (4-42) also gives a good correlation of results of other
workers. For shapes where experimental data are lacking, Eq. (4-42) is likely to
give the best estimate for resistance to axial translation. Figure 4.9 also shows
experimental results for rectangular parallelepipeds, which may be regarded as
analogous to axisymmetric particles (see Section C below). The shape factor
and drag ratio are evaluated from the arithmetic mean of the maximum and
minimum perimeters, viewed normal to the corresponding axes. Equation (4-42)
also correlates these results within about 6%, suggesting that this form of
correlation may prove to be useful for nonaxisymmetric particles.

Results for translation normal to the axis are more limited and all experimen-
tal. Figure 4.10 shows available data plotted employing Bowen and Masliyah’s
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groups, where the perimeter viewed along the axis (or “equivalent axis” dis-
cussed below for rectangular parallelepipeds) has been used. The parameters )
and Ap. also appear to give a useful correlation for the second principal resis-
tance, since the data fall generally below but within 10% of the exact curve
for spheroids. The following correlation is obtained from the experimental data
together with an equal number of points from the exact curve for spheroids:

Ap = 0.392 4 0.621) — 0.040) . (4-43)

Equation (4-43) may be used to estimate the normal resistance of particles for
which no experimental results are available.

C. ORTHOTROPIC PARTICLES

For an orthotropic particle in steady translation through an unbounded
viscous fluid, the total drag is given by Eq. (4-5). In principle, it is possible to
follow a development similar to that given in Section I1.B.1 for axisymmetric
particles, to deduce the general behavior of orthotropic bodies in free fall.
This is of limited interest, since no analytic results are available for the principal
resistances of orthotropic particles which are not bodies of revolution. General
conclusions from the analysis were given in ILA.

The only orthotropic particles for which comprehensive experimental results
are available are “square bars,” rectangular parallelepipeds with one pair of
square faces. Symmetry then shows that the two principal resistances cor-
responding to translation with square faces parallel to the direction of motion
are equal. These resistances will be denoted by c¢,, while the resistance for
translation normal to the square faces will be called ¢;. Consider such a particle
in arbitrary translation at velocity U. Figure 4.11 shows a section of the parti-
cle parallel to the square faces; U, is the component of U in this plane, and the
angle between U, and principal axis 2 is (. From Eq. (4-5), the drag components
are as shown in Fig. 4.11. Hence the drag component parallel to U, is

Fpp = pUs(¢5 08?0 + ¢58in? 0), (4-44)

/s
, M cU,sin@
.
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N

FiG. 4.11 Rectangular parallelepiped with square section in steady translation.
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while that perpendicular to U, is
Fp = pU,(c,cosOsin@ — c3sinfcos 0). (4-45)

Since ¢; = ¢, for this class of shapes, Fy, | is zero while Fp  is uU,c,. Thus
the drag component in the plane of Fig. 4.11 is always in the — U, direction
with magnitude independent of the direction of U,. Thus, for drag in steady
translation or motion in free fall, these particles may be treated like axisym-
metric particles.t The axis through the centres of the square faces is like an
axis of symmetry and may be termed the “equivalent axis.”

Heiss and Coull (H4) measured the drag on rectangular parallelepipeds.
Results were correlated by Egs. (4-26) and (4-27). For a particle with dimensions
I xIxEIl

Y = (OnE?/2)'P/(1 4 2E). (4-46)
For motion parallel to the equivalent axis
711 = (0.75E{/m)"3, (4-47)
while for motion normal to the equivalent axis
%2 = (075 m/E)'3. (4-48)

t Symmetry arguments show that the same conclusion applies to bodies, such as bars with regular
polygonal cross sections, whose shapes are unchanged on rotation through an angle of 2z/n (n > 2)
about the equivalent axis. Unfortunately, this simplification does not apply to rotational motion,
or in general to heat or mass transfer.
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The principal resistances may be obtained from the drag ratios as
¢ = 3I(6En*)'3 A, (4-49)

Corresponding values for A, are shown in Fig. 4.12. Agreement with available
experimental data is reasonable, but no better than for the more general
correlations, Eqs. (4-42) and (4-43).

D. SPHERICALLY ISOTROPIC PARTICLES

For a particle which is spherically isotropic (see Chapter 2), the three prin-
cipal resistances to translation are all equal. It may then be shown (H3) that
the net drag is — ucU regardless of orientation. Hence a spherically isotropic
particle settling through a fluid in creeping flow falls vertically with its velocity
independent of orientation.

Settling velocities of such particles have been measured by Pettyjohn and
Christiansen (P6) and Chowdhury and Fritz (Cl). Correlation of both sets of
data with the results of Heiss and Coull for cubes gives:

A, = 1/(1 + 0367 Iny). (4-50)

For a cube of side [, Eq. (4-50) gives the resistance as 12.70/, compared with
experimental values of 12.581 (P6), 12.63[ (H4), and 12.711 (Cl). To the accuracy
of the determinations, the resistance can be taken as 4x/ (D1). It is noteworthy
that Eqgs. (4-26) and (4-27) predict that a spherically isotropic cylinder with
aspect ratio 0.812 should have a drag ratio of 1.050, while Eq. (4-50) gives
A, = 1.054. Agreement is so favorable that Eq. (4-50) may be useful for spheri-
cally isotropic particles other than the simple shapes for which it was developed.

E. PARTICLES OF ARBITRARY SHAPE

No fully satisfactory method is available for correlating the drag on irregular
particles. Settling behavior has been correlated with most of the more widely
used shape factors. Settling velocity may be entirely uncorrelated with the
“visual sphericity” obtained from the particle outline alone (B8). General cor-
relations for nonspherical particles are discussed in Chapter 6.

For creeping flow, a few simple general results often lead to useful estimates
for the resistance or settling velocity of arbitrary particles. Sharp edges have
little effect on drag, the most significant features being areas where the tangen-
tial stress is parallel to the direction of motion. For a sphere which has been
slightly deformed, the average resistance ¢ is equal to that of the sphere with
the same volume (H3). However, the average resistance should be used with
care, since even slight asymmetry causes a particle to adopt a preferred orienta-
tion (M3). Hill and Power (H6) showed that the Stokes drag on an arbitrary
particle is less than or equal to that on a body which encloses it and greater
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than or equal to that on a body contained within it. Judicious choice of cir-
cumscribed and inscribed bodies can give close bounds on the resistance or
settling velocity.

Weinberger (W2) showed that the sphere has the largest average Stokes
settling velocity of all bodies of a given volume. Keller e al. (K1) showed that
creeping flow solutions always underestimate drag at nonzero Re. The results
for spheroids discussed above illustrate these general principles.

1III. HEAT AND MASS TRANSFER

Very few solutions have been obtained for heat or mass transfer to non-
spherical solid particles in low Reynolds number flow. For Re = 0 the species
continuity equation has been solved for a number of axisymmetric shapes,
while for creeping flow only spheroids have been studied.

A. EXTERNAL RESISTANCE—STEADY STATE

For constant-property steady flow the species continuity equation, Eq. (1-38),
becomes
Pe u
o V/ — N2 ., .
s Ve (V')%c, (4-51)
where Pe is based on some characteristic length and c is the species concentra-
tion. The boundary conditions are

¢ = ¢ on surface of particle, (4-52)
¢=c, far from particle. (4-53)

Brenner (B7) has shown that, whatever the particle shape, the total mass or
heat transferred from a particle in creeping flow is the same if the flow infinitely
far from the particle is reversed. Although the variation of the rate of transfer
over the surface of the particle may differ under forward and reverse flow, the
total rate of transfer is the same.

1. Stagnant External Phase
For Pe = 0, Eq. (4-51) reduces to Laplace’s equation
Vie=0, (4-54)

with the boundary conditions given by Egs. (4-52) and (4-53). Diffusion from
a finite particle into a stagnant external medium is analogous to the electro-
static problem of a charged conductor located in a charge-free homogeneous
dielectric medium. This problem has been treated thoroughly (S5, V1, W1) and
the capacitance, the ratio of charge to potential, has been obtained for a number
of shapes. These results can be utilized directly in the present application by
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TABLE 4.2

External Conductances of Particles in a Stagnant Medium?

Particle shape Conductance, koA4/Z
Sphere (radius = a) 4dna
Spheroid -
4 1—E?
oblate (E < 1) ,%_ -
cos™ Y(E)
. dma JE* — 1
prolate (E > 1) N
In(E + JE> = 1)
0.76
Circular Cylinder (0 < L/d < 8, radius = a) [8 + 695(}) ]a
Thin rectangular plate (side L, > side L,) 2nL,/In(4L,/L,)
Cube (edge = a) 0.656(4na)
Touching spheres (equal size, radius = a) (21n 2)(4ma)
Intersecting spheres, radii @, and a,, with orthogonal intersection 4n[a1 +a, — \/_a;az —_;]
a;” + da,”

“ After Smythe (S5, S6), Weber (W1), Schneider (S2), Reitan and Higgins (R1), and Hahne and
Grigul (H1).

noting the equivalence
koA/D = C, /e, (4-55)

where C, is the capacitance of the conducting particle and ¢ is the permittivity
of the medium. The quantity k,A4/% may be called the “conductance” and has
dimensions of length.? The subscript zero denotes the absence of external flow.
The distribution of conductance over the surface of a particle is identical to
the distribution of surface charge in the geometrically similar electrostatic
problem. With the exception of spheres, the local conductance is not uniform
over the surface because edges and corners, where the curvature is high, have
higher conductances. There is no solution to Eq. (4-54) for an infinite cylinder
of any cross section. Instead, the steady-state rate of transfer to an infinite
body is zero. Conductances obtained from solutions to Eq. (4-54) for finite
bodies of various shapes are given in Table 4.2. Values of Sh, can be obtained
from the tabulated conductances by dividing by the surface area of the particle
and multiplying by a characteristic length.

*In the heat transfer literature the corresponding quantity, hyA4/K,, is sometimes called the
conduction shape factor.
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The conductance of arbitrary axisymmetric particles may be approximated
using the correlation given in Fig. 4.13. By analogy with the drag ratio, a
“conductance factor” is defined as

conductance of particle

’

= : . 4-56

conductance of equivalent sphere (4-56)
The graphical correlation is presented in terms of the perimeter equivalent
factor ) used in Figs. 49 and 4.10. The points have been calculated for
axisymmetric shapes.

12 T T T T T T
O—
O%é. [e]
10 M ® —
o !
2 ya
& /D/B O FINITE CYLINDER
w o © TOUCHING SPHERES
= 06— P O OBLATE SPHEROID ]
= P ® PROLATE SPHEROID
S P ® THIN DISK
3 g4}, SLENDER BODIES a CUBE ]
5|7 Eq. (4-57) A HEMISPHERE
© X INTERSECTING -
SPHERES
02— -
0 | ] | | | |
0 02 04 06 08 10 12 14

PERIMETER—EQUIVALENT FACTOR X

F1G. 4.13  Correlation for conductance factor of axisymmetric particles in stagnant media
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For needle-like bodies an electrostatic slender body theory is available (M4)
which yields

koA/% = 2nL/[In(4E) — 1]. (4-57)

Comparison with the conductance for cylinders indicates that Eq. (4-57) is
accurate within 5% for E > 10.

For shapes whose boundaries are not simply described in a single coordinate
system, numerical solution of Eq. (4-54) is required. However, it is possible to
provide upper and lower bounds for the conductance (P8) in much the same
way as for the drag. A lower bound for an arbitrary particle is the conductance
of the sphere of the same volume, i.e.,

koA/Z > 2nd,. (4-58)

Another lower bound is given by

koA/D = 8/ A/, (4-59)
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where A, is the area of the maximum orthogonal projection of the body onto
a plane. The equality is achieved for a disk. An upper bound is given by the
conductance of a shape circumscribing the particle, spheres and spheroids
being frequently used. More precise bounds can be obtained with extra effort
(P1, P8).

2. Creeping Flow

a. Particles of Arbitrary Shape For Pe — 0, an asymptotic solution for a
particle of arbitrary shape has been obtained using matched asymptotic ex-
pansions (B6). To first order in velocity, the solution is

k 1 (koA\U
e é;<?>§. (4-60)

The effect of flow depends solely on a Peclet number formed using the con-
ductance in a stagnant medium, k,A4/%, as the characteristic length. Equation
(4-60) has wider generality; it is valid for a fluid or solid particle of any shape
at any Re so long as Pe — 0 and the stream far from the particle is uniform.
This expression gives a good prediction of the conductance ratio for k/k, < 1.2.
Equation (3-45) is the special case of Eq. (4-60) for spheres. The next term in
the series expansion depends explicitly upon the shape and the orientation of
the particle.

b. Spheroids For creeping flow at finite Pe, Eq. (4-51) has been solved
numerically for oblate and prolate spheroids of axis ratio 0.2 (M1). Solutions
were obtained up to Pe = 70 with equatorial diameter as characteristic length
in both Pe and Sh. An asymptotic solution for Pe — oo has also been obtained
(S3) for spheroids of any aspect ratio using the thin concentration boundary
layer approach (see Chapter 1). With the equatorial diameter as characteristic
length, this solution is

Sh = 0.991K(Pe)!/3, (4-61)

where K is plotted in Fig. 4.14. For oblate spheroids the following formula
holds asymptotically:

K = 4E/3n)'*  (E-0). (4-62)
The corresponding asymptotic formula for prolate spheroids is
4/4\3
K = —<§> [Eln2E]" Y3 (E — o0). (4-63)
bis
Equations (4-62) and (4-63) yield good predictions for E < 0.1 and E > 10,

respectively.

The asymptotic formulae, Egs. (4-62) and (4-63), predict that K — 0 at the
respective limits. However, Sh does not go to zero because the assumption
of a thin concentration boundary layer breaks down for extreme values of E.
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It was assumed that the concentration boundary layer was thin relative to the
shorter axis of the spheroid. The order of magnitude of the boundary layer
thickness can be approximated by the thickness ¢ of a fictitious film

0= 9/k. (4-64)
Combining Eqs. (4-64) and (4-61) yields
Slacc K1 Pe™ 13, (4-65)
For the oblate spheroid
dla oc (EPe)~ 13, (4-66)

and thus the analysis leading to Eq. (4-62) applies only if E Pe — co. Similarly
for the prolate spheroid the analysis leading to Eq. (4-63) applies only if
Pe/E — 0.

The asymptotic solution can be recast in a variety of forms using different
characteristic lengths. Pasternak and Gauvin (P2) proposed a length which is
useful at higher Re (see Chapter 6):

surface area of particle

L'= - . : 4-67
maximum perimeter projected on a plane normal to the flow (4-67)

If we denote the Sherwood and Peclet numbers based on this length by primes,
Eq. (4-61) becomes

Sh' = 0.991K'(Pe)'/3, (4-68)
where K' is plotted in Fig. 4.14.
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The correlation presented earlier for spheres, Eq. (3-60), suggests the following
form for spheroids

Sh = (Shy/2) + [(Sho/2)® + K3 Pe]'/2. (4-69)
With K-values from Fig. 4.14 and Sh, derived from Table 4.2, Eq. (4-69) predicts
Sh within 10%, of the numerical values of Masliyah and Epstein (M1) for

Pe < 70 and E = 0.2 for oblate spheroids and E = 5 for prolate spheroids.
The analogous correlation with L’ as the characteristic length is

Sh’ = (Shy'/2) + [(Shy'/2)® + (K')* Pe]'. (4-70)

c. Other Shapes Flow normal to an infinite cylinder at low Re and Pe has
been treated by the method of matched asymptotic expansions (H5). The first
two terms in the expansion are

Sh = 1 -

(4-71)

where y is Euler’s constant. The first term represents transfer from a line source
into a uniform stream. The coefficient a5, a function of Sc, must be evaluated
numerically. It increases with increasing Sc from zero at Sc =0 to 1.38 at
Sc = 0.72. Experimental data for heat transfer from fine wires to air (C4) agree
well with Eq. (4-71) for Re < 0.4.

For flow parallel to a cylinder the rate of mass or heat transfer decreases
with axial distance. Far from the leading end, the transfer at low Pe may be
considered as transfer from a line source into a uniform stream and the local

Sherwood number becomes

4
Sh=— —— (4-72)

(1)
dPe /

Near the leading end a more complex analysis is necessary (B3).

It would seem that no theoretical calculations have been made for shapes
other than spheroids. In addition, no experimental measurements have been
reported for shapes other than spheres or circular cylinders in creeping flow.
Equation (4-60) is useful for cases in which Pe is small.

B. TRANSFER WITH VARIABLE PARTICLE CONCENTRATION

The variation of particle concentration with time has been determined only
for quasi-steady external resistance in two cases.

1. Negligible Internal Resistance
For a particle of arbitrary shape a mass balance yields

VdF/dt = (kA/H)(1 — F), (4-73)
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subject to the initial condition

F=0 at t=0. (4-74)
Solution yields the fractional approach to equilibrium as
F=1—exp[—(kA/HV)t]. (4-75)
If the characteristic length is taken as
d./)2 =3V/A, (4-76)

Eq. (4-75) can be rewritten as
F=1—exp(—3Bir,), (4-77)

where Bi = kd /2% ,H and t, = 41%,/d.”> are the Biot and Fourier numbers.
Equation (4-75) is expected to apply when Bi < 0.1.

2. Comparable Resistance in Each Phase

Diffusion within a solid particle with convection at the boundary is described
by

0c, /0T, = (V') ¢, (4-78)
At the surface
dc,/0n = —Bic, (4-79)

where n is a coordinate normal to the particle surface. These equations have
been solved to yield ¢, as a function of position and time for simple geometries:
spheres (see Chapter 3), semi-infinite slabs, and infinite cylinders which can
be described using a single coordinate (L1, S2). Values of ¢, as a function of
position and time for certain two- and three-dimensional shapes can be con-
structed from these simple cases. The basic requirement is that the boundaries
must be described by constant values of the coordinate parameters used in
the one-dimensional solutions. For example, the concentration history of rec-
tangular parallelepipeds and finite cylinders can be determined in this way.
Luikov (L1) outlines the method and gives equations for F derived from volume
integration of ¢,.

The time variation of concentration at the center and at the foci of prolate
spheroids has been calculated for negligible external resistance, Bi — oo (H2).
These appear to be the only calculations for shapes other than those mentioned
above.
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Chapter 5

Spheres at Higher Reynolds Numbers

1. INTRODUCTION

Analytic solutions for flow around and transfer from rigid and fluid spheres
are effectively limited to Re < 1 as discussed in Chapter 3. Phenomena occur-
ring at Reynolds numbers beyond this range are discussed in the present
chapter. In the absence of analytic results, sources of information include
experimental observations, numerical solutions, and boundary-layer approxi-
mations. At intermediate Reynolds numbers when flow is steady and axisym-
metric, numerical solutions give more information than can be obtained
experimentally. Once flow becomes unsteady, complete calculation of the flow
field and of the resistance to heat and mass transfer is no longer feasible.
Description is then based primarily on experimental results, with additional
information from boundary layer theory.

II. RIGID SPHERES

A. FLuiD MECHANICS
1. Theoretical Approaches

a. Numerical Solution of Governing Equations For numerical solution of
the Navier-Stokes and continuity equations in axisymmetric flow, it is useful to
introduce the dimensionless stream function, W, and vorticity, Z = {a/U (see
Chapter 1). The Navier—Stokes equation for steady flow becomes

E*Y = ZRsin( (5-1)
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and

5]

wo(  z \ ol Z \ 26
30 ~ == =)= = (ZR i
¢R 59<R sin 0> 60 (3R<R sin 9> Re (ZRsin 0), (5-2)

where

s_ 0 ,sin0c( 1 2
T OR* T R* 00\sin000

> and R =7/a. (5-3)

The boundary conditions for a sphere of radius a are:

(a) at 0 =0and r: Y=272=0, (5-4)
() at R=1: W=0; 0¥0R=0; Z=E¥/sin6, (5-5)
(c) at R — oo: W/R? - $sin?0; Z - 0. (5-6)

Useful results have been obtained by solving finite-difference equations ob-
tained from Egs. (5-1) and (5-2) by Taylor-series expansion. These algebraic
equations are solved by iteration to give ¥ and Z at a number of discrete
points forming the nodes of a grid. Because W and Z vary most rapidly near
the particle surface, the intervals in the grid are commonly taken to increase
exponentially with R. The outer boundary condition, Eq. (5-6), is satisfied on
some outer envelope; care is required to ensure that this is sufficiently remote
from the particle (L8). The basic finite-difference scheme was developed by
Jenson (J1), but the grid used was too coarse to give accurate results. Subse-
quent studies (H1, L5, L8, I1, M2, W9) have used the same technique with
digital computers to give accurate results. The results of the various workers
generally agree closely.

An alternative approach is to solve the time-dependent problem in which
the development of the flow is calculated from some arbitrary initial state.
Eq. (5-1) is unchanged, but d(ZR sin 6)/0t* must be added to the left side of
Eq. (5-2), where

t* = tU/a (5-7)

is a dimensionless time. The usual initial condition is an “impulsive start,” in
which there is no relative motion for t* < 0, while the relative velocity between
particle and fluid is constant for * > 0. Solution is continued until the flow
is effectively steady. This method sometimes requires less computation than
the iterative approach. Rimon and Cheng (R8) and Rafique (R1) have obtained
results by this method. However, the former may be unreliable (M4, R1) due
to use of a different condition at R — oo which makes the solution sensitive
to the outer boundary of numerical calculation.
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Dennis and Walker (D3) expanded ‘¥ and Z as a series of Legendre functions
in the position coordinates. Equations (5-1) and (5-2) were reduced to a set
of ordinary differential equations, solved numerically. This approach is in-
convenient for high Re since the number of terms which must be included
becomes prohibitive. Solutions to the steady equations were obtained for
Re < 40 (D3) and for impulsively started motion for Re < 100 (D4).

Form drag and skin friction drag coefficients are obtained from the numerical
results by integrating the distributions of surface pressure and vorticity:

P .
Cpp = fo JU sin 26 d (5-8)
and
4 n d (:) .
b = 2 fo U<a_0 + cot 0>z;s sin 20 d0. (5-9)

The total drag coefficient, Cp, is the sum of Cpp and Cp.

The validity of the numerical solutions has often been justified by comparison
with experimental values for drag and wake dimensions (see below). However,
these are not very sensitive to detailed changes in the flow field. Seeley et al.
(S7) have given a more precise comparison based on measurements of stream
function and surface vorticity at Re = 300. Near the front stagnation point
significant discrepancies were found, attributable to the relative sparseness of
grid points in this region in all numerical solutions. Agreement was much better
in the vicinity of separation.

b. Boundary Layer Theory Boundary layer theory has been applied to
predict fluid velocities with some success for Re > 3000, but with less success at
lower Re. The main difficulties are that the pressure distribution only follows
potential flow up to about 30° from the front stagnation point, that the bound-
ary layer thickness is only small relative to the sphere radius at very high Re,
and that the tangential velocity in the boundary layer shows a maximum which
is greater than the free stream value. Although an exact solution is available
(F4, S1a) using the potential flow solution as the outer boundary condition, it
gives velocity and vorticity distributions which are only realistic within 20° of
the front stagnation point. Separation is predicted at 109.6° which corresponds
to observed separation at Re = 400, whereas at very high Re where boundary
layer theory should be more reliable, separation occurs at about 81°. A some-
what more reliable treatment was given by Tomotika (T3) using Pohlhausen’s
method [see (Sla)] and an experimental pressure distribution (F1). This ap-
proach predicts separation correctly at 81°, but the predicted velocity distribu-
tion is again only accurate over the leading part of the sphere (S7). A full
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evaluation of boundary layer solutions in the range 300 < Re < 3000 is given
by Seeley et al. (S7).

For Re < 100 the pressure distribution departs from the ideal distribution
even over the leading surface. This is because the boundary layer thickness is
too large for conventional boundary layer theory to be applicable. Gluckman
et al. (GB) attempted to overcome this limitation by a modified boundary layer
theory accounting for the effect of the displacement thickness on the outer
potential flow and by allowing for a pressure gradient across the boundary
layer. Their predictions for the separation point are shown in Fig. 5.6 below.
Generally the wake size is overestimated. However, the dependence of 6, on Re
shows roughly the right form and the approach warrants further development.

2. Development of Flow Field with Reynolds Number

a. Unseparated Flow (1 < Re < 20) As shown in Chapter 3, steady flow
past spheres has fore-and-aft symmetry only in the limit of zero Reynolds
number. Asymmetry becomes progressively more marked as Re increases.
Figures 5.1 and 5.2 show streamlines and vorticity contours calculated numeri-
cally (M2). For Re = 1, asymmetry is most apparent in the vorticity distribution.
The surface vorticity has a maximum forward of the equator (Fig. 5.3), while
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F1G. 5.1  Streamlines for flow past a spherc. Numerical results of Masliyah (M2). Flow from right
to left. Values of W indicated. (a) Re = 1.0; (b) Re = 10; (c) Re = 50; (d) Re = 100.
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Fi16. 5.2 Vorticity contours for flow past a sphere. Numerical results of Masliyah (M2). Flow
from right to left. Values of Z indicated. (a) Re = 1.0; (b) Re = 10; (c) Re = 50 (d) Re = 100.
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contours remote from the body (Fig. 5.2) show convection of vorticity down-
stream. By Re = 10, asymmetry is also apparent in the streamlines (Fig. 5.1)
while the position of the maximum surface vorticity has moved further forward
(Fig. 5.3). The excess modified surface pressure shows some recovery at the
rear (Fig. 5.4).
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FiG. 5.4 Dimensionless excess modificd pressure at surface of sphere. Numerical results of Woo
(W9). (Note different scale for Re = 1.0 curve.)
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b.  Onset of Separation (Re =20) Flow separation is indicated by a change
in the sign of the vorticity and first occurs at the rear stagnation point. The
precise Re at which recirculation begins has been the subject of debate [e.g.,
see (G3)]. Some experimental and numerical results (N1, N7, R8) suggest
separation at Re = 10, but this evidence is questionable (L8, M5). Taneda (T2)
gave the onset of wake formation as Re = 24, but the difficulty of observing a
very small eddy probably makes this figure slightly high. By extrapolating
observed wake lengths to zero, Kalra and Uhlherr (K2) concluded that separa-
tion first occurs at Re = 20, in close agreement with the most reliable numerical
solutions (D3, L5, L8, M2, W9). Drag determinations also indicate a change in
flow regime at Re = 20 (P7). The best estimate for the onset of recirculation
is therefore Re = 20.

c. Steady Wake Region (20 < Re < 130) As Re increases beyond 20, the
separation ring moves forward so that the attached recirculating wake widens
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and lengthens. The outer streamlines also curve less and vorticity is convected
further downstream. Development of the wake is evident in photographs of
flow past a rigid sphere (T2) reproduced in Fig. 5.5. The wake changes from a
convex to a concave shape at Re = 35 (N1).

The dimensions of the attached wake are shown in Figs. 5.6, 5.7, and 5.8.
The various numerical solutions agree closely with flow visualization results
of Taneda (T2), although other workers (K2) report separation slightly closer
to the rear. The separation angle, measured in degrees from the front stagnation
point, is well approximated by

0, = 180 — 42.5[In(Re/20)]°#33 (20 < Re < 400). (5-10)

Predicted and observed wake lengths and wake volumes agree closely for
Re = 100 (Figs. 5.7 and 5.8). For Re > 100, the excess pressure over the leading
surface of the sphere approaches that for an ideal fluid, but there is little recovery
in the wake. As Re increases, the importance of skin friction decreases relative
to form drag.

d. Onset of Wake Instability (130 < Re < 400) As Re is increased beyond
about 130, diffusion and convection of vorticity no longer keep pace with
vorticity generation. Instead, discrete pockets of vorticity begin to be shed
from the wake. The Re at which vortex shedding begins is often called the
“lower critical Reynolds number,” although the transition is much more gradual
than this label would imply.

At Re = 130, a weak long-period oscillation appears in the tip of the wake
(T2). Its amplitude increases with Re, but the flow behind the attached wake
remains laminar to Re above 200. The amplitude of oscillation at the tip
reaches 109 of the sphere diameter at Re = 270 (G10). At about this Re, large
vortices, associated with pulsations of the fluid circulating in the wake, periodi-
cally form and move downstream (S6). Vortex shedding appears to result from
flow instability, originating in the free surface layer and moving downstream
to affect the position of the wake tip (R11, R12, S6).

The relative importance of form drag continues to increase in this region
with skin friction becoming inferior once Re > 150 (M2), and Cj, begins to
level out. The separation angle is still given by Eq. (5-10).

e. High Subcritical Reynolds Number Range (400 < Re < 3.5 x 10°) Un-
steadiness and asymmetry, originating in wake instability and shedding, limit
the range of applicability of numerical results, based as they are on axisym-
metric and often steady flow equations (see above). Predictions of the separation
angle (Fig. 5.6) appear to be reliable to higher Re than predictions of wake
length (Fig. 5.7) or wake volume (Fig. 5.8). This suggests that unsteadiness
downstream has little effect upstream near the particle surface, at least for
rigidly supported or heavy particles, and this has been confirmed by flow
visualization (A4, S6). The surface vorticity distribution in the wake (see curve
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FI1G. 5.5 Photographs of Taneda (T2) showing the development of the attached wake behind
rigid spheres. (a) Re = 17.9; (b) Re = 26.8; (c) Re = 37.7; (d) Re = 73.6; () Re = 118; (f) Re = 133.
(Reproduced with permission.)
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for Re = 400 in Fig. 5.3) has been interpreted as indicating secondary eddies,
but these do not appear to have been observed experimentally.

As Re increases beyond about 400, vortices are shed as a regular succession
of loops from alternate sides of a plane which precesses slowly about the axis
(A4, K6, M11). As shown in Fig. 5.9, the Strouhal number Sr for vortex shed-
ding increases. At the same time, the point at which the detached shear layer
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F1G. 5.8 Volume of closed wake behind a sphere. Measurements of Kalra and Uhlherr (K2)
and numerical predictions of Woo (W9).
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10°

rolls up to form shed vortices moves closer to the sphere. Shed loops progres-
sively lose their character (A4) and may combine to form “vortex balls™ (M11).
By Re = 1300, the wake shows three-dimensional rotation, while velocities near
the rear surface of the sphere fluctuate in direction and magnitude due to
vortex shedding (S6). At Re = 6000, Sr reaches a maximum, and the point at
which the shear layer rolls up approaches the sphere surface (A4). From here
until the critical transition (Re = 3 x 10°, see below), separation occurs at a
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F16. 5.10 Dimensionless pressure at surface of sphere: (a) Numerical results of Woo (W9):
Re =400; (b)-(d) Measurements of Achenbach (A3): (b) Re = 1.62 x 10°; (c) Re = 3.18 x 10%;
(d) Re = 1.14 x 108

point which rotates around the sphere at the shedding frequency (A4). The
wake may appear like a pair of helical vortex filaments (F2, K6), although the
structure cannot be so regular in detail (A4). Hot-wire measurements in the
near-wake show strong periodicity right up to the critical transition, with Sr,
ranging between 0.18 and 0.2, virtually independent of Re (A4, C3, C7, K3,
K6, M13). Méller (M11) reported Sr = 0.42 for “vortex balls,” but this is in-
consistent with subsequent measurements. Because of the periodicity, the wake
should not be considered turbulent. As discussed later, wake shedding can
cause appreciable fluctuations in the motion of freely falling particles, thereby
affecting mean drag.

Figure 5.10 shows the surface pressure distribution at different values of Re.
The distribution changes remarkably little between Re = 400 and 1.6 x 10°.
Since form drag now predominates as noted above, C, is also insensitive to Re.
For 750 < Re < 3.5 x 10°, the “Newton’s law” range," Cy, varies by only +13%

" Newton proposed a law equivalent to Cp = 0.5 (N4), and confirmed this experimentally by
timing the fall of spheres from the dome of St. Paul’s Cathedral (N5). However, his explanation
was based on ideas which bear little resemblance to current concepts of fluid mechanics.
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about a value of 0.445. An alternative label for this range, the “turbulent flow”
range, is inaccurate and misleading. The drag force in this and other ranges of
Re is treated in sections 3 and 4.

Throughout the Newton’s law range, the separation ring continues to move
forward as Re increases. At Re = 5000, separation moves in front of the equator
towards a limit of 81-83° (A3, F1, M8, R4). Direct observations of the separa-
tion ring are scant for 800 < Re < 6 x 10*. Several workers [e.g., B14, L10,
L13, N3, W1) have determined the point of minimum heat or mass transfer
in this range, but, as discussed below, this occurs aft of separation. Seeley et al.
(S7) report some flow visualization results, but they found separation closer to
the rear than observed by other workers, perhaps due to wall effects. As shown
in Fig. 5.6, a realistic interpolation is provided by

0, =178 +275Re %37 (400 < Re < 3 x 10°). (5-11)

. Critical Transition and Supercritical Flow (Re > 3.5 x 10°) As Re in-
creases beyond 2 x 10°, changes in the flow pattern occur which are so marked
that they are termed “critical transition.” Figure 5.11 shows the separation point
in this range determined from direct visualization (R3) and inferred from pres-
sure and skin friction measurements (A3). On increasing Re above 2 x 103,
separation begins to move aft, while fluctuations in the position of the separa-
tion point and in pressure and skin friction become more marked. The detached
free shear layer becomes turbulent soon after separation and, for Re = 2.8 x 10°,
reattaches to the surface (A3). As a result of enhanced momentum transfer, the
turbulent boundary layer 1s able to withstand the adverse pressure gradient
longer without separation. Final separation therefore shifts abruptly down-
stream. In the same range the surface pressure minimum decreases towards the
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FiG. 5.11  Position of boundary layer separation and laminar/turbulent transition in the critical
region and beyond. Experimental results of Achenbach (A3) and Raithby and Eckert (R3).
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potential flow value, and more pressure is recovered in the wake (see Fig. 5.10).
Similar changes can be induced at lower Re by “tripping” the boundary layer
with an irregularity such as a fine wire attached to the sphere surface [e.g., see
(MS8)].

As a result of the changes in pressure distribution, form drag drops sharply
in the critical range. The drag coefficient Cp, falls from 0.5 at Re = 2 x 10° to
0.07 at Re =4 x 105 (see Fig. 5.12), while the proportion of the total drag
resulting from skin friction rises from 1.3 to 12.5% (A3). Critical transition is
sensitive to free stream turbulence as discussed in Chapter 10. Thus drag
measurements in this range show considerable scatter (A3, MS). The results
least affected by turbulence (A3) appear to be those of Millikan and Klein
(M10) who determined the drag on a sphere towed by an aircraft. Definition
of a “critical Reynolds number” is arbitrary; for convenience, it is taken as the
Re at which Cp, reaches 0.3 (C6, D7), Re, = 3.65 x 10° for turbulence-free flow
(M10).

Above the critical range, further increases in Re cause the “separation bubble”
between laminar separation and turbulent reattachment to shrink, although the
positions of laminar/turbulent transition and final separation remain essentially
fixed (see Fig. 5.11). For Re = 10°, transition from laminar to turbulent flow
occurs without a separation bubble (A3). At still higher Re, both transition
and separation move forward on the sphere. As the pressure recovery in the
wake declines, Cy, increases slightly and tends towards a constant value of
approximately 0.19 at very high Re (A3). Appreciable fluctuating lift forces
occur in the supercritical range, with an r.m.s. lift coefficient of approximately
0.06, accompanied by fluctuating moments (W6). The fluctuations appear to
be due to shedding of large turbulent eddies, with corresponding random
changes in wake configuration.
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Fi1G. 5.12 Drag coefficient of a sphere as a function of Reynolds number (standard drag curve).
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The conventional correlation for the drag on a sphere in steady motion is

presented as a graph, see Fig. 5.12, called the “standard drag curve”, where Cp,
is plotted as a function of Re. Many empirical or semiempirical equations have
been proposed to approximate this curve. Some of the more popular are listed
in Table 5.1. None of these correlations appears to consider all available data.

TABLE 5.1

Relationships for Sphere Drag

Range of
deviation
Author(s) Range Relationship for Cp, in Cp (%)
1. Schiller and 24 0.687
Nauman (S1) Re < 800 Re (1 +0.15Re ) +5to —4
4
2. Lapple (L3) Re < 1000 2o (1 +0125 Re®72) +5t0 -8
3. Langmuir and 24 (1 + 0.197 Re®*?
Blodgett (L2) | <Re <100 Re  +26 x 10-*Re"*) +6t0 +1
4. Allen (A5) (a) 2 < Re < 500 10Re ™12 —8to —52
(b) 1 < Re < 1000 30Re™ %625 +70to0 —15
5. Gilbert et al. 0.2 < Re < 2000 0.48 + 28 Re 085 +24t0 —11
(G7)
6. Kurten et al. 0.1 < Re < 4000 028 6 21 Tto —6
(Kg) Ll < Re < . + W + R_e +7to —
7. Abraham (A2) Re < 6000 0.2924(1 + 9.06 Re ™ 1/2)? +9to —6
" 5.48 24
8. IThme et al. (I1) Re < 10 0.36-#—W+-Rfe +10to —10
9. Rumpf (a) Re <10 2 + 24/Re —3to =5
[see (K8)] (b) Re < 100 1 + 24/Re +14to —20
(c) Re < 10° 0.5 + 24/Re +30to —39
10.  Clift and s 24 0.15 Re®-687 4
Gauvin (C6) Re <3 x 10 -l—i—é(l + 0.15Re ) +6to —
+0.42/(1 + 425 x 10*Re™110)
5 4 24
11. Brauer (Bl1) Re <3 x 10 0.40 + Rl + Re +20to —18
12, Tanaka and Re < 7 x 10* log,o Cp = a;w? + a,w + ay +6to —9

Tinoya (T1)

where w = log,, Re

and a,, a,, and aj are given for

7 intervals of Re
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Table 5.2 gives a new correlation, based on a critical examination of available
data for spheres (N6). Results in which wall effects, compressibility effects,
noncontinuum effects, support interference, etc. are significant have been ex-
cluded. The whole range of Re has been divided into 10 subintervals, with a
distinct correlation for each interval. Adjacent equations for Cp, match within
194 at the boundaries between subintervals, but the piecewise fit shows slight
gradient discontinuities there. The Re = 20 boundary corresponds to onset of
wake formation as discussed above, the remaining boundaries being chosen
for convenience.

For Re < 0.01, the Oseen result is reliable (see Chapter 3). Equation B was
originally proposed by Beard (B7) as a fit to two specific sets of data (B3, P8)

TABLE 5.2¢°

Recommended Drag Correlations: Standard Drag Curve, w = log;, Re

Range Correlation
(A) Re <001 Cp = 3/16 + 24/Re
CpRe
(B) 0.01 <Re <20 logm[ ';4 - 1} = —0.881 + 0.82w — 0.05w?

24
ie, Cp = Re [1 + 0.1315Rel0-827 005w

CpRe
(C) 20<Re<260 logiol —;— =

1:‘ = —0.7133 4 0.6305w

24
ie, Cp= Re [1 + 0.1935Re%3°°]
e

(D) 260 < Re < 1500 10810 Cp = 16435 — 1.1242w + 0.1558w?

(E) 15x10*<Re<12x10* log,o Cp = —2.4571 + 2.5558w — 0.9295w? + 0.1049w
(F) 12 x10* <Re <44 x 10* log,oCp, = —1.9181 + 0.6370w — 0.0636w?

(G) 44 x 10* < Re < 3.38 x 10° log,o Cp = —4.3390 + 1.5809w — 0.1546w>

(H) 3.38 x 10° < Re < 4 x 10° Cp = 29.78 — 5.3w

() 4 x10°<Re< 10° Cp = 0.1w — 0.49

(J) 10°<Re Cp=0.19 — 8 x 10%Re

“Sources of data: Achenbach (A3); Arnold (A7); Bailey and Hiatt (B1); Beard and Pruppacher
(BS); Davies (D2); Dennis and Walker (D3); Goin and Lawrence (G9); Goldburg and Florsheim
(G10); Gunn and Kinzer (G14); Hoerner (H14); Thme er al. (I1); LeClair (L5); Liebster (L12);
Masliyah (M2); Maxworthy (M7, M8); Millikan and Klein (M10); Méller (M11); Pettyjohn and
Christiansen (P4); Pruppacher and Steinberger (P8); Rafique (R1); Rimon and Cheng (R8); Roos
and Willmarth (R10); Schmiedel (S2); Shakespear (S9); Vlajinac and Covert (V3); Wieselsberger
(W4); Woo (W9).

? Number of data points: C—149; D—74; E—61; F—52; G—142.
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and agrees closely with all reliable experimental and numerical data in its
range. Correlations C to G were obtained by least-squares regression. Cor-
relation H fits the data of Millikan and Klein (M10) while I and J correspond
to Achenbach’s results (A3). The correlations in Table 5.2 may be regarded
as the best available approximation to the standard drag curve. The standard
curve, calculated from these equations, is shown in Fig. 5.12.

The recommended standard drag curve of Fig. 5.12 differs from the curve
originally given by Lapple and Shepherd (L4) and widely reproduced [e.g.,
(P3)]. They underestimate Cp, by up to 5% for Re < 100 and also place the
critical Re too low. The revised curve of Bailey (B2) is in close agreement with
the one recommended here except near the critical transition where there is
considerable spread in the measurements and he used only a single set of free-
flight data. Deviations of other empirical relations from the recommended ones
are listed in Table 5.1. The high errors for Allen’s equations are noteworthy
in view of their common use [e.g., (G11)] for calculating terminal settling
velocities.

4. Terminal Velocity in Free Fall or Rise

For a particle moving with steady terminal velocity Ur in a gravitational
field, the drag force balances the difference between the weight and buoyancy:

Fp = gAp(n/6)d°, (5-12)
so that the drag coefficient becomes
Cp = 4Ap gd/3p Uy* = 4p Ap gd® /3> Re;?, (5-13)
where Rep is the Reynolds number at the terminal velocity. As noted above,
Cp = 0.445 for 750 < Re < 3.5 x 10, so that for this range

Uy = 1.73(gdAp/p)'?  or  Rey = L73NY? (750 < Re < 3.5 x 10%)
(5-14)

where

Np = CpReq? = 4pAp gd® /312 (5-15)

The term Ny, is sometimes called the “Best number.”" An analytic expression

for the terminal velocity corresponding to Stokes’ law is also available at low
Re [Eq. (3-18)]. Outside these ranges of Re, or when more accurate predictions
are required, Cp, vs. Re relationships are inconvenient for determining terminal
velocities since both groups involve U;. Hence an iterative procedure is needed.
It is more convenient to express Re as a function of Ny, the latter being in-
dependent of U. Empirical correlations of this form, based on the same data

" The group nNp/8 is often termed the “Archimedes number,” while 3N,,/4 is sometimes called
the Galileo number or Archimedes number.
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as in Table 5.2, are presented in Table 5.3. Adjacent correlations agree within
19 at the arbitrary boundaries of the ranges. Values of Re calculated from the
correlations in Tables 5.2 and 5.3 agree within 49/. Davies (D2) gave similar
correlations for N, < 4.5 x 107, Re < 10*. Although his expressions are based
on pre-1945 data, they differ by at most 5%, from the results in Table 5.3. Re;
is tabulated as a function of N} in Appendix A.

TABLE 5.3

Correlations for Re as a Function of N, W = log,, N,

Range Correlation

(A) Np<73;Re<237 Re = Np/24 — 1.7569 x 107 *Np? + 69252 x 107N p3
— 23027 x 107 1°N,*

(B) 73 < N, <580;237 <Re<122 log,,Re=—17095+ 1.33438W — 0.11591 W2

(C) 580 < Np < 1.55x107; log;oRe = —1.81391 + 1.34671W — 0.12427W*>
122 < Re < 6.35 x 10° + 0.006344 W3

(D) 1.55%x 107 < N, <5 x 10'°; log, Re = 5.33283 — 1.21728 W + 0.19007 W *
6.35 x 10° < Re <3 x 10° — 0.007005 W

It is also useful to define a dimensionless terminal velocity:
Ny = Rey/Cp, = 3p* U3 /4Ap g (5-16)

Here NY/* is plotted versus N} in Fig. 5.13 and tabulated in Appendix B.
This tabulation is particularly convenient for estimation of terminal velocities
or diameters since NJ* is independent of U; and proportional to d, while
N{/? is proportional to Uy and independent of d.

Figure 5.13 shows that there is a range, 2.3 x 10° < NL? < 3.8 x 10, for
which three terminal velocities are possible. This range is of practical interest
for meteorological balloons (S4) and large hailstones (B8, W5). The intermediate
value, portion AB of the curve, corresponds to the critical range. The terminal
velocity corresponding to this part of the curve is unstable in the sense that, if
Uy increases, the drag decreases. Thus terminal velocities in the critical range
are not observed experimentally unless there is significant free stream turbu-
lence (see Chapter 10). Instead, a sphere can show two stable terminal velocities,
and may even alternate between them giving a mean velocity close to the
unstable value (M1). The curve beyond B represents supercritical motion.

Fluctuations in speed and direction also occur in the subcritical range (down
to Re = 270) (G10). A sphere shows a rocking motion and follows a zigzag
or spiral trajectory’ in this range (C5, M1, P5) with wavelength about 12d and

¥ Newton encountered this problem in experiments to determine the drag on spheres falling
through liquids (N4).
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FiG. 5.13 Dimensionless terminal velocity (N'/?) for sphere as a function of dimensionless
diameter (Np'/3).

lateral amplitude approximately 0.37d/(1 + 2y) (M1). At least for the lower
Reynolds numbers, this phenomenon is associated with wake-shedding, which
induces secondary motion of the particle at the same frequency.

Variations in vertical velocity are typically 59 of the mean (S10); horizontal
velocities are of the same order and decrease as the density ratio, y = p,/p,
increases (P5, S10). Wandering is enhanced if the center of mass is displaced
from the geometric center of the particle (V2). Secondary motion increases the
mean drag, i.e., a particle undergoing secondary motion tends to have a vertical
terminal velocity less than that calculated from the drag on a fixed sphere
(G10, P35, S10). This retardation appears to become more significant as 7y is
reduced (P5, V2), and to be negligible for Re < 10° (M1). The following cor-
relations are proposed, based on data reported by Sheth® (S10) for 10° < Re <
2x10°and y > 1:

Cp = Cp[1 + 0.13/2.8y — 1)], (5-17)
Ny = Ny[1 —0.2/2.8y — 1)], (5-18)

where the prime denotes the value appropriate to a sphere with density ratio y
in free motion, and C, and N may be calculated from the standard correlations
above. From Eq. (5-18), the terminal velocity is reduced by 3.5%; on reducing y

* Sheth proposed a different correlation which shows anomalous behavour for large .
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from a very large value to nearly unity. In supercritical flow, horizontal motion
is more marked, with erratic changes of speed and direction rather than periodic
motion (M1, M14, S4, S5, W6), resulting from the fluctuating lift noted in
section 2. Secondary motion is more important for nonspherical and fluid
particles, and is discussed further in Chapters 6 and 7.

Figure 5.14 shows terminal velocities of spheres of various densities in air
and water at 20°C calculated from the correlations in Tables 5.2 and 5.3,
incorporating corrections for secondary motion, Eq. (5-18), and slip (see
Chapter 10).
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FI1G. 5.14 Terminal velocities of spheres in air and water at 20°C.

B. HEAT AND MASS TRANSFER
1. Numerical Solutions

For axisymmetric flow the species continuity equation, Eq. (1-38), written
in terms of the dimensionless concentration ¢ and stream function ¥ (see
Chapter 1) is

WO Wop 2R sin0[ 1 0 [, 0 1o, o
i Xop RSO L e @) L G ?) ] (519
GRO0 30 0R~ Pe [RZ aR(R r) T REsma a0 a0 )| B9
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The boundary conditions are

@ at 6=0andr: (-a%’ =0, (5-20)
(b) at R=1: ¢=1, (5-21)
© at Rooc: ¢—0. (5-22)

Since the stream function depends upon Reynolds number, the rate of transfer
will depend upon both Re and Sc except in the limit Re — 0 treated in Chapter 3.
Solutions to Eq. (5-19) have been obtained using the techniques discussed
earlier, ie., finite-difference schemes (A6, D5, 11, M6, W9), solution to the
time-dependent problem (H11), and series expansions (D5).

The local and mean Sherwood numbers are obtained from the numerical
results using the equations

Shyoe = —2(0¢/0R)g = (5-23)

and
1 (= .
Sh =3 fo Shy,. sin 0 d. (5-24)

2. Mechanism of Transfer

Figure 5.15 shows streamlines and concentration contours calculated by
Masliyah and Epstein (M6). Even in creeping flow, Fig. 5.15a, the concentration
contours are not symmetrical. The concentration gradient at the surface, and
thus Sh,, is largest at the front stagnation point and decreases with polar
angle; see also Fig. 3.11. The diffusing species is convected downstream forming
a region of high concentration at the rear (often referred to as a “concentration
wake”) which becomes narrower at higher Peclet number.

We consider the changes which occur at increasing Reynolds number and
at a constant Schmidt number of 0.7, typical of evaporation of liquids into air
or of heat transfer to air (Pr = 0.7). Figure 5.15b shows streamlines and con-
centration contours at Re = 20 where a steady wake first appears. Although
there is no flow separation, a concentration wake is evident downstream from
the sphere. At Re = 100, where separation occurs at § = 126° and a large
recirculating wake exists, the downstream concentration wake has narrowed
and the concentration contours are distorted by the recirculatory flow in the
wake; see Fig. 5.15¢c. The variation of Sh,,. with polar angle 6 for the same Sc
and various Re is shown in Fig. 5.16 (W9). For Re < 20, Sh,,. decreases mono-
tonically from front to rear, but between Re = 30 and 57 a minimum first
appears even though separation occurs for Re > 20. This minimum moves
forward with increasing Re; however, as shown in Fig. 5.16, it occurs aft of the
separation point due to the presence of angular diffusion. The increased Sh,,,



118 5. Spheres at Higher Reynolds Numbers

Concentration Contours —--Streamline

Fi1G. 5.15 Streamlines and concentration contours for flow past a sphere. Numerical results
of Masliyah and Epstein (M6). Flow from right to left. Values of ¥ and ¢ indicated. (a) Creeping
flow, Pe = 70; (b) Re = 20, Sc = 0.7; (c) Re = 100, Sc = 0.7.
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FI1G. 5.16 Local Sherwood number for a sphere with Sc = 0.71. Numerical results of Woo (W9).
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at the rear of the sphere at high Re is caused by the action of the recirculating
wake (M3). Mass transferred from that portion of the sphere covered by the
recirculating wake is ultimately transferred to the external flow by diffusion
across the separating streamline, ¥ = 0. Elements of fluid in the wake near the
separating streamline move away from the sphere losing mass to the external
fluid. On their return toward and over the rear surface of the sphere the con-
centration increases. Thus these wake elements of fluid “carry” mass (or heat)
from the rear of the sphere to the external stream which then carries it away.
Due to the recirculatory motion in the wake, fluid approaching the rear stagna-
tion point does not have zero concentration and the approach velocity is less
than the free stream velocity. Therefore, Sh,,, is lower at the rear than at the
front stagnation point, at least until vortices are shed.

As Re increases further and vortices are shed, the local rate of mass transfer
aft of separation should oscillate. Although no measurements have been made
for spheres, mass transfer oscillations at the shedding frequency have been
observed for cylinders (B9, D6, S12). At higher Re the forward portion of the
sphere approaches boundary layer flow while aft of separation the flow is
complex as discussed above. Figure 5.17 shows experimental values of the
local Nusselt number Nu,, for heat transfer to air at high Re. The vertical
lines on each curve indicate the values of the separation angle. It is clear that
the transfer rate at the rear of the sphere increases more rapidly than that at
the front and that even at very high Re the minimum Nu,, occurs aft of
separation. Also shown in Fig. 5.17 is the thin concentration boundary layer

400 I T T T T

Re
- 67800

N w
o o
o o

LOCAL NUSSELT NUMBER, Nuj.
IS)
o

0 | 1 |1 | |
0 30 60 90 120 150 180
ANGLE, B

F1G. 5.17 Local Nussclt number for heat transfer from a sphere to air (Pr = 0.71). Experimental
results of Galloway and Sage (G1). Dashed lines are predictions of boundary layer theory by Lce
and Barrow (L10).
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F1G. 5.18 Local Nusselt number for heat transfer from a sphere to air (Pr = 0.71). Experimental
results of Xenakis et al. (X1).

theory prediction for the forward portion of the sphere (L10)." The theory,
which predicts that Nu,,, is zero at the separation point, fails due to the neglect
of angular diffusion which becomes increasingly important as the separation
ring is approached. Theoretical predictions lie beneath the data for two reasons:
first, the velocity profile outside the boundary layer differs from that assumed
(S7); second, in an experiment the approaching stream is usually turbulent
(for example, the intensity of turbulence was 1.3% for the data in Fig. 5.17)—see
Chapter 10.

Figure 5.18 shows the only reliable Nu,,, data available near the critical
Reynolds number (X1). Since the data were taken with a side support, there is
some effect on the separation and transition angles. Thus the values of Nu,,
are probably subject to error (R2, R3) although the trend with Re should be
correct. At Re = 0.87 x 10° the Shy,, variation is similar to that shown at
lower Re in Fig. 5.17. At Re = 1.76 x 10° the critical transition has already
occurred, with the separation bubble accounting for the minimum in Nu,
at = 110°. The maximum in Nu,, at 6 = 125° reflects the increased transfer
rate in the attached turbulent boundary layer. The local minimum at 0 = 160°
is due to final separation. These angles do not agree exactly with those in Fig. 5.11
because of the crossflow support and the fact that angular diffusion shifts the

* Several results may be derived from the use of boundary layer theory depending upon the
velocity profile assumed to exist outside the boundary layer. Lee and Barrow (L10) used the velocity
profile of Tomotika (T3) which was, in turn, fitted to the surface pressure data of Fage (F1) at
Re = 157,000. This profile predicts separation at 0 = 81° as noted in Section A.1.
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minima rearward. As Re increases, the rate of transfer over the rear hemisphere
increases more rapidly with Re than the rate over the forward hemisphere
because Nuy,, oc Re®® for a turbulent boundary layer while Nu,,, oc Re®* for
a laminar boundary layer.

We now consider the effect of Schmidt number. At constant Reynolds number,
increasing Sc narrows the concentration wake. Figure 5.19 shows the results
of numerical solutions (H11, W9) for Sh, . at several Re and Sc. As Sc increases
from zero at Re = 100, the local Sherwood number increases, its minimum
value shifting forward toward the separation point. In the limit as Sc — oo,
angular diffusion is negligible and the minimum occurs at the separation point.
Thus determinations of the separation angle from the minimum value of Shy,,
are reliable only for experiments at large Sc. Also shown in Fig. 5.19 are the
data of Frossling (F3) for sublimation of naphthalene spheres in air. Although
the values of Re and Sc do not match exactly, the data and the numerical
solutions agree well.

20

loc

Dataof Frossling (F3) 7

hd Sc=25
L Re=100 Restiet® -
Sc=2.5 -
peslo

LOCAL SHERWOOD NUMBER, Sh

Sc=0
L 8 at Re=100 50 .
0 | | ) 1 & &
0 30 60 90 120 150 180
ANGLE, ©

F1G. 5.19 Local Sherwood number for a sphere: Solid lines are the numerical results of Woo
(W9) and Hatim (H11) at the values of Re and Sc indicated. Points are the data of Frossling (F3)
for sublimation of naphthalene into air.

3. Correlation of Average Sherwood Number

Available numerical solutions for 1 < Re <400 and 0.25 < Sc < 100 (A6,
D5, H11, 11, M6, W9) can be correlated within 3%, by the expression

(Sh — 1)/Sc!/® = [1 + (1/ReSc)]"/3 Re-4! (5-25)
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F1G. 520 Nusselt number for heat transfer from a sphere to air (0.70 < Pr < 0.73). Lines calcu-
lated from Eqgs. A and B of Table 5.4 and Eq. (5-25).

10

The form of Eq. (5-25) was suggested by noting that the first order curvature
corrections to Eqs. (3-47) and (5-35) are near unity and by matching the ex-
pression to the creeping flow result, Eq. (3-49), at Re = 1. Equation (5-25) also
represents the results of the application of the thin concentration boundary
layer approach (Sc — oo) through Eq. (3-46), using numerically calculated
surface vorticities.” Thus the Schmidt number dependence is reliable for any
Sc > 0.25.

Experimental data on heat transfer from spheres to an air stream are shown
in Fig. 5.20. Despite the large number of studies over the years, the amount of
reliable data is limited. The data plotted correspond to a turbulence intensity
less than 3%, negligible effect of natural convection (ie., Gr/Re* < 0.1; see
Chapter 10), rear support or freefloating, wind tunnel area blockage less than
10%, and either a guard heater on the support or a correction for conduction
down the support. Only recently has the effect of support position and guard
heating been appreciated: a side support causes about a 10%; increase in Nu

T Up to Re = 20 there is no difficulty in using the thin concentration boundary layer method
with the calculated surface vorticities. For larger Re two methods of calculating transfer to the wake
were pursued: first, neglect transfer aft of separation; second, consider transfer aft of separation
as if it were a forward stagnation point, i.e., apply the theory starting from 0 = 180° and work
forward to separation. The true value of Sh should lie between these two limits and probably closer
to the first as the discussion in Section B.2 suggests. The limits on Sh for the entire sphere were
within 3%, at Re = 100 and 10% at Re = 400. Equation (5-25) is within 3%, of the values calculated
neglecting transfer aft of separation.
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Fi1G. 521 Heat or mass transfer group for a sphere at high Pr or Sc. Lines calculated from Egs. C
and D of Table 5.4 and Eq. (5-25).

as does the lack of a guard heater (P2, R2). More data are needed, especially
for 200 < Re < 2000 where the available data match poorly with the remaining
results. Comparable experimental data for heat and mass transfer at high Pr
and Sc are shown in Fig. 5.21 with the mass transfer group used in Eq. (5-25)
as the ordinate. The least reliable data here are those for Re > 10*. Equations
correlating the air and high Sc data are given in Table 5.4. All data for 1 < Re <
100 are well correlated by Eq. (5-25). Separate equations are given for the data
in Figs. 5.20 and 5.21. All the data are also correlated by Egs. (E) and (F) of

TABLE 5.4

Correlations for Transfer from Stationary Spheres

Heat transfer to air (Pr = 0.7)—Fig. 5.20
(A) 100 < Re < 4000 Nu =1+ 0.677 Re®*
(B) 4 x 103<Re< 1 x 10° Nu =1+ 0.272Re%>8

Mass transfer at high Sc (Sc > 200)—Fig. 5.21
(C) 100 < Re < 2000 Sh =1+ 0.724 Re®*8 Sct/3
(D) 2x10°<Re<1 x 10° Sh =1 + 0.425Re®*°Sct/3

All data
(E) 100 < Re < 2000 (Sh — 1)/Q Sc'/® = 0.752 Re®472
(F) 2x10*<Re<1 x10° (Sh — 1)/QSc'/® = 0.44 Re'/? + 0.034 Re® 7!

1 1/3
h =1+
where Q ( ReSc>
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Table 5.4, so that these equations are recommended for general use. The 3-power
term in Eq. (F) can be viewed as the contribution from the portion of the sphere
with a laminar boundary layer forward of separation, while the 0.71-power
term corresponds to the section aft of separation. Justification for the latter
power is found from local Sh values as discussed in the next chapter.

4. Spheres in Free Fall or Free Rise

Figures 5.22 and 5.23 present the result of combining the equations in
Table 5.4 with the correlations of Table 5.3 to predict heat transfer for spheres
falling in air at 20°C and mass transfer for spheres in water at 20°C with Sc = 10°.
The decrease in terminal velocity due to secondary motion has not been taken
into account because the transfer rate depends on the overall relative velocity
between the sphere and the fluid, not the vertical velocity component alone.

10"
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FIG. 5.22 Mass transfer coefficients for a sphere in free rise (p, < p) or free fall (p, > p) in water
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The straight line for Ap = 0 represents diffusion in a stagnant medium [Eq.
(3-44)]. In air spheres with diameters less than about 30 um have transfer rates
essentially equal to those in a stagnant medium, while in water the diameter
for this to occur must be less than about 3 um. In water the mass transfer
coefficient is only weakly dependent on diameter, a prediction which has been
verified experimentally (C2). For free fall in air, the transfer coefficient exhibits
a larger decrease with diameter. The following expressions fit the predictions
of Figs. 5.22 and 5.23 over the ranges indicated:

for free fall or rise in water with d > 100 ym:
k(Sc)*'® = 0.45(Ap/p)°3g°3v0-4d 1, (5-26)
for free fall in air with d > 300 ym:

k(Sc)?'? = 0.83(Ap/p)!/4g /+y112d =114, (5-27)"

1. FLUID SPHERES

A. INTRODUCTION AND GENERAL CONSIDERATIONS

As noted in Chapter 2, bubbles and drops remain nearly spherical at moder-
ate Reynolds numbers (e.g., at Re = 500) if surface tension forces are sufficiently
strong. For drops and bubbles rising or falling freely in systems of practical
importance, significant deformations from the spherical occur for all Re > 600
(see Fig. 2.5). Hence the range of Re covered in this section, roughly 1 < Re <
600, is more restricted than that considered in Section II for solid spheres.
Steady motion of deformed drops and bubbles at all Re is treated in Chapters 7
and 8.

When a fluid sphere exhibits little internal circulation, either because of high
Kk = u,/u or because of surface contaminants, the external flow is indistinguish-
able from that around a solid sphere at the same Re. For example, for water
drops in air, a plot of C;, versus Re follows closely the curve for rigid spheres
up to a Reynolds number of 200, corresponding to a particle diameter of
approximately 0.85 mm (B5). In fact, many of the experimental points used in
Section II to determine the “standard drag curve” refer to spherical drops in
gas streams, where high values of k ensure negligible internal circulation.

Here we consider three theoretical approaches. As for rigid spheres, numeri-
cal solutions of the complete Navier—Stokes and transfer equations provide use-
ful quantitative and qualitative information at intermediate Reynolds numbers
(typically Re < 300). More limited success has been achieved with approximate
techniques based on Galerkin’s method. Boundary layer solutions have also
been devised for Re > 50. Numerical solutions give the most complete and

T These equations can be used for heat transfer by replacing Sc by Pr and k by h/pC,.
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probably the most reliable results, but Galerkin’s method has the advantage
of giving analytic expressions. The boundary layer theories also lead to analytic
forms for the drag coefficient and Sherwood (or Nusselt) number.

B. FLuib MECHANICS
1. Numerical Solutions

Numerical solutions of the flow around and inside fluid spheres are again
based on the finite difference forms of Egs. (5-1) and (5-2) (B10, H6, L5, L9).
The necessity of solving for both internal and external flows introduces com-
plications not present for rigid spheres. The boundary conditions are those
described in Chapter 3 for the Hadamard-Rybczynski solution; i.e., the internal
and external tangential fluid velocities and shear stresses are matched at R = 1
(r = a), while Eq. (5-6) applies as R — o0. Most reported results refer to the
limits in which x is either very small (B10, H5, H7, L7) or large (L9). For inter-
mediate x, solution is more difficult because of the coupling between internal
and external flows required by the surface boundary conditions, and only
limited results have been published (A1, R7). Details of the numerical techniques
themselves are available (L5, R7).

The major qualitative results of the numerical work are as follows:

a. Wake Formation Internal circulation delays the onset of flow separa-
tion and wake formation in the external fluid. This is not surprising, since a
well-known (if rarely used) method of delaying boundary layer separation on
solid bodies is to cause the surface to move in the same direction as the passing
fluid (S1a). Table 5.5 shows the increase in wake angle, measured from the
front stagnation point, by comparison with rigid spheres for the special case
of spherical raindrops in air (x = 55, y = 790). A curious feature of such wakes
is that the recirculating eddy may be completely detached from the sphere
surface (L5); for example, this condition occurs for water drops in air in the

TABLE 5.5

Wake Characteristics of a Spherical Raindrop
Compared with a Rigid Sphere®

Raindrop Rigid sphere
Re os! 052 Lw/d 05 Lw/d
30 180 164 0.15 153 0.15
57 180 147 0.53 138 0.53
100 170 136 0.85 127 0.94
300 157 124 1.90 111 2.17

¢ From LeClair et al. (L9).
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range 20 < Re < 100. Thus separation of flow outside the sphere does not
necessarily imply formation of a secondary internal vortex (S13). Two different
angles are required to characterize the wake and both appear in Table 5.5.
The position on the surface at which separation occurs is indicated as 0,
whereas 0, is measured to the furthest upstream extension of the recirculating
eddy. The wake length, measured from the rear of the sphere, is slightly less for
the water drop than for a corresponding rigid sphere. For a gas bubble in a
liquid, and for a droplet (x = 1, y = 0.5) uncontaminated with surfactants, no
separation is predicted even for Reynolds numbers as high as 200 (H1, HS, R9).

Figure 5.24 shows predicted surface vorticity distributions at Re = 100 and
for k =0 (gas bubble), x = 1 (liquid drop in liquid of equal viscosity), and
Kk = 55 (water drop in air), and for a rigid sphere. The results for the raindrop
are very close to those for a rigid sphere. The bubble shows much lower surface
vorticity due to higher velocity at the interface, while the x = 1 drop is inter-
mediate. The absence of separation for the bubble and x = 1 drop is indicated
by the fact that vorticity does not change sign.

10

wn

SURFACE VORTICITY, $.a/U

0 30 60 90 120 150 180
ANGLE &

F1G. 524  Vorticity distribution at surface of spherc for Re = 100 (numerical results): (A) Rigid
sphere (L5); (B) Water drop in air; k = 55, y = 790 (L5, L9); (C) Liquid drop; x =1, 7 = 0.5 (R9);
(D) Gas bubble; k =y = 0 (H6).

b. Internal Circulation As discussed in Chapter 3, creeping flow around a
fluid sphere is symmetrical about the equatorial plane. At higher Re, the
stagnation ring in the internal fluid shifts forward of the equator.” Under some
circumstances, e.g., Re > 300 for water drops in air (L9), a small secondary
internal vortex of opposite sense may occur inside the fluid sphere near the
rear stagnation point. Experimental evidence for this secondary vortex is scant,
but positive (P6).

¥ Experimenters who have observed asymmetry of internal circulation patterns have generally
attributed this to accumulation of surface-active materials at the rear, causing a stagnant cap
(sece Chapter 3). It seems likely that at least part of the asymmetry results from the forward shift
of the internal vortex at nonzero Re, as predicted numerically.
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FiG. 5.25 Dimensionless fluid velocities for water drops in air (x = 55, y = 790). Numerical
predictions of LeClair et al. (L9).

Figure 5.25 shows surface velocities for water drops in air with Re in the
range 10 to 300, together with the Hadamard-Rybczinski solution for the
same k. Increasing asymmetry and a progressive increase in surface velocity
with Re are evident. Experimental measurements (G4, H15, P6) generally give
significantly lower velocities, presumably due to surface contamination. Internal
and external streamlines and vorticity contours are shown in Figs. 5.26 and
5.27 for Re = 100 and k = 55 (corresponding to a 0.6 mm diameter raindrop

VORTICITY
CONTOURS STREAMLINES

F1G. 5.26 Streamlines and vorticity contours inside a water drop in air at Re = 100 (x = 55,
y = 790). Numerical predictions of LeClair (L5).
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VORTICITY CONTOURS [ STREAMLINES
Re=100

F1G. 5.27 Streamlines and vorticity contours outside a water drop in air at Re = 100 (k = 55,
v = 790). Numerical predictions of LeClair (L5).

at its terminal velocity in air). Note that both internal and external flows show
asymmetry and regions of negative vorticity near the rear of the sphere.

c. Surface Pressure and Drag Figure 5.28 shows numerical results for sur-
face pressure distributions at Re = 100, together with those for the reference
cases of potential flow and of a rigid sphere at the same Re. The curve for the

1.2 T T T T
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FiG. 5.28 Distribution of dimensionless modified pressure at surface of spheres at Re = 100,
compared with potential flow distribution. (A) Potential flow: (p, — p,)/3pU? = 1 — 2.25sin?(
(B) Rigid sphere (L5); (C) Water drop in air; k = 55, y = 790 (L9); (D) Gas bubble; k = y = 0 (H6).
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water drop (k = 595) lies close to that for a rigid sphere. The pressure distribu-
tion for a bubble (x = 0) follows the potential flow distribution very closely
up to about 130° from the front stagnation point, much further than for a
rigid sphere.

Values of Cpp, Cpy, and Cp, are presented in Table 5.6 for bubbles in liquids
(B10, H6, L7) and for water drops in air (L5, L9), with corresponding results
for rigid spheres (L9). The viscous sphere (k = 55) has essentially the same drag
as a rigid sphere. The bubble (x = 0) has much lower values of both form drag
and skin friction. However, the ratio of form drag to skin friction is insensitive
to k. An equation which gives a good fit to numerical predictions of drag on
spherical bubbles (H1) is:

Cp=149Re ®7 (x> 0,Re = 2) (5-28)

2. Error Distribution Solutions

Error distribution (or Galerkin) methods are based on choosing a polynomial
for the stream function which is made to satisfy all the boundary conditions
together with an integral form of the Navier—Stokes equation. Snyder et al.
(S11) surveyed the application of this technique in fluid mechanics. Its success
depends strongly on the form of polynomial chosen (H4). Kawaguti (K4, K5)
applied this technique to flow around a rigid sphere, but the results are of
limited interest since even the total drag predictions are inaccurate. Hamielec
et al. (H3, H5, H7) applied Galerkin’s method to fluid spheres up to Re = 500.
Since inertia terms for the internal fluid were neglected, their solutions are
restricted to small Re,. For 4 < Re < 100, the following correlation was
suggested for the total drag:

o 3.05(783K2 + 2142k + 1080)
L (60 + 29k)(4 + 3k)

Nakano and Tien (N2) investigated the effect of increasing Re, by including
inertia terms for both phases. Changes in Re, had little effect on the external
streamlines or on overall drag. On the other hand, internal circulation velocities
increased significantly as Re, increased, and the internal vortex was displaced
forward. These results are in qualitative agreement with the numerical treat-
ments and with experimental observations. However, there are substantial
quantitative discrepancies, especially in the wake region and in local values
of surface pressure (H4).

Re 974, (5-29)

3. Boundary Layer Theories

Consider a circulating spherical bubble (x « 1,y « 1) for which Re >» 1, and
compare this with a rigid sphere at Re » 1. For the latter case, the boundary
layer is perceived as a thin layer at the particle surface where viscous forces
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TABLE 5.6
Drag Coefficients for Rigid and Fluid Spheres®

Cop Cpr Cp
Re K= o0 k=355 k=03 k=0 K= %0 K =155 k=03 k=0 K= o0 K =155 k=023 k=0
0.1 80.913 63.3 163.16 128.5 244.07 191.8
1.0 9.066 6.33 6.14 18.25 12.87 12.23 27.315 19.20 18.3
5.0 2412 2.4° 1.63 1.69° 4.617 4.60° 3.18 3.0 7.029 7.0 481 4.69
10.0 1.52 1.51 0.99 0.98 2.77 2.71 1.90 1.67 4.29 423 2.89 2.64
20 1.008 1.0° 0.54° 1.703 1.69° 0.86" 2711 2.69 1.40"
30 0.81 0.81 0.41° 0.42° 1.30 1.29 0.79% 0.65° 2.11 2.10 1.20 1.07"
40 0.72° 0.71% 0.33% 1.08° 1.07 0.50° 1.80° 1.78" 0.83"
50 0.65" 0.64" 0.28° 0.288 0.92° 0.92? 0.58° 0.435 1.57¢ 1.56 0.86° 0.723
57 0.63% 0.63 0.27 0.88° 0.88 0.37° 1.51% 1.51 0.64°
100 0.51 0.49 0.181 0.59 0.59 0.224 1.096 1.08 0.405
200 0.40 0.39% 0.134 0.372 0.37° 0.132 0.772 0.76" 0.266
300 0.35 0.34 0.11° 0.28 0.29 0.094" 0.632 0.63 0.204"
400 0.320 0.31° 0.09° 0.233 0.23% 0.075° 0.552 0.54° 0.165"
500 0.068 0.057 0.555¢ 0.125
1000 0.062 0.031 0.471¢ 0.093

% From Abdel-Alim and Hamielec (A1), Brabston and Keller (B10), Hamiclec et al. (H6), LeClair (L5), LeClair and Hamielec (L7), and LeClair et al. (L9).
® Interpolated or extrapolated.
¢ From standard drag relationships, Table 5.2.
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play a dominant role and across which the velocity variation is of order U,
outside this layer, the flow departs little from the irrotational pattern. For the
bubble on the other hand, it is not necessary for the outer fluid to come to rest
at the sphere surface. Flow deviates significantly less from irrotational motion.
At first sight it might appear that potential flow could be a valid solution for
the entire external flow field about a circulating bubble. However, the velccity
derivatives in that case would not satisfy the tangential stress boundary con-
dition. Thus a boundary layer must still exist on the surface, but it is of a rather
different kind from that on a rigid body. In particular, the velocity variation
across the boundary layer is only of order U/Re'/?. Moreover, the boundary
layer is much thinner, and remains attached to the surface longer than on a
comparable rigid body. These features are discussed at length by Levich (L11),
Batchelor (B4), and Harper (HS8). Harper has given a particularly thorough
review of boundary layer solutions for circulating particles, and has pointed
out a number of errors and misconceptions in the literature.

Since the flow is only slightly perturbed from irrotational, a first approxima-
tion for the drag on a spherical bubble may be obtained by calculating the
viscous energy dissipation for potential flow past a sphere. This gives (L11):

Cp, = 48/Re. (5-30)

Moore (M12) extended Eq. (5-30) by solving the boundary layer equations
analytically, except in the vicinity of the rear of the bubble where the velocity
and pressure fields were found to have singularities. The drag on the bubble
was calculated using a momentum argument (L1) and by extending the energy
dissipation calculation to include the contribution from the boundary layer
and wake. Moore’s improved drag estimate is:
48 2.21 .

CD = R—elil — ‘Re—l/z + O(Re 5/6):|. (5‘31)
Equations (5-30) and (5-31) are plotted in Fig. 5.29. In agreement with numerical
predictions (B10, H1, H6), no boundary layer separation is predicted when
there are no gradients of surface tension at the surface (HS).

Treatment of liquid drops is considerably more complex than bubbles, since
the internal motion must be considered and internal boundary layers are
difficult to handle. Early attempts to deal with boundary layers on liquid drops
were made by Conkie and Savic (C8), McDonald (M9), and Chao (C4, W7).
More useful results have been obtained by Harper and Moore (H10) and
Parlange (P1). The unperturbed internal flow field is given by Hill’s spherical
vortex (H13) which, coupled with irrotational flow of the external fluid, leads
to a first estimate of drag for a spherical droplet for Re > 1 and Re, » 1. The
internal flow field is then modified to account for convection of vorticity by
the internal fluid to the front of the drop from the rear. The drag coefficient,
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to terms of order Re™ %%, may then be written as

48 [1 32+ 3K)

Co Re 2 * Rel/?

(B, + B,In Re):l, (5-32)
where B, and B, are functions of xy with specific values presented in Table
5.7. In the limit as k — 0 and y — 0, Eq. (5-32) reduces to Eq. (5-31). The inter-
nal circulation relative to that for an unperturbed Hill’s spherical vortex is
approximately

Ce1 5(2+3K)[1+2«/K“/:| (5-33)
2Re'? (243 iyl
TABLE 5.7
Values of B; and B, for Eq. (5-32)*
(rcy) 25 4.0 1.0 0.25 0.04 0
B, —0.608 —0.652 —0.660 —0.642 —0.622 —0.553
B, 0.00286 0.00877 0.0142 0.0160 0.0119 0

¢ Calculated from Table 3 of Harper and Moore (H10).
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Equations (5-32) and (5-33) are only expected to be valid at relatively low x
(S14), typically «k < 2, and for Re > 50 (H8). They should not be used when I"
predicted by Eq. (5-33) is less than 0.5, or when Cp, from Eq. (5-32) exceeds the
value from the standard drag curve for rigid spheres at the same Re. In these
cases, the true drag will be close to the rigid sphere value, provided that the
drop is nearly spherical.

4. Comparison of the Theoretical Predictions with Experiment

All the work discussed in the preceding sections is subject to the assumptions
that the fluid particles remain perfectly spherical and that surfactants play a
negligible role. Deformation from a spherical shape tends to increase the drag
on a bubble or drop (see Chapter 7). Likewise, any retardation at the interface
leads to an increase in drag as discussed in Chapter 3. Hence the theories
presented above provide lower limits for the drag and upper limits for the
internal circulation of fluid particles at intermediate and high Re, just as the
Hadamard-Rybzcynski solution does at low Re.

In practice few systems approach the drag coefficient values predicted by
the theoretical treatments. Since the theories provide lower limits on drag, it
is reasonable to compare their predictions with the lowest available experi-
mental values. From the restrictions noted, these will be systems of (i) low
Morton number (M < 10~8) and (ii) low surface pressure (ie., free of sur-
factants). Figure 5.29 compares selected Cp data on bubbles in very pure
systems with theoretical predictions. The different theoretical approaches are
in good agreement with each other and drag is predicted to be less than for
rigid spheres. There is reasonable agreement with the experimental results.
For drops, agreement with the boundary layer and Galerkin treatments is
generally less favorable, although some of the results of Winnikow and Chao
(W7) fall within 10% of the predictions of Eq. (5-32) (H8, H10). Excellent agree-
ment has been obtained between numerical predictions and experimental
results for raindrops in air (L9), where x is sufficiently high that internal cir-
culation does not influence Cp, even in the absence of surface contaminants,
and for water drops in cyclohexanol and in n-butyl lactate (Al).

Unfortunately there is little quantitative data, e.g., concerning internal and
external velocity profiles, with which to test other aspects of the theories. On
the other hand, the theories are supported by the agreement between the
numerical and boundary layer approaches in their common ranges and by
such qualitative features as secondary internal vortices (P6), forward displace-
ment of the internal stagnation ring (H15, P6), delayed boundary layer separa-
tion with increasing system purity (E2, W7), and increasing dimensionless
internal fluid velocities with increasing Re (G4, L9, P6).

5. Effect of Surfactants

Since the Schmidt number Sc tends to be much greater than unity for sur-
factants in solution, Re > 1 generally implies high Peclet numbers. This case
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has been considered by only a few investigators (D8, H9, L14, LL16). The differ-
ence between the drag coefficients for rigid and fluid spheres becomes con-
siderably wider as Re increases (see Fig. 5.29). Hence the influence of surfactants
can be even more marked than at low Re. Unfortunately, accurate experimental
data with known surfactant concentrations do not appear to be available. Thus
theories cannot be tested except by fitting the contaminant concentration to
match the data. Moreover, the conditions which must be satisfied for the
theories to hold are so stringent that theories are of little practical importance
(H9).

C. HEAT AND MASS TRANSFER

1.  External Resistance

The external resistance has been evaluated under steady-state conditions
using the assumption of a thin concentration boundary layer on the outer
surface of a fluid sphere. Surface velocities calculated by each of the three
methods described in Section B above have been used in conjunction with
Eq. (3-51).

An asymptotic formula for Re — oo is easily derived by substitution of the
potential flow surface velocity,

(MO/Uy)r=a = %Sin 07 (5'34)
into Eq. (3-51) to yield
Sh = (2/y/m) Pe'/2. (5-35)

A first-order correction for finite Pe (W2) adds a constant term of 0.88 to
the right-hand side of Eq. (5-35). This constant term is nearly the same for
potential flow as for creeping flow [ cf. Eq. (3-48)], and this fact has already been
used in designing the mass transfer correlations for rigid spheres. Modifying
the constant slightly to unity, we write

(Sh — 1)/Pe'? = 2/\/n = 1.13 (5-36)

as an approximate limiting condition for large Re. The expression on the left
is now in a convenient form for bringing together numerical results for finite
Re, both for Sc — oo (L7) and for finite Sc (O1). The results are shown by the
solid curves in Fig. 5.30.

The thin concentration boundary layer approximation, Eq. (3-51), has also
been solved for bubbles (x = 0) using surface velocities from the Galerkin
method (B3) and from boundary layer theory (L15, W8). The Galerkin method
agrees with the numerical calculations only over a small range of Re (L7).
Boundary layer theory yields

2 2.89 \!/2
Sh = —<1 - ﬁ) Pel’2, (5-37)

\/; Rel/z

This result is within 7% of the numerical solution shown in Fig. 5.30 for Re > 70.
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FiG. 5.30 Mass transfer factor as a function of Reynolds number for spherical fluid particles:
—— numerical solutions for k = 0 (L7, O1); ——— asymptotic solutions (Sc, Pe —» «); —-—-— Eq.
(5-39). Data for transfer of water to isobutanol (x = 0.39, y = 1.2, Sc = 12,000) from (G2, G12,
H12).

For liquid drops Eq. (3-51) has been solved (W3) using the boundary layer
velocities of Harper and Moore (H10). The resulting solution is valid for x < 2.
The Sherwood number was only weakly dependent upon y with the results
well approximated by

2 I 2
Sh = —{1 (289 + 2.15K0'64)1 Pell2, (5-38)

il TRem

Based on the result for bubbles, this should be accurate for Re > 70.

The surface velocities of Abdel-Alim and Hamielec (A1) can be used to obtain
Sherwood numbers at intermediate x and Re. An equation which fits these
calculated values, the numerical results for Sc — o0, and the asymptotic solu-
tions for k < 2 is

2+ 3k 12
Sh 2 3(1 +x) (5-39)

W:ﬁl {1+[ (2 +3K)Re'? }"}1/"
)

(1 + Kk)(8.67 + 6.45K°°*
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where
n=7%+ 3k (5-40)

The predictions of Eq. (5-39) are shown in Fig. 5.30 for k = 0.25, 0.5, and 1.0.

Experimental data for mass transfer from freely circulating fluid spheres
are difficult to obtain because of deformation and because of the presence of
surface-active agents which reduce circulation. Shown in Fig. 5.30 are data
from three studies on water droplets in isobutanol where the droplets were
nearly spherical and were observed to be circulating. The data are in fair agree-
ment with each other and with Eq. (5-39). The effects of shape changes and
surface-active agents are discussed in Chapter 7.

The case of a fluid sphere moving at constant velocity and suddenly exposed
to a step change in the composition of the continuous phase has been treated
by solving Eq. (3-56), with Eqgs. (3-40), (3-41), (3-42), and (3-57) as boundary
conditions for potential flow (R14). The transient external resistance is given
within 3% by

Sh/Pe'/? = [1.829 + (2/y/nt Pe)®]*/>. (5-41)
2. Transfer with Variable Particle Concentration

The only situation with variable concentration inside the particle and finite
internal resistance for which a theoretical treatment is available is for Pe, — co.
In this case the diffusion time is long compared to the time for circulation of
the fluid within the sphere. Thus the concentration contours are identical to
the streamlines of the Hill’s spherical vortex except in thin boundary layers
near the particle surface. As Re — oo the rate of diffusion normal to the stream-
lines in the bulk of the drop determines the rate of mass transfer (B12). Since
the streamlines of Hill’s spherical vortex are identical in form to the Hadamard—
Rybcezynski solution in creeping flow, the rate of extraction is identical to that
shown in Fig. 3.22. This conclusion has been supported by experimental studies
[e.g., (B13,K1)] which have shown that the Kronig-Brink solution gives a good
prediction of mass transfer at Reynolds numbers well above those corresponding
to creeping flow. For negligible resistance within the particle, a situation which
occurs for gas bubbles, it has been shown (D1) that a quasi-steady treatment,
i.e., substitution of Eq. (5-35) in Eq. (3-89), is valid.
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Chapter 6

Nonspherical Rigid Particles
at Higher Reynolds Numbers

I. INTRODUCTION

Nonspherical particles are more difficult to treat than spheres because of the
influence of particle orientation and the lack of a single unambiguous dimen-
sion upon which to base dimensionless groups. In this chapter we treat rigid
nonspherical particles at higher Reynolds numbers than were covered in
Chapter 4. We begin by reviewing spheroids, disks, and finite cylinders,’ shapes
for which considerable work has been reported. General correlations for arbi-
trary shapes are discussed in Section IV. The fall of other specific shapes or
specific types of particles is covered very briefly in Section V. There are no
data nor numerical calculations for heat or mass transfer with variable particle
concentration and finite resistance in each phase corresponding to the non-
spherical particles considered. Hence, only the external resistance is treated in
this chapter.

It is convenient to distinguish two regimes for freely falling nonspherical
bodies. In the intermediate regime, particles adopt preferred orientations and
Cp, varies with Re although less strongly than at low Re. Particles usually align
themselves with their maximum cross section normal to the direction of relative
motion (K7, K10). In this regime there is no appreciable secondary motion so
that results for flow past fixed objects of the same shape can be used if the
orientation corresponds to a preferred orientation. In the Newton’s law regime,
on the other hand, Cp is insensitive to Re and secondary motion occurs,

* Two-dimensional flow past infinite cylinders is not treated in detail since such bodies do not
meet our definition of a particle (see Chapter 1).
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generally associated with wake shedding. In this regime the density ratio y plays
an important role in determining the type of motion, the mean terminal velocity
and the transfer rate. Freely faliing isometric particles generally begin to show
pitching motion for Re (based on d,) in the range 70 < Re < 300 (P4).

II. SPHEROIDS AND DISKS

Spheroids are of special interest, since they represent the shape of such
naturally occurring particles as large hailstones (C2, L2, R4) and water-worn
gravel or pebbles. The shape is also described in a relatively simple coordinate
system. A number of workers have therefore examined rigid spheroids. Disks
are obtained in the limit for oblate spheroids as E — 0. The sphere is a special
case where E = 1. Throughout the following discussion, Re is based on the
equatorial diameter d = 2a (Fig. 4.2).

A. AXISYMMETRIC MOTION
1. Flow Patterns

As shown in Chapters 3 and 4, creeping flow analyses have little value for
Re > 1. A number of workers (M4, M7, M11, P5, R3) have obtained numerical
solutions for intermediate Reynolds numbers with motion parallel to the axis
of a spheroid. The most reliable results are those of Masliyah and Epstein
(M4, M7) and Pitter et al. (P5). Flow visualization has been reported for disks
(K2, W5) and oblate spheroids (M5).

At intermediate Re, phenomena are similar to those described for spheres in
Chapter 5. Figure 6.1 shows streamlines calculated by Masliyah (M4) for steady
flow past spheroids at Re = 100. As the body becomes more “streamlined” (i.e.,
as E increases), the wake volume decreases. Figure 6.2 shows predicted and
observed wake lengths. The Reynolds number at which separation first occurs
decreases with aspect ratio to less than 2 for a disk. The calculations do not
show clearly whether separation first occurs at the edge of a disk, but separa-
tion is certainly at the edge for Re > 10 (R3). For spheroids with E > 0.2,
separation is still aft of the equator for Re = 100 (M4). Flow visualization gen-
erally confirms these predictions (M5), although numerical calculations tend
to overpredict the wake length as for spheres due to difficulty in defining pre-
cisely the wake “tail.” Disk wakes start to oscillate at Re = 100 (W5), while
spheroids with E > 0.2 have steady wakes to higher Re (M5). At high Re, flow
patterns continue to be qualitatively similar to those around a sphere (S5, W5),
except that disks show nothing equivalent to the critical transition because the
separation circle is fixed by the body shape. For spheroids of finite aspect ratio,
the critical Reynolds number decreases slightly with increasing E (L4), and the
drop in Cp, at the critical transition becomes more marked (R1).
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FiG. 6.1 Streamlines for flow past spheroids at Re = 100. After Masliyah (M4). Flow from right
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2. Drag

A number of authors have measured the drag on disks (J1, K1, L5, P5, RS,
S2, S5, S8, W4, W5). For supported disks with steady motion parallel to the
axis, numerical and experimental results at low and intermediate Re are well
correlated (P5) by:

Cp = (64/nRe)[ 1 + 107] (0.01 < Re < 1.5), (6-1)
where
x = —0.883 + 0.906log,, Re — 0.025(log, , Re)? (6-2)
and’
Cp = (64/mRe)(1 + 0.138 Re®792) (1.5 < Re < 133). (6-3)

At lower Re, the Oseen result can be used (see Chapter 4):
Cp = (64/n Re)[1 + (Re/2n)] (Re < 0.01). (6-4)

Once wake shedding occurs, C, is insensitive to Re, and is constant at 1.17 for
Re > 1000 (HS). There is some indication that Cp, passes through a minimum
of about 1.03 for Re ~ 400 (L5, W5), but most data are correlated within 10%,
by Eq. (6-3), with C, = 1.17 for Re > 133. Figure 6.3 compares the drag curve

* Pitter et al. (P5) applied Eq. (6-3) only to Re = 100. However, their correlation applies to freely
falling disks for Re > 100.
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for disks with the corresponding curve for spheres. Some authors have shown
Cy, for disks passing through a maximum at Re = 300, but this is almost cer-
tainly a misinterpretation (R5).

Data are scant for spheroids other than disks and spheres. Experimental
results for axisymmetric flow outside the Stokes range appear to be limited to
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FiG. 6.4 Drag coefficients for axial flow past spheroids. Numerical predictions of Masliyah (M4).

Skin Friction/Form Drag

%
OJL Ll L1

1 ] 100

Reynolds Number, Re

FiG. 6.5 Ratio of skin friction to form drag for spheroids in axial flow. Numerical predictions
of Masliyah (M4).
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oblate spheriods for which this is the preferred orientation (L3, L4, P5, S8).
For Re up to 100, numerical results of Masliyah and Epstein (M4, M7) agree
closely with experimental data (see Fig. 4.6). Figure 6.4 shows the dependence
of Cp, on Re predicted by Masliyah, and Fig. 6.5 shows the ratio of skin friction
to form drag. For Re < 10, this ratio is only weakly dependent on Re, and
drag on a spheroid can be estimated closely by multiplying the sphere drag by
the drag ratio for Stokes flow, A, (see Chapter 4). At higher Re, the dependence
of Cp on E is more complex; for Re > 37, spheroids with aspect ratio close to
unity have less drag than either very oblate or very prolate shapes. In this
range, the drag on a spheroid with E = 0.2 is almost indistinguishable from
that on a disk.

For 100 < Re < 10%, the only data on spheroids appear to be those of
Stringham et al. (S8) for E = 0.5." Figure 6.3 shows an equation fitted to these
results:

log; o Cp = 2.0351 — 1.660w + 0.3958w? — 0.0306w*

6-5
(E =0.5;40 < Re < 10%), (6-3)

where w = log; , Re.
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F1G. 6.6 Ratio A, of drag on oblate spheroid or disk to drag on sphere of same equatorial radius.

—

Drag Ratio, Ay
~

For Re 3 103, Cp is essentially constant at its “Newton’s law” value. Avail-
able data are shown in Fig. 6.6. In view of the scatter in the data, it is reasonable
to use the “Newton’s law” value Cp, = 0.445 for spheres (see Chapter 5), i.e.,

Cp = 0.445A,. (6-6)

Hence A, = 2.63 for a disk. The results of List and Dussault (L3) are interpo-
lated from wind-tunnel measurements on approximately spheroidal hailstone
models (L2) while those of List et al. (L4) are for true spheroids in a wind

T Wall effects are significant for these results, and have been corrected using the correlations in
Chapter 9.
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tunnel. If all the data are reliable, the difference between these sets of results
can only be ascribed to an effect of Re. For near-critical conditions, the results
of List et al. (L4) suggest that

A, =1+ 1631 —E) (Re > 4 x 10%). (6-7)
For lower Re, Charlton and List (C2) suggest
E
Ag= o e (05<E<]). (6-8)

“ (0.8E + 0.2)
The data are approximated equally well (see Fig. 6.6) by
A,=1+ 1631 —E)? (980 < Re < 10%), (6-9)

which has the advantage of giving the correct limit at E = 0, but its reliability
for 0 < E < 0.5 is untested.

B. FRrEee FALL
1. Disks

As for spheres, it is convenient to express drag in terms of Cp, Re?, which
contains a dimension or dimensions of the particle, but not the velocity. For a
disk of thickness § at its terminal velocity,

CpReq? = 2p Ap gdd?/u® = 2ApgEd? /pv?, (6-10)

where E = §/d. For 0.1 < Rey < 100 [i.e, 1.3 < (Cp Rep?)'? < 23.4] a disk in
free motion moves steadily with its axis vertical (M9) and the drag is identical to
that on a fixed disk at the same relative velocity. The terminal Re can then be
calculated from the relationship between Cp, and Re given by Egs. (6-1) to (6-3).
Figure 6.3 gives the resulting relationship between (Cp Re;?)!/3 and Re; together
with the curve for spheres (see Chapter 5). For (CpRep?)!? = 2, ie., Rep > 0.5,
Cp and the terminal velocity for given CpRe? are independent of E (J1).

Willmarth et al. (WS5) showed that secondary motion of a freely falling disk
depends on a dimensionless moment of inertia,

I* = 190 /64d = myE/64. (6-11)

The upper bound of the region of stable steady motion is shown in Fig. 6.7 as
a function of (CpReq?)'? and I*. For large I*, secondary motion starts at
Rer = 100, ie., (CpRer?)!? = 23.4. Atlower I*, steady motion persists to higher
Rey; the boundary shows a maximum at Re; = 172, (Cp Re?)'? = 32.6 for [* =
8 x 10™% Three kinds of secondary motion have been observed (S8), although
the distinctions between them are not sharp. Immediately above the transition
to unsteady motion, a disk shows regular oscillations about a diameter: the
amplitude of oscillation and of the associated horizontal motion increases with
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F1G. 6.7 Regimes of motion for disks in free fall or rise. Contours of constant Strouhal number
Sr and constant Reynolds number are also shown.

(CpRe;?)'3 and decreases with I*. At higher (Cp Re;?)'3, the amplitude of the
oscillation increases so much that the disk “flies” in a succession of curved
arcs: at the end of each arc, the axis of the disk is inclined at a large angle to
the vertical, and a vortex is shed from the wake. Stringham et al. (S8) termed
this regime glide-tumble. At higher I* and (Cp Re;?)'?, a disk shows a tumbling
motion, rotating continually about a diameter and following a trajectory which
is approximately rectilinear, but not vertical. Figure 6.7 shows approximate
boundaries between these regimes. The Strouhal number of oscillation, Sr =
fd/Uy, decreases with I*, and increases with (CpRer?)!? close to the boundary
of unsteady motion. Figure 6.7 shows Sr contours, from Willmarth et al. (W5).
For I* > 0.01, the data of Stringham et al. (S8) show Sr < 0.3 but are too
scattered for contours to be drawn. Once free fall motion becomes unsteady,
the mean drag can differ significantly from that on a fixed disk with steady
relative velocity. Generally, a disk with low I* experiences higher drag and
correspondingly lower mean vertical velocity. However, the data of Willmarth
et al. (W5) and Stringham et al. (S8) indicate that drag is significantly lower
near transition from glide-tumble to tumbling. Figure 6.3 shows curves for two
values of I*, and contours of terminal Re are indicated in Figure 6.7. The data
on which these curves are based show considerable scatter. Apparently the
velocity of a given particle may even vary between experiments (S8). Hence the
curves must be interpreted as approximate.”

¥ Jayawcera and Cottis (J1) and Pitter et al. (P5) have given C, and (Cp Re;2)'/? as functions of
Rey for 100 < Rep < 600. However, their curve neglects the effect of I*, which varied over a wide
range in the original experiments, and its general validity is therefore uncertain.
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2. Oblate Spheroids

For an oblate spheroid moving at its terminal velocity,
CpRe 2 = 4p ApgEd® /312 (6-12)

For spheroids with E = 0.5, Stringham et al. (S8) showed that steady motion
with the axis vertical persists over a much wider range of Rey than for thin disks.
Secondary motion started at Re; = 4 x 10%, (Cp Re;?)!/? = 10°. On increasing
y, steady motion persisted to higher Re; but the data are too scant to show
whether the transition can be correlated by a dimensionless moment of inertia.
The limit of steady motion must decrease on reducing E, but quantitative data
are lacking. Two types of secondary motion have been observed for oblate
spheroids (K6, K9, S8): oscillation with the minor axis rotating to trace out a
cone, and continuous rotation or tumbling about a horizontal axis. List et al.
(K8, K9, L4) explained this behavior qualitatively, based on measurements for
spheroids at steady inclination, but it is not possible to predict which kind of
motion will occur.

Figure 6.3 shows the relationship between (Cp Rer?)!? and Re; for E = 0.5,
fitted to the data of Stringham et al. (S8):

log o Rey = —1.7239 + 3.8068W — 0.9477W? + 0.1277W?

6-13
(E =0.5; 15 < (Cp Reg)3 < 400; 40 < Rep < 10%), 6-13)

where W = log, o[ (Cp Re;2)"/3]. For other aspect ratios and 10° < Rey < 10%,
Cp may be estimated from Egs. (6-6) and (6-9), giving:

ApgEd 12
= . 6-14
U 1'73{[)[1 +1.63(1 — E)Z]} (6-14)

C. HEeAT AND MASS TRANSFER

The mechanism of mass transfer to the external flow is essentially the same
as for spheres in Chapter 5. Figure 6.8 shows numerically computed streamlines
and concentration contours with Sc = 0.7 for axisymmetric flow past an oblate
spheroid (E = 0.2) and a prolate spheroid (E = 5) at Re = 100. Local Sherwood
numbers are shown for these conditions in Figs. 6.9 and 6.10. Figure 6.9 shows
that the minimum transfer rate occurs aft of separation as for a sphere. Transfer
rates are highest at the edge of the oblate ellipsoid and at the front stagnation
point of the prolate ellipsoid.

A number of computations of average Sherwood number have been made
(A3, M6) for Re < 100, 0.2 < E < 5, and 0.7 < Sc < 2.4. Some values are also
available at E = 0.05 and Sc = 0.7 for Re <20 (P5) and for higher Sc with
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(@ E=0.2

(b) E=5

F1G. 6.8 Concentration contours for flow past spheroids at Re = 100 and Sc = 0.7. Flow from
right to left. Dashed lines are streamlines as in Fig. 6.1 with values of y/a* U indicated. Dimensionless
concentration values are marked on the solid lines which trace lines of constant concentration (M6).
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FiG. 6.9 Local Sherwood number for an oblate (E = 0.2) spheroid with Sc = 0.7. After Masliyah
and Epstein (M6). Axial flow.
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F1G. 6.10 Local Sherwood number for a prolate (E = 5) spheroid with Sc = 0.7. After Masliyah
and Epstein (M6). Axial flow.

04 < E <1 and Re < 10 (A3). The calculated values are correlated within
5% by

Sh—Shy/2 125
Shephere — 1 1 + 0.25E%°

(02<E<S5, 1<Re<100). (6-15)

where Sh and Sh, are based on the equatorial diameter, Shy, is given in Table
4.2, and Sh ... is for a sphere at the same Re given by Eq. (5-25).

For axisymmetric flow at higher Re the most reliable data are those of Beg
for the sublimation of oblate naphthalene spheroids (B4) (0.25 < E < 1) and
disks (B3). His correlations are in terms of the characteristic length L’ defined
in Eq. (4-67). For spheroids

Sh’ = 0.62(Re)%-50 Scl/3 (200 < Re’ < 2000), (6-16)
Sh’ = 0.26(Re’)%-01 Sct/3 (2000 < Re’ < 3.2 x 10%), (6-17)
while for disks

Sh' = 0.266(Re’)°-¢% Sc/3 (270 < Re’' < 3.5 x 10%). (6-18)

These equations are shown in Fig. 6.11. The correlations overlap with numerical
calculations only for spheres (E = 1) and show a reasonable match with these
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FiGg. 6.11 Correlations and numerical calculations for heat transfer to spheroids and disks with
Pr=07.

values. At lower Re’, calculated values of Sh” are well correlated by an expression
similar to that for spheres:
Sh" — Shy'/2 | (K)* =1 (Shy'/2)?
Sct’? (Re))'/® Re’' Sc

1/3
] (Re")0-41 (I < Re’ < 400).

(6-19)

Equation (6-19) matches Eq. (4-70) at Re’ = 1 and is plotted in Fig. 6.11. Note
the decreasing dependence of Sh’ on E as Re’ increases. There is reasonable
matching between Egs. (6-16) and (6-19) in their common range of application.

No data are available for heat and mass transfer to or from disks or spheroids
in free fall. When there is no secondary motion the correlations given above
should apply to oblate spheroids and disks. For larger Re where secondary
motion occurs, the equations given below for particles of arbitrary shape in
free fall are recommended.

III. CYLINDERS

A. MortioN IN FREE FALL OR RISE
1. Steady Motion

In the following discussion, cylinders are characterized by the length/diameter
ratio E and Re is based on the cylinder diameter.” As noted in Section II, drag
on a disk in steady free motion is relatively insensitive to its thickness; cylinders

¥ Other definitions are often used. For example, Stringham et al. (S8) based Re on the area-
equivalent diameter d,, while Christiansen and Barker (C3) used cylinder length.
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with E < 1 can therefore be treated as disks. For Re > 0.01, a cylinder with
E > 1 falls with its axis horizontal. Steady motion with this orientation persists
up to Re of order 100 (J2, M3, S8). The upper bound of steady motion increases
with decreasing 7, and increases sharply for E > 20 (J2), but data are too scant
to enable reliable prediction of the onset of secondary motion.

Steady flow normal to the axis of a long cylinder has been investigated
even more thoroughly than flow past a sphere [e.g., see (A4, J2, K4, P8, T1)].
Qualitatively, the flow pattern shows features similar to those described for
spheres in Chapter 5. Separation occurs for Re > 5 (D2, Ul); wake oscillation
is apparent for Re > 30, and wake shedding for Re > 40 (H6, R6, T1). Shedding
from a cylinder gives a regular succession of vortices, termed the “von Karman
vortex street,” recognizable over the range 70 < Re < 2.5 x 10°. Above Re = 10°,
the critical region is entered, with flow transitions similar to those described
for a sphere in Chapter 5 (A1, R7, S6). For cylinders of finite length, flow past
the ends sets up a three-dimensional circulation pattern, and the wake adopts
a pyramidal shape (J2).

Figure 6.12 shows a curve fitted by Pruppacher et al. (P8) to the many
determinations of Cp, for steady crossflow past long cylinders in the Re range
applicable to free motion. We have approximated this curve by the following
expressions:

Cp = Cp'(1 + 0.147 Re®-82) (0.1 <Re<5), (6-20)
Cp = Cp'(1 + 0.227Re®3%) (5 < Re < 40), (6-21)
Cp = Cp/(1 + 0.0838 Re®#2) (40 < Re <400), (6-22)
where
Cp = 9.689 Re 78, (6-23)

The junctions between these expressions correspond to changes in flow pattern.
For lower Re, see Chapter 4.
For a cylinder with E > 1 in free motion,

CpRer? = ngp Ap d3)242, (6-24)

where Cj, is based on the area projected normal to the axis. In the range where
motion is steady with the axis horizontal, Egs. (6-20) to (6-22) can be used to
obtain relationships between Re; and (CpRe;?)'? for a long cylinder: the re-
sulting curve is shown in Fig. 6.12. Jayaweera and Cottis (J1) have given simi-
lar curves for cylinders of finite length® based on data of Jayaweera and Mason
(J2). Expressions fitted to these curves are given in Table 6.1. Corresponding

" Their curve for a long cylinder corresponds to drag coefficients 10-20%, lower than those
given by Pruppacher et al. (P8). The Pruppacher values are preferred, since they are based on a more
extensive data compilation.
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FiG. 6.12 Drag coefficient and (CpRe?)!® for cylinders in crossflow: -E=c; - E =
—E=1.

TABLE 6.1

Correlations for Terminal Reynolds Number of Cylindrical Particles

Apd®
CpRep? = EH_’L_ZP_; w = log,o(Cp Reg?)!?
2u
log,o Rey = ap + ayw + a;w? + azw?
where
a, = —0.81824 — 0.55689/E

ay = 2.41277 + 1.54674/E — 0.53872/E>

a3 = —0.20560 — 1.34714/E + 0.65696/E>
27 9a; 3a,

a, = 0.82343 ——aao BET3 —--4—;:15 E — o0, a4 = —0.03436

values for E =1 and E = 2 appear in Fig. 6.12. For a long cylinder (E — o0)
these expressions agree within 3.5% with Egs. (6-20) to (6-22).

2. Motion at Higher Reynolds Numbers

As noted above, for Re; greater than a value of order 100, a cylinder in free
motion has a secondary oscillatory motion superimposed on its steady fall
or rise. For cylinders with E > 1, the axis oscillates in a vertical plane about
the mean (horizontal) orientation, and the trajectory oscillates about the mean
path in the same plane as the cylinder “sideslips” when its axis is not horizontal
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(C3, 12, J2, M3, S8). The amplitude of angular oscillations decreases as E in-
creases, and a very long cylinder falls steadily to high Re(12, J2). If Re; > 3500
(S8), motion also occurs in a horizontal plane. For relatively low y, the cylinder
oscillates about a vertical axis (12, S8), while for dense particles in liquids or
particles in gases the cylinder rotates continuously about a vertical axis (C3, 12).
A cylinder with E = 1 follows a trajectory inclined to the vertical, and “tumbles”
in the direction of horizontal travel (I12). For E < 1, the axis oscillates and
rotates about a vertical line, so that the secondary motion resembles the final
stages of motion of a coin spinning on a flat surface (I12).

As for disks and spheroids, the terminal velocity in this regime depends upon
y as well as on particle shape. Table 6.2 summarizes correlations (I2) which
may be used for y typical of particles in liquids. The correlations do not extra-
polate to the high y-values typical of particles in gases, and comparison with
available data (C3) shows that predicted terminal velocities are 25 to 35% too
high.? We therefore propose that terminal velocities for cylinders in gases in
the “Newton’s law” range be estimated for E > 1 by multiplying the values given
by Table 6.2 by 0.77. For E < 1, particles are best treated as disks.

TABLE 6.2

Drag Coefficients and Terminal Velocities
for Cylinders with Secondary Motion®

E>1 E<1
Cp 0.99y 012~ 0.08 125y~ 005018
UT 1.26y°'°6E0‘°4\/ag A?/p 1.265'}10'025E0'59\/2é A;//;

“ After Isaacs and Thodos (I2). The area used in defining Cp, is d*°E
for E > 1 and nd?/4 for E < 1.

Marchildon et al. (M3) related oscillation of a falling cylinder to movement
of the front stagnation point, and obtained an expression for the frequency:
0.11 UTr 3E 1/2

d |93 +4E?)

This result agrees closely with their own data and those of Stringham et al.
(S8). However, its validity for particles in gases appears to be untested.

f= (6-25)

B. HEAT AND MASS TRANSFER

Mass transfer rates in steady two-dimensional flow normal to the axis of a
long cylinder have been computed numerically over a range of Re (D3, M8, W6).

T Christiansen and Barker (C3) correlated the drag on cylinders falling through gases. However,
they indicate anomalously high dependence on 7y and E. Moreover, we have been unable to interpret
these correlations in a way which is consistent with either their own data or that of Isaacs and
Thodos (I12) and Marchildon et al. (M3).
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These results, which are expected to be reliable for Re < 40, are correlated
within 10% by the expression

Sh es 1 1 U3R 0.46
S = 0. < |+ i@) e (Re > 0.1). (6-26)
Figure 6.13 compares Eq. (6-26) with available numerical solutions and ex-
perimental data of Hilpert (F1, H4) for heat transfer to air. Agreement is good
even for Re as high as 10°. The review of Morgan (M12) should be consulted
for additional data and discussion on transfer to cylinders in crossflow.
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FiG. 6.13  Heat transfer factors for long cylinders in steady crossflow.

Although there are no data for cylinders in free fall, the following suggestions
are offered for calculating transfer rates. For cylinders with E > 1 falling with
axis horizontal and without secondary motion, Eq. (6-26) should be used with
the transfer coefficient over the flat ends of the cylinder taken as equal to that
over the curved surface. Cylinders with E < 1 falling without secondary motion
can be treated as oblate spheroids of the same E. For higher Re, the recom-
mendations given below for particles of arbitrary shape in free fall at high Re
should be followed.

IV. PARTICLES OF ARBITRARY SHAPE

As shown in Chapter 4, the terminal velocity of a particle of arbitrary shape
cannot be predicted with complete confidence, even at low Re. In this chapter,
we have shown that the behavior of particles with well-characterized shapes is
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not well understood at higher Re, especially when secondary motion occurs.
In view of these factors and the difficulties noted in Chapter 2 in charac-
terizing the shape of irregular particles, it is not surprising that there are no
fully successful methods for predicting the behavior of particles of arbitrary
shape. Torobin and Gauvin (T2) reviewed various correlations which have
been proposed.

A. FREE FALL AT INTERMEDIATE REYNOLDS NUMBERS

For calculating terminal velocities, it is convenient to use groups like those
defined in Chapter 5:

NY3 = [4Ap g/3pv*]'/? x (equivalent diameter), (6-27)
NY?* = [3p/4Ap gv]'/* U, (6-28)

where the equivalent diameter to be used depends on the correlation to be
applied. The velocity correction factor for an arbitrary particle is defined as:

K = Uy/U, (6-29)

sphere>

where U, the terminal velocity of a spherical particle of equivalent diameter,
can be found from the Re; or Ni/3 vs. Nj? correlations in Chapter 5 and the

Appendices.
1. Sphericity

Wadell (W1, W2) proposed that the sphericity i, defined in Chapter 2, could
be used to correlate drag on irregular particles. The appropriate dimension
for definition of Re and N} is then d,, the diameter of the sphere with the
same volume as the particle. Figure 6.14 shows velocity correction factors
calculated on this basis (G5). This approach has found widespread acceptance,
although there is experimental evidence that terminal velocity does not correlate
well with sphericity (B8, S8).

01 Re=t 10 100 10’ 10"
} L T TTTN 0951 N TTTTH
08 -
— 08 o
%Eﬁou_
\y=02 —
01 [ R I I [
1 10 100 NG 10’

D

FIG. 6.14 Ratio K, of terminal velocity of particle of arbitrary shape to that of sphere having the
same volume. Based on Wadell (W2) and Govier and Aziz (G5).
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Some indication of the validity of this correlation can be obtained by com-
paring it with results for specific shapes. For oblate spheroids with an aspect
ratio of 0.5, predicted values of N{/* agree with available data within 10%,.
For more oblate spheroids, the Wadell correlation predicts terminal velocities
as much as 20°/ too low. For cylinders, agreement is even worse, with Wadell’s
correlation underpredicting U+ by up to 40%;, except for aspect ratios of order 10.
Combining these results with the inherent difficulty in measuring  for an
irregular particle, we conclude that sphericity is not a good basis for predicting
terminal velocities, even in the “intermediate” range, except for oblate shapes
with y approaching unity.

2. Heywood’s Correlation

Heywood’s “volumetric shape factor” k, defined in Chapter 2, can be estimated
rapidly, even for irregular particles, using Eq. (2-2). Table 6.3 gives values for
regular shapes and some natural particles. Heywood (H2, H3) suggested that
k be employed to correlate drag and terminal velocity, using d,, and the projected

TABLE 6.3

Values for Heywood’s Volumetric Shape Factor

Regular shapes:

Sphere 0.524
Cube 0.696
Tetrahedron 0.328

Cylinder with E = 1:
viewed along axis 0.785
viewed normal to axis 0.547
Spheroids: E = 0.5 0.262
E=2 0.370

Approximate values for isometric irregular shapes, k,(H2):

Rounded 0.56
Subangular 0.51
Angular
tending to prismoidal 0.47
tending to a tetrahedron 0.38

Selected natural particles (D1):

Sand 0.26
Bituminous coal 0.23
Blast furnace slag 0.19
Limestone 0.16
Talc 0.16
Gypsum 0.13
Flake graphite 0.023

Mica 0.003
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area to define Re and Cp, respectively. There are justifications for this approach
because many natural particles have an oblate shape, with one dimension
much smaller than the other two. Over large Rey ranges in the “intermediate”
regime, such particles present their maximum area to the direction of motion,
and this is the area characterized by d,. There is also evidence that the shape
of this projected area, which does not influence k, has little effect on drag; for
example, Jayaweera and Cottis (J1) found essentially the same Cp vs. Re
relationship for hexagonal and circular disks.

Heywood gave drag curves for various values of k (H3), and tabulated the
velocity correction factor K, (H2). Figure 6.15 shows K, plotted from
Heywood’s table. There is empirical evidence for the validity of this approach
(D1). As with sphericity, comparison for specific shapes is informative. For
oblate spheroids (for which d, is the equatorial diameter) and Re; < 100,
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F1G. 6.15 Ratio K, of terminal velocity of particle of arbitrary shape to that of a sphere having
the same projected area. After Heywood (H2).
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F1G. 6.16 Comparison of Heywood correlation with experimental results for cylinders of E = 2,
4 and 10. Np,'/? and Re are based on d,. Dashed lines are calculated from the correlations of experi-
mental data given in Table 6.1. Light solid lines are the corresponding Heywood predictions.




IV. Particles of Arbitrary Shape 161
predicted values of N{/* are within 109, of available data. At higher Re; where
Eq. (6-13), limited to E = 0.5, is the only available result, Heywood’s correlation
underpredicts the terminal velocity by up to 20%. For cylinders, the comparison
with the correlation in Table 6.1 is shown in Fig. 6.16. For E = 2, agreement
is within 10%, over the range of Re, based on d,, from 10 to 200, but at lower
Rer the Heywood correlation underpredicts the terminal velocity by up to 25%.
For E = 4, agreement is within 109, down to Rey = 0.5, while for E = 10, U,
is overpredicted over the whole range.

Since most irregular particles of practical concern tend to be oblate, lenticular,
or rod-like with moderate aspect ratio, these comparisons generally support
Heywood’s approach. Combining this observation with the fact that the volu-
metric shape factor is more readily determined than sphericity, we conclude
that Heywood’s approach is preferred for the “intermediate” range. For con-
venience in estimating Uy, Table 6.4 gives correlations, fitted to Heywood’s
values, for 0.1 < k < 0.4 at specific values of N}'3. Since K , is relatively insensi-
tive to N§?, interpolation for K, at other values of N3 is straightforward.
In common with Heywood’s tabulated values, the correlations in Table 6.4
do not extrapolate to K, = 1 for a sphere (k = 0.524).

TABLE 6.4
Correlations for Velocity Correction Factor
(0.1 <k <04)
NL?3 K, = Velocity correction factor
1 0.104 + 1.538k
1012 0.127 + 1.526k — 0.1k>
10 0.1975 + 1.575k — 0.45k>
1032 0.166 + 1.496k — 0.3k*
100 0.0665 + 1.907k — 1.05k?

B. FREE FALL IN THE NEWTON’S LAW REGIME

Since the motion of particles of simple shapes in free fall or rise is poorly
understood when secondary motion occurs, it is not surprising that the behavior
of particles with more complex or irregular shapes in this range cannot be
predicted with certainty. As for the regular shapes, Cp, is only weakly dependent
on Re, but depends on y (T2). The correlation developed by Wadell (Fig. 6.14)
is not recommended since it shows dependence on Re but not on y and has
already been shown to be unreliable in the intermediate range.

Pettyjohn and Christiansen (P4) reported extensive data for isometric par-
ticles. Heywood’s volumetric shape factor was not a good basis for correlation
in the “Newton’s law” range, but sphericity was found suitable. Subsequently,
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Barker (B1, T2) showed that the data included a significant density effect, and
gave a modified correlation,

Cp=7"118(596 — 5.51) (1.1 <7 < 8.6), (6-30)

where Cp, is based on the cross-sectional area of the volume-equivalent sphere,
nd.? /4. The terminal velocity is then

Uy = 0499136 [g Ap d./p(1.08 — )]"2. (6-31)

The dependence on y is compatible with results for short cylinders (see Table 6.2).
Data are too scant for these equations to be recast in a form analogous to
Egs. (5-17) and (5-18) and to extrapolate to high y.

For other particles, Christiansen and Barker (C3) proposed that shapes be
classified according to the ratio of maximum to minimum lengths on sections
through the centroid. If this ratio is less than 1.7, the particle should be treated
as isometric, and Egs. (6-30) and (6-31) can then be applied. Otherwise, the
particle should be classified as rod-like or disk-like, and results given for these
shapes in earlier sections should be applied. For irregular particles which do
not approximate a shape for which data are available, there are no very satis-
factory methods available. The situation is complicated by the fact that particles
with high y can maintain nonpreferred orientations over large distances (M2).
The state of affairs is such that if one wishes to estimate the terminal velocities
of irregular particles in the Newton’s law range one should measure them
whenever possible.

C. HEAT AND MASS TRANSFER

For particles at high Re, the total heat or mass transfer is made up of a
contribution from the front part of the body forward of separation and a con-
tribution from the wake region aft of separation. The two regions should be
treated differently to correlate transfer rates.” Over a broad Re range and for
nonstreamlined shapes, separation can be considered, to a first approximation,
to occur at the locus of the maximum perimeter normal to flow. Figure 6.17
shows mass- and heat-transfer data for the aft portion of a number of different
shapes, supported rigidly from the rear. Since transfer in the separated region
is particularly sensitive to wall effects and turbulence (I1, P3), data have been
included only when tunnel area blockage and turbulence intensity were less
than 10% and 3%, respectively. The characteristic length for both the ordinate
and abscissa in Fig. 6.17 is

surface area aft of maximum perimeter

! p—
aft —

. 6-32
maximum perimeter normal to the flow (6-32)

" This idea was first used by Van der Hegge Zijnen (V1) and Douglas and Churchill (D4) in
developing correlations for cylinders in crossflow.
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F1G. 6.17 Wake region transfer for two- and three-dimensional fixed bodies at high Reynolds
number.

Different correlations are required for three-dimensional bodies (spheres, disks,
and spheroids) than for the two-dimensional shapes (cylinders and wedges).
For three-dimensional shapes transfer in the aft region is correlated by

Shye — Shp /2

= 0.056(Re}) "7, (6-33)
Sc'73

where Shy ., is the Sherwood number based on L, for diffusion to a stagnant
medium. For the forward portion, we assume transfer to be proportional to the
square root of the Reynolds number and adjust the proportionality constant to
fit the sphere data presented in Chapter 5. The overall correlation for three-
dimensional shapes is then

Sh" — Sh,//2

Sct/3 -

0.62(1 — a)'2(Re")!* 4 0.056(x Re’)* 7! (10° < Re’ < 10°),

(6-34)

where « is the fraction of the total particle area which is aft of the maximum
perimeter and Sh’, Shy’, and Re’ are all based on L', the characteristic length
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introduced by Pasternak and Gauvin (P1) [see Eq. (4-67)]. If only part of the
surface is active, the active area and maximum perimeter of the active area
should be used. For bodies with fore-and-aft symmetry, « = 0.5 and Eq. (6-34)

becomes:
h’ — Sh,'/2
S;ng_ho_/ = 0.44(Re’)"/2 4 0.034(Re))* 71 (6-35)

Scl/3
Equation (6-35) appeared already for spheres in Table 5.4.

For two-dimensional shapes, the equations corresponding to Egs. (6-33) to
(6-35) are

Shig/Sc'/® = 0.038(Re) 78, (6-36)

Sh'/Sc!3 = 0.62(1 — a)'/?Re!/? + 0.038(« Re)° 7, (6-37)

Sh'/Sct/? = 0.44(Re’)*? 4 0.022(Re)* 78 (o = 0.5). (6-38)

The exponents on Re’ for the wake contribution terms in Egs. (6-33) to (6-38)

fall within the range % to 1 proposed by earlier investigators (D4, R2, V1). The
Shy’ term does not appear in Egs. (6-36) to (6-38) since Shy' =0 for a truly -
two-dimensional body.

Although there are few data to compare with these equations, they are in
accord with the results of Pasternak and Gauvin (P1) who found that use of
L’ as characteristic length brought together their data for spheres, cylinders,
cubes, prisms, and hemispheres for 500 < Re’ < 5000. Unfortunately, the tur-
bulence intensity in their wind tunnel was too high for their data to be used
to test the equations directly. When compared with heat transfer data from
cylinders in crossflow, the errors were within 109 for circular cylinders (F1, H4),
159 for square and hexagonal cylinders (H4), and 259, for elliptic cylinders
with 2:1 axis ratios (K3). In using Eq. (6-37) for the square and hexagonal
cylinders, the aft area was taken to include the area of sides parallel to the flow.

For particles of arbitrary shape held in a flow, Egs. (6-34) and (6-37) should
be used for Re’ = 1000. For particles in free fall the only data available (P2)
show that the transfer is little affected by particle rotation with rotational
velocities less than 509 of the particle velocity. The correlation for fixed particles
was adequate provided that the equivalent diameter d, was used in place of L".
For particles of arbitrary shape falling in the Newton’s law regime, Eq. (6-35)
should be used with d, replacing L' and Shy’ taken as 2.

For particles with rough surfaces, e.g., with roughness elements of height
less than 209, of d,, the mass transfer coefficient is usually larger than predicted
here (A5, J4, S3, S4), but at most by about 50%. Roughness is treated in more
detail in Chapter 10. For a particle made up of a small number of particles
in a cluster, the use of d, in Eq. (6-35) gives good results (S4).

In the intermediate regime it is recommended that the particle be treated
as an oblate spheroid with major and minor axes determined from the particle
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volume and the projected area of the particle lying in its orientation of maximum
stability on a horizontal surface; both parameters are required in any case
for the determination of the volumetric shape factor k. The aspect ratio E is then

E = (6/n)k, (6-39)

and the equatorial diameter d is given by
d=2a=(6V/nE)'3 (6-40)

If k > 0.524, E should be taken as unity.

V. FREE FALL OF OTHER SPECIFIC SHAPES
OR TYPES OF PARTICLE

Excellent reviews of work on other specific shapes have been prepared by
Hoerner (H5) and Torobin and Gauvin (T2). Some more recent references are
listed in Table 6.5. Particles of special shapes often show interesting preferred
orientations in the “intermediate regime.” For example, a freely falling cone of
uniform density falls with its base horizontal for Re (defined with basal diameter
as characteristic length) > 0.05; the apex points up if the apex angle is less
than 45° and down if the angle is greater than 45° (J2). Cubes and isometric
tetrahedra adopt an orientation with a flat face perpendicular to the direction of
motion for Rey > 10, while octahedra show similar behavior for Re; > 20 (P4).

Work has also been done on specific types of particles encountered in agri-
cultural, meteorological, and other applications. Some relevant references are
listed in Table 6.5. When data for the specific shape or the specific type of

TABLE 6.5

Sources of Data on Drag and Free Fall Behavior of
Some Nonspherical Particles

Shape or type of particle References
Noncircular plates L5, P6, P7)
Cones Cl1, G4, J2, LS, W3)

Prisms
Straws and stems

Grain, seeds, kernels BS, B6,.B7, H1)
Blueberries S7)
Walnuts M13)

Halil, ice crystals
Snow crystals

(
(
(
(
(
Soybeans (H1)
(
(
(
(
Sand (
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particles of interest are available, these data often provide a more accurate
basis for predicting free fall behavior than the general and approximate methods
outlined previously in Section I'V.
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Chapter 7
Ellipsoidal Fluid Particles

1. INTRODUCTION

The conditions under which fluid particles adopt an ellipsoidal shape are
outlined in Chapter 2 (see Fig. 2.5). In most systems, bubbles and drops in the
intermediate size range (d, typically between 1 and 15 mm) lie in this regime.
However, bubbles and drops in systems of high Morton number are never
ellipsoidal. Ellipsoidal fluid particles can often be approximated as oblate
spheroids with vertical axes of symmetry, but this approximation is not always
reliable. Bubbles and drops in this regime often lack fore-and-aft symmetry,
and show shape oscillations.

II. FLUID DYNAMICS

A. AIR/WATER SYSTEMS

. Because of their practical importance, water drops in air and air bubbles in
water have received more attention than other systems. The properties of water
drops and air bubbles illustrate many of the important features of the ellip-
soidal regime.

1. Water Drops in Air

Numerous determinations of the terminal velocities of water drops have been
reported. The most careful measurements are those by Gunn and Kinzer (G13)
and Beard and Pruppacher (B4). Figure 7.1, derived from these results,” shows

* Results for Re < 300 were included in the data used to derive the “standard drag curve” in
Chapter 5. Numerical results for spherical raindrops (valid for Re & 200) are also discussed in
Chapter 5.
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FiG. 7.1 Terminal velocity and aspect ratio of water drops falling freely in air at 20°C and 1 bar
(B4, G13, P5).

terminal velocity and corresponding Reynolds number as a function of volume-
equivalent diameter for water drops in air. Berry and Pranger (B7) and Beard
(B3) give empirical polynomials describing the terminal velocity of drops in
air, with Beard’s equations covering a wider range of atmospheric conditions
than the others. For water drops in air under normal atmospheric conditions
at sea level, the simplest fit (B7), accurate within about 3%/, gives

Re = exp[ —3.126 + 1.0131n N, — 0.01912(In Np)?]
(24 < Np < 107; 0.1 < Re < 3550) (7-1)

where Ny is defined by Eq. (5-15). For d. < 1 mm (Re < 300), deviations from
a spherical shape and internal circulation are so small that the correlations for
rigid spheres in Chapter 5 may be used to predict terminal velocities. For d, <
20 um (B3), correction for noncontinuum effects must be made (see Chapter 10).
Pitter and Pruppacher (P4) studied the motion of 200 to 350 um water drops
undergoing freezing.

Drops larger than about 1 mm in diameter are significantly nonspherical;
the mean height to width ratio is approximated (P5) by:

E=1030-0062d, (1 <d,<9mm) (7-2)

with d, in mm. This ratio is plotted in Fig. 7.1. Figure 7.2 shows that deforma-
tion increases the drag coefficient above the value for a rigid sphere if C, and
Re are based on the volume-equivalent diameter d,. The flattening of water
drops at the front (lower) surface results from the increased hydrodynamic
pressure there, while the rear has a more uniform hydrodynamic pressure and
is therefore more rounded (M6). Blanchard (B9) discusses the popular mis-
conception that raindrops fall with a teardrop shape. Figure 2.4(a) shows a
photograph of a water drop in air. Shapes are discussed in detail in Section D.
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FI1G. 7.2 Drag coefficient as function of Reynolds number for water drops in air and air bubbles
in water, compared with standard drag curve for rigid spheres.

Water drops become unstable and tend to break up before they reach 1 cm in
diameter (see Chapter 12). Drops approaching this size show periodic shape
fluctuations of relatively low amplitude (J3, M4).

As for other types of fluid particle, the internal circulation of water drops in
air depends on the accumulation of surface-active impurities at the interface
(H9). Observed internal velocities are of order 19 of the terminal velocity (G4,
P5), too small to affect drag detectably. Ryan (R6) examined the effect of surface
tension reduction by surface-active agents on falling water drops.

2. Air Bubbles in Water

Experimental terminal velocities for air bubbles rising in water are presented
in Fig. 7.3 for the ellipsoidal regime and adjacent parts of the spherical and
spherical-cap regimes. Some of the spread in the data results from experimental
scatter, but the greatest cause is surface contamination. For water drops in air,
described in the previous section, surfactants have negligible effect on drag
since « is so high that internal circulation is small even in pure systems. For
air bubbles in water, x is so small that there is little viscous resistance to inter-
nal circulation, and hence the drag and terminal velocity are sensitive to the
presence of surfactants.

The two curves in Fig. 7.3 are based on those given by Gaudin (G9) for dis-
tilled water and for water with surfactant added. The curves converge for small
(spherical) bubbles, since even distilled water tends to contain sufficient sur-
factant to prevent circulation in this range (see Chapter 3), and for large
(spherical-cap) bubbles, where surface tension forces cease to be important.
Surface-active contaminants affect the rise velocity most strongly in the ellip-
soidal range. Drag coefficients corresponding to these two curves appear in
Fig. 7.2, and show that C, for bubbles lies below the rigid sphere curve when
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FiG. 7.3 Terminal velocity of air bubbles in water at 20°C.

internal circulation is present, but above if there is no internal circulation and
the drag is dominated by deformation. For d. > 1.3 mm, the uppermost (pure
system) curve in Fig. 7.3 is approximated closely by

Uy = [(2.146/pd,) + 0.505gd,]*, (7-3)

which is of the form suggested by a wave analogy (C2, M7).

Aybers and Tapucu (A4, A5) measured trajectories of air bubbles in water.
When surface-active agents continue to accumulate during rise, the terminal
velocity may never reach steady state (A4, B1) and may pass through a maxi-
mum (W4). Five types of motion were observed, listed in Table 7.1 with Re
based on the maximum instantaneous velocity. Secondary motion of fluid par-

TABLE 7.1

Motion of Intermediate Size Air Bubbles Through Water at 28.5°C*

d, (mm) Re E Path

<13 <565 >0.8 Rectilinear

1.3t02.0 565 to 880 0.810 0.5 Helical

2.0to0 3.6 880 to 1350 0.5 t0 0.36 Plane (zig-zag) then helical
3.6to4.2 1350 to 1510 0.36 to 0.28 Plane (zig-zag)

42to 17 1510 to 4700 0.28 to 0.23 Rectilinear but with rocking

¢ After Aybers and Tapucu (AS5).
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ticles, associated with wake phenomena, is discussed in greater detail in Section
F. Lindt and De Groot (L&) give values of the Strouhal number for helical
vortex shedding behind air bubbles in water.

B. TERMINAL VELOCITIES OF DROPS AND BUBBLES IN LIQUIDS

The generalized graphical correlation presented in Fig. 2.5 gives one method
of estimating terminal velocities of drops and bubbles in infinite liquid media.
For more accurate predictions, it is useful to have terminal velocities correlated
explicitly in terms of system variables. To obtain such a correlation is especially
difficult for the ellipsoidal regime where surface-active contaminants are im-
portant and where secondary motion can be marked.

1. Effect of Viscosity Ratio i

It is general practice to ignore the effect of the viscosity of the internal fluid
in correlations of terminal velocities. We recall from Chapter 3 that decreasing
Uy all other factors remaining fixed, can at most cause a 507, change in Uy at
low Re, and this change is seldom realized in practice due to the effect of sur-
factants. Hamielec (H2) showed that varying x over a tenfold range had a small
but noticeable effect for cyclohexanol drops in water with Re up to about 10.
Figure 7.4 shows Re (Eo) for eight systems, all having virtually the same Morton

Re
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FiG. 7.4 Reynolds number as a function of Eotvos number for systems with essentially identical
M studied by different workers.
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Number (2.0 to 2.3 x 10~ 19), but widely different values of x (0.35 to 20). While
the data exhibit some scatter, the observed dimensionless terminal velocities
do not vary systematically with «, but appear to reflect differences in system
purity. Thorsen and coworkers (T4, T5) took greater care to purify their systems
than the other authors and this is reflected in higher velocities. The internal
fluid Viscosity can be considered to be of secondary importance for systems in
which no particular care has been taken to eliminate surfactants.

2. Effect of Surface-Active Contaminants

We may illustrate the effect of surfactants by comparing terminal velocities
measured by different workers using the same system. Results for air bubbles
in water have already been shown in Figs. 7.2 and 7.3. Results from six different
studies on carbon tetrachloride drops falling through water are plotted in
Fig. 7.5. The measured terminal velocities differ widely among different inves-
tigators, and one can only attribute these differences to differences in system
purity. A number of workers have noted a strong influence of system purity on
the drag or terminal velocity of ellipsoidal fluid particles [e.g. (E3, R1, S9, T1,
T4, Z1)]. In a very careful study, Edge and Grant (E3) examined the effects of
low concentrations of a surfactant, sodium lauryl sulphate, on the motion of
dichloroethane drops descending through water. At very low surfactant con-
centrations (10~ > gm/liter or less) there was no observable effect. As the con-
centration was increased, a marked decrease in terminal velocity was observed
for drops of equivalent diameter between 2 and 6 mm and this was usually
accompanied by earlier boundary layer separation and irregular drop

0.3,
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F1G. 7.5 Terminal velocity of carbon tetrachloride drops falling through water, measured by
different workers, with varying system purity.
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oscillations. At relatively high surfactant concentrations (10~2 gm/liter or
greater) the systems were said to be “grossly contaminated.” The drop terminal
velocities again became independent of surfactant concentration while the
interface remained rigid, and oscillations became more regular.

Very few workers have succeeded in eliminating all surface-active contami-
nants from their systems. Moreover, the type and concentration of contaminants
present have seldom been characterized. Based on the available evidence, one
may draw the following conclusions.

(i) Surfactants tend to damp out internal motion by rendering the inter-
face rigid as discussed in Chapter 3. The influence of surfactants is most sig-
nificant for low values of «, since at large x the viscous resistance of the internal
fluid limits internal motion even for pure systems.

(1)) Surfactants have the greatest influence on terminal velocity near the
point of transition from rectilinear to oscillating motion. This is presumably
because internal circulation can drastically alter the wake structure of a fluid
particle (see below) leading to delayed boundary layer separation, smaller
wakes, and delayed vortex shedding.

(i) Surfactants play a particularly important role in high ¢ systems (e.g.,
air/water) since surface tension reductions are largest for these systems (see
Chapter 3).

(iv) Most of the experimental results in the literature are for “grossly con-
taminated” bubbles and drops. Since it is so difficult to eliminate surface-active
contaminants in systems of practical importance, this is not a serious limitation.

3. Correlation for Contaminated Drops and Bubbles

There is a substantial body of data in the literature on the terminal velocities
of bubbles and drops. In view of the influence of system purity discussed above,
a separation of this data has been made. Cases where there is evidence that
considerable care was taken to eliminate surfactants and where a sharp peak
in the Uy vs. d, curve at low M and « is apparent (as for the pure systems in
Figs. 7.3 and 7.5) are discussed in Section 4.

Grace et al. (G12) applied three types of correlation to a large body of
experimental data: the form proposed by Klee and Treybal (K 3); that proposed
by Hu and Kintner (H12) and its extension by Johnson and Braida (J2); and
a wave analogy suggested for bubbles by Mendelson (M7) and extended to
drops by Marrucci et al. (MS5). The second of these forms gave smaller residuals,
especially as M is increased. Even so, it was necessary to eliminate high M
systems from the resulting correlation. Cases where wall effects were too sig-
nificant were also eliminated from the data treated. The criteria which the data
had to meet were then Egs. (9-33) or (9-34) and

M <1073, Eo<40, Re>O0.l. (7-4)
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The indices in the original Johnson and Braida correlation and the point of
intersection between the two linear regions were adjusted to improve the agree-
ment with all the data meeting the above criteria. The resulting correlation
(G12) is:

J =094H°757 (2 < H<593) (7-5)
and

J =3.42H0441 (H > 59.3), (7-6)
where

H=3Eo M “"*(u/p,)~ "', (7-7)

J =ReM®* + 0857, (7-8)

and p,, is the viscosity of water in Braida’s experiments, which may be taken
as 0.0009 kg/ms (0.9 cp).

A plot of every fourth data point and the lines given by Egs. (7-5) and (7-6)
appears in Fig. 7.6. The gradient discontinuity corresponds approximately to
the transition between nonoscillating and oscillating bubbles and drops. In the
above correlation, the terminal velocity appears only in the dimensionless
group J, and may be expressed explicitly as:

Uy =2 M0149 — 0.857). (7-9)
pd.
The r.m.s. deviation between measured and predicted terminal velocities is
about 159 for the 774 points with H < 59.3 and 119 for the 709 points with
H > 59.3. This correlation is recommended for calculations of bubble and drop
terminal velocities when the criteria outlined above are satisfied and where
some surface-active contamination is inevitable. The predictions from this
correlation for carbon tetrachloride drops in water are shown on Fig. 7.5.
Many other correlations for calculating the terminal velocity of bubbles and
drops are available [e.g. (H12,J2, K3, T1, V1, W2)]. None covers such a broad
range of data as Egs. (7-5) and (7-6). Moreover, a number of the earlier corre-
lations require that values be read from graphs or that iterative procedures be
used to determine Us.

4. Correlation for Pure Systems

In view of the limited data available for pure systems, Grace et al. (G12)
modified the correlation given in the previous section rather than proposing
an entirely different correlation. A correction of somewhat similar form to that
suggested in Chapter 3 for low Re is employed; i.c.,

(Up)pure = Us[1 +TA1 + x)], (7-10)
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FiG. 7.6 Data(showing one point in four) used to obtain general correlation for terminal velocity
of drops and bubbles in contaminated liquids, compared with Egs. (7-5) and (7-6) (B11, B17, D2,
E3, E4, G9, G10, G14, H1, H12, J4, K2, K3, K5, L3, L11, P3, T1, W3, Y4).

where I' is to be obtained experimentally and U+ is predicted using Egs. (7-5)
to (7-9). Since the continuous fluid was water for all the pure systems for which
data are available, p and M cover very restricted ranges. Experimental values
of I' are plotted in Fig. 7.7 as a function of Eo(1 + 0.15k)/(1 + ), where the
function of k was chosen to reduce the spread in the resulting points.

Careful purification of a system has little effect for small and large drops and
bubbles. Hence I" reaches a maximum for a particular value of the abscissa
and decreases to zero at large and small values of the abscissa. An envelope
has been drawn to provide an estimate of the maximum increase in terminal
velocity for bubbles and drops in pure systems over that for contaminated
systems. This envelope, together with Eq. (7-10) and the correlation of the
previous section, have been used to obtain the upper curve in Fig. 7.5 for
carbon tetrachloride drops in water. The curve gives a good representation of
the higher velocities observed for carefully purified systems.
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FiG. 7.7 Correction factor, I', relating terminal velocity in pure systems to value in correspond-
ing contaminated systems (E2, E3, G9, T4).

The envelope in Fig. 7.5 is for the maximum increase in terminal velocity
obtainable by eliminating surface-active contaminants. For systems of inter-
mediate purity, I may be assigned a value between zero and that given by the
envelope. Since the envelope has been derived solely from experiments for
aqueous systems, it should be used with caution for nonaqueous systems.

C. TeRMINAL VELOCITIES OF L1QUID DROPS IN AIR

As indicated in Chapter 2, liquid drops falling through gases have such
extreme values of y and « that they must be treated separately from bubbles
and drops in liquids. Few systems have been investigated aside from water
drops in air, discussed above, and what data are available for other systems
(F1, G5, L5, V2) show wide scatter. Rarely have gases other than air been used,
and some data for these cases [e.g. (L5, N2)] cannot be interpreted easily be-
cause of evaporation and combustion effects. Results for drops in air at other
than room temperature (S8) differ so radically from results of other workers
that they cannot be used with confidence.

For Eo < 0.15, drops are closely spherical and terminal velocities may be
calculated using correlations given in Chapter 5 for rigid spheres. For larger
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drops, data of Finlay (F1) and Van der Leeden er al. (V2) can be correlated
with the best data for water drops in air (B4, G13) by the equations

Re = 1.62E0% 75 M %25 (0.5 < Eo < 1.84), (7-11)
Re= 1.83E0%555 M~ %25 (1.84 < Fo < 5.0), (7-12)
Re = 2.0 Eo®5 M~ 0-25 (Eo > 5.0). (7-13)

Equation (7-13) predicts that the terminal velocity approaches an upper limit,
Uy = 20(Apga/p)'*, (7-14)

independent of the drop size and the viscosity of the gas.
An alternative correlation given by Garner and Lihou (G5) based on data
for different liquids in air may be written:

Re = 0.776 Eo®** M %28 (Eo < 164M'/%), (7-15)
Re = 1.37Eo0% 35 M ~0:2¢ (Eo > 164MY°). (7-16)

This form of correlation was used by Beard (B3) to suggest a correlation for
water drops in air under different atmospheric conditions. It should be used
with caution for gases with properties widely different from air under atmo-
spheric conditions, but the range of liquid properties covered is broad.

It is an open question whether small quantities of surfactants, too small to
influence the gross properties, affect the terminal velocity of liquid drops n
air. This appears unlikely in view of the large values of k, but Buzzard and
Nedderman (B18) have claimed such an influence. Acceleration may have
contributed to this observation. Quantities of surfactant large enough to lower
o appreciably can lead to significantly increased deformation and hence to an
increase in drag and a reduction in terminal velocity (R6).

D. SHAPES OF ELLIPSOIDAL FLUID PARTICLES
1. Theory

General criteria for determining the shape regimes of bubbles and drops are
presented in Chapter 2, where it is noted that the boundaries between the
different regions are not sharp and that the term “ellipsoidal” covers a variety
of shapes, many of which are far from true ellipsoids. Many bubbles and drops
in this regime undergo marked shape oscillations, considered in Section F.
Where oscillations do occur, we consider a shape averaged over a small number
of cycles.

As noted in Chapters 2 and 3, deformation of fluid particles is due to inertia
effects. For low Re and small deformations, Taylor and Acrivos (T3) used a
matched asymptotic expansion to obtain, to terms of order We?/Re,

r(0) 34(11k + 10) We?

a—0= 1 — 12 We P,(cosl) — 7000+ 1) Re

P5(cos 0), (7-17)
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where

=

40 — 1
(3 + 103 + 1142 + 4.05K%) — (—f%} (7-18)

1

32(1 + x)? {
P, and P; are the second- and third-order Legendre polynomials. For small
We, the deformed bubble or drop is predicted to be exactly spheroidal. In
principle, the spheroid may be either prolate or oblate, but for cases of physical
significance oblate shapes are predicted. If Re, > 1, droplet shapes are predicted
to differ only slightly from the case where both Re and Re, are small (P1).
Brignell (B14) extended the series expansion to terms of order We Re?. Since
deformation at low Re is only observable for high M systems, this approach
is of little practical value.

At larger Re and for more marked deformation, theoretical approaches have
had limited success. There have been no numerical solutions to the full Navier—
Stokes equation for steady flow problems in which the shape, as well as the
flow, has been an unknown. Savic (S3) suggested a procedure whereby the
shape of a drop is determined by a balance of normal stresses at the interface.
This approach has been extended by Pruppacher and Pitter (P6) for water
drops falling through air and by Wairegi (W1) for drops and bubbles in liquids.
The drop or bubble adopts a shape where surface tension pressure increments,
hydrostatic pressures, and hydrodynamic pressures are in balance at every
point. Thus

Apgy + a[(1/R,) + (1/R>) — (2/Ro)] + pup — (Pup), = 0, (7-19)

where y is measured vertically upwards from the lowest point, 0, of the drop;
R, and R, are the principal radii of curvature at a general point on the surface
(R; = R, = Ry at 0); and pyp and (pyp), are the pressures due to the external
and internal fluid motions, respectively, less the stagnation pressures. It is
usual practice to assume that (pyp), < pup, although this has been criticized by
Foote (F2). With this assumption, drop shapes can be determined if the dis-
tribution of pyp is known. Savic assumed that the pressure distribution was the
same as that about a rigid sphere at the same value of Re; Pruppacher and
Pitter used the same approach, with more recent and reliable pressure data.
Deformations were assumed small and the shape represented by a cosine series
(P6, S3) or by Legendre polynomials (W1). The general procedure is the reverse
of that employed by McDonald (M6) to calculate surface dynamic pressure
distributions from observed drop shapes. The predictions become less realistic
with increasing particle size and deformation because of increasing error in
the assumed pressure distribution.

A reasonable approximation to the observed profile of many drops and
bubbles is a combination of two half oblate spheroids with a common major
axis and different minor axes (B8, F1). This observation has been used (W1)
to propose a model from which bubble and drop shapes can be estimated at
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high Re. The pressure distribution over the front surface is assumed to be the
potential flow pressure distribution over a complete spheroid of the same
eccentricity, while the dynamic pressure over the rear is assumed uniform so
that the rear deforms like a sessile drop or bubble of the same size in the same
system.” The theory correctly predicts that drops in air deform most at the
front, while some systems (e.g., bubbles in water) begin by flattening more at
the front, then deforming more at the rear with increasing d .

2. Experimental Results for Bubbles and Drops in Liquids

It is possible to prepare a generalized plot of mean aspect ratio E, where E =
maximum vertical dimension/maximum horizontal dimension. In the literature,
both We and Eo are commonly used as independent variables for correlating
shape parameters for fluid particles. The Eotvos number gives a better overall
representation (G12). As in Section B, it is necessary to separate data for liquid
drops falling through air (see Section 4) and for very pure systems (see Section 3).
The generalized graphical correlation for bubbles and drops in contaminated
liquid media is given in Fig. 7.8. Wall effects have been eliminated using the
same criteria as for terminal velocities, i.e., Egs. (9-33) and (9-34).
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Fi1G. 7.8 Correlation for mean aspect ratio E of drops and bubbles in contaminated systems
(B10, H7, K2, K3, K4, T6, W1, W6, Y4).

From Fig. 7.8 it is clear that deformation depends not only on Eo but also
on M, higher M giving rise to less deformation at the same Eo. For low M,
it is reasonable to correlate the data by a single line:

E=1/(1 +0.163E0®737) (Eo <40, M < 10°°), (7-20)
given by Wellek et al. (W6). For higher M, Fig. 7.8 can be used to estimate the

height-to-width ratio of bubbles and drops in liquids. An alternative correlation

* Previous workers have also made use of potential flow pressure distributions about spheroids,
but no allowance was made for lack of fore-and-aft symmetry, while the constant pressure condition
was satisfied only near the front stagnation point (S1) or at the equator and poles (H6, M11).
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obtained by Tadaki and Maeda (T1) for air bubbles with M < 1073 expresses
d./2a = E'* (where 2a is the maximum horizontal dimension) as a function
of a dimensionless group Ta = Re M %23, Vakrushev and Efremov (V1) extended

this approach to give:

E=1 (Ta < 1), (7-21)
E = [0.81 + 0206 tanh {2(0.8 — log,o Ta)}]*, (1 < Ta <39.8), (7-22)
E=024 (Ta > 39.8) (7-23)

Equation (7-23) implies a spherical-cap shape with an included angle of about
50° (see Chapter 8).

3. Experimental Results for Pure Systems

Drops and bubbles in highly purified systems are significantly more deformed
than corresponding fluid particles in contaminated systems. Increased flattening
of fluid particles in pure systems results from increased inertia forces related
to the increased terminal velocities discussed above. Some experimental results
for drops and bubbles in water (low M systems) are shown in Fig. 7.9. The
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FiG. 7.9 Deformation of drops and bubbles in pure water.
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aspect ratios lie significantly below the predictions of Eq. (7-20). The abscissa
used in Fig. 7.7 brings the data together for [Eo(1 4+ 0.15x)/(1 + k)] < 0.5, but
there is considerable scatter beyond this point. Once again the greatest effect
of system purity is in the ellipsoidal regime, small bubbles and drops being
spherical (E = 1) and large ones approaching E = 0.24 no matter how pure
the system. In addition, system purity has the greatest effect at low «.

4. Experimental Results for Drops in Air

The shapes of liquid drops falling through air can be conveniently represented
by two oblate semispheroids with a common semimajor axis a and minor
semiaxes b, and b, (B8, F1). Several workers have reported measurements of
the aspect ratio, (b; + b,)/2a, and these are shown as a function of Eo in Fig.
7.10. The data can be represented by the relationships

2a

by + by 1.0
2a 1.0+ 0.18(Eo — 0.4)°®

1.0 (Eo <04), (7-24)

(04 <Eo <38). (7-25)

The shape factor, b/(b; + b,), is also plotted in Fig. 7.10 based on data given
by Finlay (F1). The relationships

by
=05 . -
s (Eo < 0.5), (7-26)
0.5
by (0.5 < Eo < 8) (7-27)

b, +b, 10+ 0.12(Eo—0.5)°8

give an adequate fit to the data. Equations (7-25) and (7-27) are plotted in
Fig. 7.10.

A good approximation to the shape of deformed drops in air may therefore
be obtained from knowledge of the system properties and drop size. The ratios
(by + b,)/2a and b/(b; + b,) are calculated from Eo using Egs. (7-25) and
(7-27). From geometric considerations

by + b, |13
2a ’

d./a= 2[ (7-28)

so that the semiminor axes can then be calculated. The surface area may be
estimated by again assuming that the drop is composed of two half spheroids,ie.,

2 1 2
A= oma 4 TP (L e} bty (T el (7-29)
2161 l_el 62 1‘—62

where e¢; = (1 — b;?/a*)"* and e, = (1 — b,*/a*)'/? are the eccentricities of the
front and rear sections.
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FiG. 7.10  Aspect ratio E, shape factor b, /(h, + b,), area factor 1/2«, and factor L'/d, for drops
falling in air.

E. WAKES OF DEFORMED BUBBLES AND DROPS

The formation of an attached wake and the subsequent onset of wake shed-
ding tend to be promoted by increasing oblateness (see Chapter 6) and by the
tendency of surface-active contaminants to damp out internal circulation (see
Chapter 5). Experiments have been conducted with dyes added to enable
attached wakes and shedding phenomena to be visualized (H8, M1, M2, S2)
and wake volumes to be measured (H8, Y4) for drops and bubbles. Since dyes

tend to be surface active, the results of these experiments are probably relevant
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to grossly contaminated systems. Other tracers have also been used in wake
visualization studies (L8, L9). The appearance of an attached wake for impure
systems and the onset of wake shedding occur at Re values of about 20 and
200, respectively, as for rigid spheres, or somewhat lower values (e.g., 5 and
100) if significant deformation has already taken place before these values of
Re are achieved (G6, G8, H8, S2, W6, Y4). Magarvey and co-workers (M1, M2,
M3) have given an excellent series of photographs showing wakes of slightly
deformed drops in liquid-liquid systems and have identified six different classes
of wake.

For carefully purified systems, interfacial mobility can significantly delay
both the formation of an attached eddy and wake shedding, especially for fluid
particles of low k. For example, wake shedding which began at Re = 200 for
a contaminated system was delayed to Re = 800 for a carefully purified system
of virtually identical properties (W8). Moreover, at a given Re, the wake volume
is smaller for pure systems (E3, E4, W8). Winnikow and Chao (W8) distin-
guished two main classes of wake for purified drops: (a) steady vortex threads
(accompanied by an attached toroidal vortex for larger k); (b) wakes which
periodically discharge vorticity, typically with convoluted geometry, initially
axisymmetric but eventually becoming unsteady and asymmetric with the onset
of a turbulent wake. The latter type is closely associated with shape oscillations
as noted in the next section. Some photographs given by Winnikow and Chao
are reproduced in Fig. 7.11.

Few observations have been reported on wakes of ellipsoidal bubbles and
drops at Re > 1000. Yeheskel and Kehat (Y4) characterized shedding in this
case as random. However, Lindt (L7, L8) studied air bubbles in water and
distinguished a regular periodic component of drag associated with an open
helical vortex wake structure. Strouhal numbers (defined as 2af/U, where f is
the frequency and 2a is the maximum horizontal dimension) increase with
Re, to level off at about 0.3 as bubbles approach the transition between the
ellipsoidal and spherical-cap regimes.

F. SeconDARY MOTION
Bubbles and drops of intermediate size show two types of secondary motion:

(i) “Rigid body” type, e.g., rocking from side to side, or following a zig-zag
or spiral trajectory (cf. spheres and disks in Chapters 5 and 6).
(i) Shape dilations, usually referred to as “oscillations.”

These two types of motion are often superimposed, so that the motion of
intermediate size fluid particles can be particularly complex.

While other explanations have been proposed [e.g. (B6, E1, H6)], secondary
motions are most plausibly related to wake shedding. The onset of oscillations
coincides with the onset of vortex shedding from the wake (E1, E2, S5, W8).
For high k or contaminated drops and bubbles, the onset of oscillations
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FiG. 7.11 Wake configurations for drops in water (highly purified systems), reproduced from
Winnikow and Chao (W8) with permission. (a) nonoscillating nitrobenzene drop: d, = 0.280 cm,
Re = 515; steady thread-like laminar wake; (b) nonoscillating m-nitrotoluene drop: d, = 0.380 cm,
Re = 688; steady thread accompanied by attached toroidal vortex wake; (c) oscillating nitrobenzene
drop: d, = 0.380 cm, Re = 686; central thread plus axisymmetric outer vortex sheet rolled inward
to give inverted bottle shape of wake; (d) oscillating nitrobenzene drop: d, = 0.454 cm, Re = 775;
vortex sheet in ¢ has broken down to form vortex rings; (e) oscillating nitrobenzene drop: d, =
0.490 cm, Re = 804; vortex rings in d now shed asymmetrically and the drop exhibits a rocking
motion.

therefore occurs at a Reynolds number of about 200 (G8, H6, S5), while for
pure systems at relatively low x, the onset of oscillations is delayed (H6, W),
but seldom beyond Re = 1000. In viscous liquids where Re never reaches 200
over the range of practical interest (see Fig. 2.5), no oscillations occur (K4, T2).
While a critical Weber number has often been suggested for the onset of oscil-
lations in pure, low k systems, no agreement has been reached on what the
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critical value should be (E2, H6, W8), and the value of Re and purity of the
system appear to be better indicators of the likelihood of secondary motion.

While wake shedding appears to provide the excitation for shape oscillations,
the frequency of the two phenomena may differ. For example, Winnikow and
Chao (W8) measured oscillation frequencies between about 60 amd 80%
of wake shedding frequencies for nitrobenzene drops in water, while Edge
et al. (E1) found the two frequencies to be identical. To obtain a simple physical
understanding of shape oscillations, consider forced vibration of a single-
degree-of-freedom damped system [see, e.g., Anderson (A2)]. Suppose that the
wake shedding provides a harmonic excitation of frequency fy,, while the
natural frequency of the drop is given (L1) by

48c
N=wasea vy (-30

J=(w+ N2 (7-31)

If we define

and

Af = (fw— N2, (7-32)

and if Af « f, then the motion is approximately

E—Eox AL} sin(27 Aft) cos (2nf). (7-33)

As illustrated in Fig. 7.12, the drop then oscillates at frequency f with the
amplitude modulated at frequency Af.

sin(2mAft)

Eq(7-33)

AMPLITUDE DEVIATION, E-E

time,t

FiG. 7.12 Simple model to show nature of shape oscillations for bubbles and drops in free
motion.
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In practice, this model is oversimplified since the exciting wake shedding is
by no means harmonic and is itself coupled with the shape oscillations and
since Eq. (7-30) is strictly valid only for small oscillations and stationary fluid
particles. However, this simple model provides a conceptual basis to explain
certain features of the oscillatory motion. For example, the period of oscilla-
tion, after an initial transient (E1), becomes quite regular while the amplitude
is highly irregular (E3, S4, S5). “Beats” have also been observed in drop oscilla-
tions (D4). If fy and fy are of equal magnitude, one would expect resonance
to occur, and this is one proposed mechanism for breakage of drops and bubbles
(Chapter 12).

Equation (7-30) gives the natural frequency of the fundamental mode for
stationary fluid particles undergoing small oscillations with viscous forces
neglected. It has been modified to account for viscous effects (L4, M10, S10),
surface impurities (M10), finite amplitudes (S5, Y1), and translation (S10).
Observed oscillation frequencies are generally less than those given by Eq.
(7-30), typically by 10-20% for drops in free motion in impure systems (S4)
and by 20-409%, for pure systems (E1, E3, W8, Y1). The amplitude tends to be
larger for pure systems (E3) and this explains the reduction in frequency.

In general, oscillations may be oblate-prolate (HS, S5), oblate-spherical, or
oblate-less oblate (E2, F1, H8, R3, R4, S5). Correlations of the amplitude of
fluctuation have been given (R3, S5), but these are at best approximate since
the amplitude varies erratically as noted above. For low M systems, secondary
motion may become marked, leading to what has been described as “random
wobbling” (E2, S4, W1). There appears to have been little systematic work on
oscillations of liquid drops in gases. Such oscillations have been observed (F1,
M4) and undoubtedly influence drag as noted earlier in this chapter. Measure-
ments (Y3) for 3—6 mm water drops in air show that the amplitude of oscillation
increases with d., while the frequency is initially close to the Lamb value
(Eq. 7-30) but decays with distance of fall.

Oscillating bubbles and drops may travel along zig-zag or spiral (helical)
paths. Some authors have observed only one of these modes while others have
observed both. There is some evidence that the type of secondary motion is
affected by the mode of release (M8). Saffman (S1) performed a careful series
of experiments on air bubbles in water. Rectilinear motion was found to
become unstable, and gave rise to zig-zag motion which in turn gave way to
spiral motion for larger bubbles.” The paths followed by fluid particles under-
going secondary motion are no doubt associated with the type of wake. Details
of the paths, orientation, and periods of spiralling and zig-zagging drops and
bubbles are presented by Mercier and Rocha (M9) and Tsuge and Hibino (T6).

Secondary motion plays an important role in increasing drag (L7) and in
promoting heat and mass transfer from bubbles or drops. The onset of oscilla-
tions corresponds approximately to the maximum in U(d,) and minimum in

 See also Table 7.1.
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Cp(Re) curves for drops and bubbles (B11, El, E2, T4). The influence of oscilla-
tions on heat and mass transfer is discussed in Section I1I.

G. INTERNAL CIRCULATION

Surface-active contaminants play an important role in damping out internal
circulation in deformed bubbles and drops, as in spherical fluid particles (see
Chapters 3 and 5). No systematic visualization of internal motion in ellipsoidal
bubbles and drops has been reported. However, there are indications that
deformations tend to decrease internal circulation velocities significantly (M12),
while shape oscillations tend to disrupt the internal circulation pattern of
droplets and promote rapid mixing (R3). No secondary vortex of opposite
sense to the prime internal vortex has been observed, even when the external
boundary layer was found to separate (S11).

H. THEORETICAL SOLUTIONS FOR DEFORMED BUBBLES AND DROPS

Attempts to obtain theoretical solutions for deformed bubbles and drops are
limited, while no numerical solutions have been reported. A simplifying as-
sumption adopted is that the bubble or drop is perfectly spheroidal. Saffman
(S1) considered flow at the front of a spheroidal bubble in spiral or zig-zag
motion. Results are in fair agreement with experiment. Harper (H4) tabulated
energy dissipation values for potential flow past a true spheroid. Moore (M11)
applied a boundary layer approach to a spheroidal bubble analogous to that
for spherical bubbles described in Chapter 5. The interface is again assumed to
be completely free of contaminants. The drag is given by
fz(E):l

48
Cp= ﬁfﬂE)[l + 553

o (7-34)

where the first term results from the viscous energy dissipation for irrotational
flow past an oblate spheroid, and the second arises from dissipation in the
boundary layer and wake. Harper (H5) tabulated values of f,(E) and f5(E) and
plotted drag curves for four values of M. The curves show minima and are in
qualitative agreement with observed Cp(Re) curves for bubbles. No attempt
has been reported to extend this treatment to deformed drops of low k.

III. HEAT AND MASS TRANSFER

A. REGIMES OF MOTION AND TRANSFER

The flow and shape transitions for small and intermediate size bubbles and
drops are summarized in Fig. 7.13. In pure systems, bubbles and drops circulate
freely, with internal velocity decreasing with increasing k. With increasing size
they deform to ellipsoids, finally oscillating in shape when Re exceeds a value
of order 10°. In contaminated systems spherical and nonoscillating ellipsoidal
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F1G. 7.13 Flow transitions for bubbles and drops in liquids (schematic).

bubbles and drops are effectively rigid but, for Re > 200, wake shedding and
shape oscillations occur with associated motion of the internal fluid. In systems
of intermediate purity, small bubbles and drops are rigid but, with increasing
size, they become deformed and partially circulating. Circulation increases
with increasing size, and shape oscillations occur at Re > 200. The Reynolds
number marking the transition from rigid to circulating behavior depends on
system purity.

These flow transitions lead to a complex dependence of transfer rate on Re
and system purity. Deliberate addition of surface-active material to a system
with low to moderate k causes several different transitions. If Re < 200, addition
of surfactant slows internal circulation and reduces transfer rates to those
for rigid particles, generally a reduction by a factor of 2—4 (S6). If Re > 200
and the drop is not oscillating, addition of surfactant to a pure system decreases
internal circulation and reduces transfer rates. Further additions reduce cir-
culation to such an extent that shape oscillations occur and transfer rates are
increased. Addition of yet more surfactant may reduce the amplitude of the
oscillation and reduce the transfer rates again. Although these transitions have
been observed (G7, S6, T5), additional data on the effect of surface active
materials are needed.

The internal resistance is always decreased substantially when a bubble or
drop oscillates, but the external resistance may be unaffected if the Reynolds
number is high enough. A rough criterion can be obtained from Eq. (11-63)
for vibration of a particle in an axial stream. Oscillation has negligible effect

on the external resistance if
R 2 N\ —0.45
—R%V<7"> <02, (7-35)
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where ' is the amplitude of the oscillation, Re, = 4a4'fd/v is the vibration
Reynolds number, and f is the frequency. Rearranging Eq. (7-35) yields:

’ 2 N 0.45
an < 0.05<7“> . (7-36)
T

Assuming spherical-oblate oscillations with amplitude 24’ = (1 — E)d,, taking
E = 0.5 as a rough approximation and replacing d by d, and f by fy from
Eq. (7-30), we find no effect of oscillation on the external resistance if

d, fu/Uy < 0.15. (7-37)

For liquid drops in gases the terminal velocity is so large that the inequality
is obeyed and oscillation has essentially no effect on transfer. For drops and
bubbles in liquids, the effect of oscillation on transfer is significant.

B. DEFINITIONS

Mass transfer rates from drops are obtained by measuring the concentration
change in either or both of the phases after passage of one or more drops through
a reservoir of the continuous phase. This method yields the average transfer
rate over the time of drop rise or fall, but not instantaneous values. For measure-
ments of the resistance external to the drop this is no drawback, because this
resistance is nearly constant, but the resistance within the drop frequently
varies with time. The fractional approach to equilibrium, F, is calculated from
the compositions and is then related to the product of the overall mass transfer
coefficient and the surface area:

(KA), = —(rd.?/61)In(1 — F), (7-38)

where ¢t is the time of free rise or fall and (K?i)p is the time-average coefficient-
area product based on dispersed phase concentrations. If the resistance in each
phase may be added,

1 H 1
(&), T ), "
If the resistance external to the drop is negligible,
(kA), = —(nd.>/61)In(1 — F). (7-40)

Many investigators base mass transfer coefficients upon the area of the volume-
equivalent sphere, especially for oscillating drops:

(kA),/A, = —(d./61)In(1 — F). (7-41)

The Sherwood number based on this coefficient is

Shpe = [(Ez)p/Ae]de/@p . (7'42)
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A similar definition is frequently used for the continuous phase Sherwood
number

Sh, = [kA/A,]d,/2 (7-43)

In some studies the surface area of the particle is measured and area-free
Sherwood numbers are reported

Sh, = k,d./Z,, (7-44)
Sh = kd, /2. (7-45)

Careful reading of papers is required to determine which definition has been
used. Measurements of the continuous phase resistance around bubbles fre-
quently use photographic, volumetric, or pressure change techniques to yield
instantaneous rates of mass transfer, and thus kA. Here too, both definitions
of the Sherwood number, Egs. (7-43) and (7-45), have been used.

C. EXTERNAL RESISTANCE

Figure 7.14 gives area-free Sherwood numbers for organic drops in water. In
the furfural-water system (x = 1.7), the transition from circulation at low Re
to circulation at high Re agrees well with the treatment of Chapter 5, ie.,
deformation has little effect on the area-free Sherwood number. For this value
of x, however, it is not clear whether the drops were circulating for Re < 10.
For the diol-water system (x = 80), circulation is so slow.that Sh agrees with
the result for rigid spheres up to Re = 200 where oscillation begins. At this
Reynolds number, d, f/Ur = 0.6 and oscillations are expected to affect the
Sherwood number; see Eq. (7-37). The chlorobenzene/benzene drop system
(k = 0.7) shows the effect of addition of surfactant. Without surfactant, Sh
departs from the line for solids at Re = 20 and deviation increases with Re as
circulation becomes stronger. The data with added surfactant follow the line
for solids up to Re = 50 and remain below the pure system values at higher Re.
Even the system without surfactant was contaminated, since the data should
lie above those for x = 1.7. The presence of surface-active materials acts in the
same way as an increase in the drop viscosity with respect to terminal velocity.
Transition from a stagnant drop to a drop with circulation may occur at any
Re below 200. The data for aniline drops (x = 4.4) lie between the systems
with k = 1.7 and 80, and show reasonable agreement with Eq. (5-39). Oscillation
in contaminated systems and circulation in less contaminated systems both
cause Sh to rise more rapidly than Re'/2.

1. Particles without Shape Oscillations

For nonspherical particles the only theoretical treatment available is for
potential flow around a spheroid (L10). For an oblate spheroid the area-free
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F1G. 7.14 Arca-{rce mass transfer factors, Sh/v@a for drops.

Sherwood number is

Sho 2pere|  SCET R B (e
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where Pe is based on d, and

e=(1—E})'2

Since the area ratio is given by

A_ ! 1+E21n1+e
A, 2E?3 2e \l—e¢)|

2 2¢° 12
Sh = —= P 1/2 P — .
N ¢ |:3E(sm_1 e— eE)i'
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Comparison of these equations shows that the area-free Sherwood number is
only slightly affected by eccentricity; e.g. Sh/Pe'/? for a spheroid with E = 0.4
is only 8.5% larger than that for the equivalent sphere while the area ratio
A/ A, is 17% larger. Therefore, we expect little effect of deformation on the area-
free Sherwood number for bubbles and drops at high Re. This is borne out
by the agreement of the data in Fig. 7.14 with Eq. (5-39), derived for fluid spheres.

a. Drops in Gases For liquid drops in gases at low pressure the equations
for solid particles in Chapter 6 can be used to predict heat and mass transfer
rates. Figure 7.10 shows the area ratio o and the ratio L'/d, as functions of
Eo, to facilitate use of Eq. (6-34), while areas may be calculated from Eq. (7-29)
or from Eq. (7-48). Surface-active materials should have little effect. For drops
in high-pressure gases, oscillations may become important if Re > 200 and
the terminal velocity is small enough that d, fi/Ur > 0.1.

Near the point of drop release, transfer coefficients can be much different
from those predicted, due to large amplitude oscillation and internal circulation
induced by departure from the nozzle or tip (Al, G4, Y3).

b. Drops in Liquids For drops in pure liquid systems, the area-free Sher-
wood number may be taken as the larger of the values calculated from the
equations for solid spheres in Chapter 5 or Eq. (5-39) for fluid spheres. This
provides a transition from the lines for solids in Fig. 7.14 to the potential
flow line with increasing Re. For impure systems, surface-active materials may
immobilize the drop surface and reduce the coefficients to those for solid par-
ticles. The area-free Sherwood number should be equal to or above that for
a solid sphere, yet below that for a fluid sphere given by Eq. (5-39). If the system
is grossly contaminated, oscillations occur if Re > 200.

c. Bubbles in Water Water is the only continuous fluid for which reliable
mass transfer data are available at low M. Figure 7.15 presents the mass transfer
factor (kA/A,)/Z'* for bubbles in water including only data in which wall
effects are small (d.,/D < 0.12) and for which the water had been degassed.
Dissolved gases can transfer into the bubble and reduce the driving force
appreciably (B13, L6, W5). The scatter in the figure is due to different methods
of bubble release (Z2), different techniques of measuring the mass transfer rate
(G1, W7), and different system purities (R1). Figure 7.15 also shows the mass
transfer factor for a rigid spheroid with its aspect ratio given by Eq. (7-20), its
velocity by the lower curve in Fig. 7.3, and its Sherwood number calculated
from Egs. (6-16) and (6-17) with Sc = 500. Predictions for potential flow from
Eq. (7-46) are also shown, based on the properties of water at 25°C with terminal
velocity from the upper curve in Fig. 7.3. Curve 1 corresponds to pure systems,
with bubble shape from Fig. 7.9, while curve 2 corresponds to the shape in
a contaminated system given by Eq. (7-20).

For d, > 0.5 cm, the data agree closely with the potential flow solution with
the shape appropriate to a contaminated system. For d, < 0.5 cm, system purity



11I. Heat and Mass Transfer 195

I|IT]TIII[TjII

T T ]
B Eq.(7-50)
\
AM

JRCSE. -
R .
)
% ]
"o
§ |
=0 —
ml -
=}
5 Potential Flow —|
P-4 —-———
w e g—=1 —
© KT~ ) _
w >
2 st ®op —
< *
x |- ;.
[ v
0 - —
IS l
L Dt - - Rigid Spheroid _|
N T A U N N O A A AT N B O A O
0 0.5 1,0 20

. 15
EQUIVALENT DIAMETER, d, (m)

Experimental Data

Symbol Gas Ref. Symbol Gas Ref.
+ Co, 31 A Co, (22)
* Co, (W4) v Cco, (R1)*
® CO, (C1) O 0, (V3)
& CO, (G15) A C,H, (L2
> CO, (D3) X C,H, (1)
v Cco, (B2) L 2 C,H, (G3)
| CO, (L6) O C,Hy (1)

“As A, but with 1.2 ppm n-nonanol.
F1G. 7.15 Mass transfer factor (kA/Ae)/\/Ei for gas bubbles in water.

has a pronounced effect, just as on terminal velocity (see Fig. 7.3). In carefully
purified systems [e.g., (Z2)], the mass transfer coefficient increases sharply with
decreasing d,, but contaminated systems do not show such a sharp increase.
With 1.2 ppm n-nonanol added, the coefficient decreases towards the value
for a rigid spheroid. Garner and Hammerton (G3) and Weiner (W4) apparently
used systems of intermediate purity. Weiner also found that the mass transfer
coefficient and terminal velocity decreased with bubble age due to accumulation
of surfactants. The data for pure systems with d, < 0.5 cm are better predicted
by the potential flow solution with shape given by Fig. 7.9, but the predicted
mass transfer factors increase less rapidly with decreasing bubble size than the
data. The failure of the prediction results from zig-zag and helical motion in
the range 0.2 cm < d, < 0.4 cm (see Table 7.1).
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A reasonable upper limit on the mass transfer factor from bubbles to well-
purified water at room temperature is given by:

FA/A, 014 694

gz = g5 T (7-50)

with d, in cm and the left side in s~ '/2. For contaminated systems, the data
for d, > 0.5 cm are well represented by taking (kA4/A4.)/2'? = 6.5s™ /2,

2. Particles with Shape Oscillations

When the shape of a particle oscillates, the surface area changes with time.
This situation has been modeled by neglecting the motion adjacent to the surface
due to the terminal velocity of the particle, i.e., by considering the particle to
be oscillating but stationary, with material transferred by transient molecular
diffusion over a time equal to the period of oscillation. For Sc > 1 the thin
concentration boundary layer assumptions are invoked (see Chapter 1).

Two alternative assumptions have been made for the manner in which the
area variation occurs. The more realistic postulates that all elements of the
surface remain in the surface throughout an oscillation cycle. Increasing surface
area stretches the surface (A3, B5) and causes a velocity normal to the surface
which increases the diffusion rate. For a surface of area 4, suddenly exposed
at t = 0, the mass transfer product averaged over time is given by

kA D[ AN ]
/To_z\/;[;fo<70> dt] ) (7-51)

where the bracketed term represents the effect of the area variation. The value
of kA is proportional to the r.m.s. interfacial area, so that the transfer rate is
larger when the area oscillates.

The alternate assumption is that new elements are brought to the surface
as the area increases, and the oldest elements are removed from the surface
when the area decreases (B16). For a surface of area 4, exposed at t = 0, the
time-averaged mass transfer product is then

kA 17 Z1 m[ pr 1 d(A/A4,)
—=2 = — 00y |dT. 7-52
e [ P 05

The first term on the right-hand side represents transfer to the elements of
surface present over the entire time period ¢, while the second represents transfer
to appearing or disappearing elements. The fresh surface model, Eq. (7-52),
predicts larger coefficients than the surface stretch model, Eq. (7-51).

Given the time variation of the area of a fluid particle, the kA product is
easily calculated. For oscillating droplets, Angelo et al. (A3) showed that the
time variation of area is given closely by:

AJAg =1+ esin?(nft'), (7-53)
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where 1 + ¢ is the ratio of maximum area to minimum area, A,. Assuming
that the averaging time is the period of oscillation, f ~!, and that the oscillation
is spherical-oblate, we obtain from Eqs. (7-51) and (7-53) for the surface stretch

model:
=/ \/1+ L3
h, (7-54)
f/

while from Eqgs. (7-52) and (7-53) the fresh surface model yields

2
_ 2 jdf
Sh, = N J 5 (14 0687c) (7-55)

These results are remarkably close to each other; e.g., for an extreme value of
¢ = 0.5 the fresh surface prediction is only 69, larger than the surface stretch
prediction. The amplitude of the area oscillation, ¢, has a relatively small effect
since ¢ = 0.3 in many systems (R3, Y1).

Mass transfer data for oscillating liquid drops have been obtained in several
studies in liquids (G2, G8, Y2) and a single study in gases (L5). Comparison
with Egs. (7-54) and (7-55) is difficult due to uncertainty in predicting the fre-
quency f, and the lack of data on the amplitude factor . As noted earlier, the
frequency of oscillation is generally less than the natural frequency given by
Eq. (7-30). The following empirical equation applies to the liquid-liquid data
with an average deviation of 6%;:

Sh, = 1.2/d /7 or  KkA/A, = 12JRT. (7-56)

Data for drops in gases show an average deviation of about 309, from Eq. (7-56).

D. INTERNAL RESISTANCE

For circulating fluid particles without shape oscillations the internal resis-
tance varies with time in a way similar to that discussed in Chapter 5 for fluid
spheres. The occurrence of oscillation, with associated internal circulation,
always has a strong effect on the internal resistance. If the oscillations are
sufficiently strong to promote vigorous internal mixing, the resistance within
the particle becomes constant.

1. Particles without Shape Oscillations

Although there are no solutions for circulating ellipsoidal fluid particles
similar to the Kronig-Brink model for spheres, Fig. 3.22, which includes the
external resistance, should be a good approximation with d = d, and k taken
to be the area-free external mass transfer coefficient. This procedure is sup-
ported by the work on freely suspended drops in gases by Garner and Lane
(G4), who found that the Kronig—-Brink model applied up to Re = 3000 after
decay of strong initial circulation, caused during drop formation. Some of their
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data are shown in Fig. 7.16. The ethylene glycol and monoethanolamine drops
did not oscillate. The data from these experiments, in which there was a small
external resistance, agree well with the curve for Bi = 50 from Fig. 3.22. Similar
agreement with the Kronig-Brink model has been found for drops in liquids
(B15, K1) as noted in Chapter 5. Although their data for nonoscillating drops
in liquids were in fair agreement with the Kronig—Brink model, Skelland and
Wellek (S7) proposed an empirical equation which is widely used. In impure
systems, where surface-active materials make the particle effectively rigid, the
drop may approach equilibrium at rates given by Fig. 3.21.

=
o

IIlIIl Fllllllll I/llllllll T 11T a7

B / .
Eq. (7-58) / °
B CO, dissolving intoa
water drop /0
at 293K

-

FRACTIONAL APPROAgH TO EQUILIBRIUM , F
[

L1 Liitil L1 1 1iLil J
=z =

o 10° 10° 10 ] 04
DIMENSIONLESS TIME, 4.8, t/d,
Controlling
Symbol d,, cm Drop resistance Re
® 0.58 water internal 3500
O 0.46 dekalin internal 3000
JAN 0.29 glycol external 1500
AV 0.53 cthanolamine external 3500

Fi16. 7.16 Fractional approach to equilibrium for circulating and oscillating drops in gases.
Data of Garner and Lane (G4).

2. Particles with Shape Oscillations

If a fluid particle oscillates violently enough to mix its contents in each
oscillation cycle, the average internal resistance is constant if the driving force
is based upon the mixed mean concentration within the drop. The fractional
approach to equilibrium is then given by Eq. (7-40) or (7-41).

A model of transfer within an oscillating droplet was proposed by Handlos
and Baron (H3). They assumed that transfer within the drop was entirely by
turbulent motion, random radial movement, superimposed upon toroidal cir-
culation streamlines. No allowance was made for the variation of shape or
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surface area. The results of the model are expressed in terms of a series solution
for the fractional approach to equilibrium. For long times, only the first term
is required, yielding a constant internal resistance:

k, = 0.00375U /(1 + k). (7-57)
Calculations valid for short times and including external resistance are avail-
able (P2). Equation (7-57) gives a rough estimate of (1(71)p/Ae for organic-water
systems.

The assumption of transfer by a purely turbulent mechanism in the Handlos—
Baron model leads to the prediction that the internal resistance is independent
of molecular diffusivity. However, such independence has not been found ex-
perimentally, even for transfer in well-stirred cells or submerged turbulent jets
(D4). In view of this fact and the neglect of shape and area oscillations, models
based upon the surface stretch or fresh surface mechanism appear more realis-
tic. For rapid oscillations in systems with Sc > 1, mass transfer rates are de-
scribed by identical equations on either side of the drop surface, so that the
mass transfer results embodied in Egs. (7-54) and (7-55) are valid for the internal
resistance if & is replaced by Z,. Measurements of the internal resistance of
oscillating drops show that the surface stretch model predicts the internal
resistance with an average error of about 209 (B16, Y1). Agreement of the
data for drops in liquids with Eq. (7-56) considerably improves if the constant
is increased to 1.4, i.e.,

(KA), /A, = 14 Z,. (7-58)

Figure 7.16 shows the fractional approach to equilibrium of an oscillating
5.8 mm water drop in a CO,-air mixture, predicted from Egs. (7-41) and (7-58).
The large decrease in internal resistance with shape oscillation is readily appar-
ent by comparison with the Kronig-Brink lines. The prediction is a good
approximation of the rapid approach to equilibrium found by Garner and
Lane (G4) for oscillating water droplets with negligible external resistance.
Their data for dekalin are intermediate between the oscillating droplet predic-
tion and the Kronig-Brink model, possibly because oscillation was not vigor-
ous enough to mix the contents of the drop fully. Brunson and Wellek (B16)
review other models for oscillating drops.
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Chapter §

Deformed Fluid Particles of Large Size

1. INTRODUCTION

This chapter is devoted to bubbles and drops with Eo > 40 and Re > 1.2
(see Chapter 2). These inequalities are generally satisfied by bubbles and drops
with volumes greater than about 3 cm? (i.e., d, > 1.8 cm). Considerable work
has been carried out for large gas bubbles, primarily in connection with under-
water explosions, fluidized beds, and processing of liquid metals, and reviews
have been prepared by Wegener and Parlange (W5) and Harper (H2). Relatively
little attention has been devoted to large drops. Drops falling in gases almost
always break up before an Eotvos number of 40 is reached (see Chapter 12)
so that the present chapter is restricted to cases where the continuous phase
is a liquid.

In the present chapter, we neglect wall effects and unsteady motion including
splitting. These factors are considered in Chapters 9, 11, and 12, respectively.
The fluid mechanics of large bubbles and drops are discussed before turning
to mass transfer.

1II. FLUID MECHANICS

A. SHAPE

Over most of the range covered by this chapter, the shape of bubbles and
drops can be closely approximated as a segment of a sphere (see Fig. 2.4).
Hence, most of the fluid particles under discussion are said to be “spherical-
caps.” For Re > 150, the rear or base is quite flat, though sometimes irregular,
and the wake angle very nearly 50°. At lower Re, the wake angle is larger (G4),
as shown in Fig. 8.1. For Re < 40, the leading edge tends to be oblate ellipsoidal
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Fic. 8.1 Wake angle 0y for spherical-cap bubbles as a function of bubble Reynolds number.

(B3, W3) while the rear is indented or dimpled. Skirt formation may also occur,
as discussed in Section D. The wake angle for spherical-caps (expressed in
degrees) is well represented by the empirical equation

Ow = 50 + 190 exp[ —0.62 Re®*] (Eo > 40, Re > 1.2). (8-1)

This equation is shown in Fig. 8.1 together with available data. Somewhat
different angles are obtained for Re < 40 if the angle is measured from the
center of an enclosing ellipsoid rather than from the center of a sphere which
fits the front portion of the bubble (B3). Attempts to predict wake angles
theoretically for spherical-cap (C5, M3, R4) or two-dimensional circular-cap
(B2) fluid particles have met with only limited success. The volume of continuous
phase material, V;, contained in the indentation at the rear of ellipsoidal- and
spherical-cap bubbles has also been measured (B3, H5) by subtracting the true
bubble volume from the apparent volume assuming a flat base. Results indicate
that the fractional indentation volume, V;/V, increases from zero at Re = 1 to
about 0.35 at Re = 50, decreasing to essentially zero again for Re > 150.

B. TEerRMINAL VELOCITY

While the shape of a large fluid particle cannot be predicted accurately from
first principles, the terminal velocity can be obtained from the observed shape.
Interfacial tension forces are ignored. Flow is considered only in the neighbor-
hood of the nose, where the external fluid is assumed to flow as an inviscid
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fluid over a complete sphere or spheroid of which the fluid particle forms the
cap. The surface pressure distribution in the continuous fluid may then be
calculated using Bernoulli’s theorem. For a spherical-cap, this gives

P — po = +gap(l — cos0) — gpUssin® 0, (8-2)

where p, is the pressure at the nose (0 = 0) and the (+) and (—) signs apply
to upward and downward moving caps, respectively. The pressure distribution
at the surface in the dispersed phase is assumed to be the hydrostatic pressure
distribution. This will apply if Re, = p,d.Uy/u, 1s sufficiently large, e.g., of
order 100 or greater, so that there is a thin interior boundary layer across which
the pressure distribution is impressed by the slow moving interior fluid (W3).
For a spherical-cap, the pressure distribution is then

Ps — Po = ippga(l — COS 0) (8'3)
Equating the two expressions for (p, — p,) and solving for the terminal velocity
Uy we obtain
8 Apf/l—cosl
Ul =—ga—| ——5—). -4
T 9gap< sin? 0 > (8-4)

Equation (8-4) cannot be satisfied over the entire spherical-cap surface, but if
it is satisfied for @ — 0 to terms of order 02, the terminal velocity reduces to

Uy =3gabp/p, (8-5)

which is the celebrated Davies and Taylor (D9) equation.” For spheroidal-cap
drops or bubbles of eccentricity e and vertical semiaxis b, an analogous pro-
cedure yields

Uy = flelNghAp/p, (8-6)

where for oblate spheroidal-caps (W3)
fle)=(1/e3){sin" ' e —e/1 — &2}, (8-7)

while for prolate spheroidal-caps (G5)
fle)y= (/1 —e*/e}){e — (1 — e*)tanh ™' el. (8-8)

Collins (C5) obtained a second approximation to the velocity of a large
bubble using a perturbation analysis to balance the pressures along the inter-
face. The result, in generalized form, is

Uy = 0.652./gaAp/p, (8-9)
where @ is the average radius of curvature over the surface from 6 =0 to 0 =

37.5°. Experimental results obtained by various workers are shown in Fig. 8.2.

¥ This result also applies to the rise under gravity of a large mass of hot gas in a colder gas (S2, T1).
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FiG. 8.2 Rise velocity of spherical-cap bubbles as a function of the radius of curvature of the
leading surface.

It is clear that there is no reason to prefer Eq. (8-9) over Eq. (8-5). Therefore
Eq. (8-5) is usually adopted for simplicity and is recommended for Re > 40.
Agreement with Eq. (8-6) has also been found to be good (B3, G5, W3) and
Egs. (8-6) and (8-7) are recommended for 1.2 < Re < 40.

As shown in Fig. 8.1, spherical-cap fluid particles are geometrically similar
with a wake angle Oy, of approximately 50° once Re is greater than about 150.
The radius of curvature may then be related directly to either V or d, yielding

Up=0.792¢"2VV/Ap/p  (Re > 150, Eo > 40), (8-10)
Uy =0.711gd, Ap/p (Re > 150, Eo > 40), (8-11)
or
4gd. Ap 8 .
Cp=-—ceB_2 Re 3 150, Eo > 40). 8-12
D 302 ) 3 (Re > 150, Eo > 40) ( )

Equations (8-10) to (8-12) have been confirmed many times [e.g. (D4, W7)].

For M = 102, bubbles and drops change directly from spherical to spherical-

cap, as noted in Chapter 2. The drag coefficient is then closely approximated by

8 2+3k) 8

= — M > 102, all Re), 8-13

P Re(l1n T3 ) (®-13)

the generalized form of an equation suggested by Darton and Harrison (D1).

To solve for Uy over the entire range of Re, it is more convenient to rewrite
Eq. (8-13) as a quadratic equation in Re:

2Re? + 6Re[(2 + 3x)/(1 + k)] — Ar =0, (8-14)

where Ar = Eo** M ™12 = gp Apd.2/u* is an Archimedes number analogous
to N, = Cp Re? introduced in Chapter 5.
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F1G. 8.3  Surface modified pressure distribution for spherical-caps at high Re, derived using the
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Large “two-dimensional” or plane bubbles give results analogous to those
presented above, and have been considered by Collins (C4), Grace and Harrison
(G5), and Hills (H4).

C. SURFACE PRESSURE DISTRIBUTION

The method developed by McDonald (M2) to calculate surface dynamic
pressure distributions for falling drops (see Chapter 7) may also be applied to
large fluid particles. Equation (7-19) may therefore be applied. For a perfect
spherical-cap whose terminal velocity Uy is given by Eq. (8-5), the modified
pressure over the leading surface is given by

(ps — Po)/3pUs?) = 4.5cos0 — 3.5 (0 < 0 < Oy). (8-15)
For Oy = 50° and a flat rear, the pressure on the rear surface is
(ps — po)/(3pUs?) = —0.61 + (4/We,) (rear surface, Oy, = 50°), (8-16)

where We, = pUr?a/o. Since We, is generally greater than 20 for the large
fluid particles considered in this section, ¢ plays a relatively minor role except
at the rim where the spherical-cap surface intersects the base.’

Actual shapes of fluid particles deviate from the idealized shape which leads
to Egs. (8-15) and (8-16). Surface pressure distributions derived from observed
shapes (W2) are shown in Fig. 8.3 for spherical-cap bubbles at high Re. It is
seen that the pressure variation is well described by Eq. (8-15) for 0 < 0 < 0Oy
while the potential flow pressure distribution, Eq. (1-32), gives good agreement
up to about 30° from the nose.

¥ The rim cannot be sharp, as it often appears, or the capillary pressure component would be
infinite.
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D. FLuID SKIRTS

Large bubbles and drops in high M systems at Re of order 10 to 50 commonly
trail thin annular films of the dispersed fluid as shown in Fig. 2.4g and 2.4h. These
thin films are usually referred to as “skirts.” Systems in which skirts are observed
have Morton numbers greater than about 0.1; hence the continuous fluid must
have a rather high viscosity, generally greater than 1 poise. Approximate
boundaries for the occurrence of skirts are shown in the Re vs. Eo diagram,
Fig. 2.5. Experimentally, it has been found that trailing skirts have a negligible
influence on the terminal velocity of bubbles and drops (B3, W1), although
they affect the nature of the wake as discussed below. This lends further support
to the theory above, where the terminal velocity of large bubbles and drops is
derived considering only the shape and motion near the nose.

For systems in which skirt formation can occur and d, is slightly less than
required for skirt formation, large bubbles or drops tend to be indented at
the rear. Skirt formation occurs when viscous forces acting at the rim or corner
of the dimpled bubble or drop are strong enough to overcome interfacial
tension forces and pull the rim out into a thin sheet (B3, HS5, W1, W5). The
onset of skirts is dependent both on the ratio We/Re = uUy/o, sometimes
called a capillary or skirt number, and on Re. Figure 8.4 shows data for the
transition from unskirted to skirted bubbles or drops. For bubbles, skirts exist
for Re > 9 and

We/Re > 232 + [11/(Re — 9)°7]. (8-17)

For drops, skirt formation occurs for We/Re > 2.3 and Re > 4. It is possible
that some upper bound on Re exists above which skirts are no longer observed,
but this has not been determined precisely. The highest Re for which skirts
have been reported is 500 (H5).

Once skirts are formed, they may be steady and axisymmetric, growing with
time, or asymmetric with finite amplitude waves traveling towards the rear
(W3). Wairegi (W2) classified skirt configurations into:

) smooth skirts curled inwards;

) straight skirts perpendicular to the base of the bubble or drop;
i) wavy skirts;

) exfoliating skirts;

) fluttering skirts.

Transitions between these categories are not abrupt. Bhaga (B3) delineated the
conditions under which wavy skirts are found.

The skirt thickness A may be predicted from an approach suggested by
Guthrie and Bradshaw (G8) which in extended form (W2) yields

A = (61, Ur/g Ap)'. (8-18)
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F1G. 8.4 Onset of skirt formation: open symbols refer to bubbles and closed symbols to drops.

Experimental measurements of skirt thickness (B3, BS, G8, W2) show reason-
able agreement with Eq. (8-18). In practice, skirts become thinner with in-
creasing distance from the rear of the bubble or drop (B3, HS). Skirts behind
bubbles are of order 50 um thick, while the thickness of liquid skirts behind
drops is of order 1 mm.

Steady skirt lengths increase with Re (B3, H5, W2). Wairegi (W2) and Bhaga
(B3) also reported skirt lengths which increased with time. The length of steady
skirts is controlled by a balance of viscous and capillary forces at the rim of
the skirt (B3), whereas the length of wavy skirts appears to be determined by
growth of Helmholtz instability waves (HS5).

E. INTERNAL CIRCULATION

The dispersed phase fluid must circulate for large fluid particles in qualita-
tively the same manner as for small fluid particles. Because of the large values
of Eo, surface-active contaminants are not expected to damp out internal fluid
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motion entirely (see Chapter 3), although interfacial motion may be impeded
over part of the leading surface of a spherical-cap away from the nose (W4).

Internal circulation measurements are very difficult to obtain for gas bubbles
(D8). Some results have been obtained for large liquid skirted drops using tracer
particles (W2), and provide a qualitative picture of the internal motion as
shown in Fig. 8.5. It is not clear whether there is a reverse vortex motion in
the interior of a large fluid particle (as indicated by the dotted lines). Such a
secondary vortex would appear to be necessary to satisfy velocity and stress
continuity, but experimental evidence is inconclusive.

/__ Axis of symmetry

Outer streamline relative to
drop or bubble

Interface

~<

Main vortex
inside

Weak , thin

secondary
vortex

Toroidal vortex
in the wake

Fi1G. 8.5 Schematic diagram of internal and external flow patterns for a skirted bubble or drop.

F. WAKES

At low Re, wakes behind large bubbles and drops are closed (B3, HS, S5, W2,
W6), whereas at high Re open turbulent wakes are formed (HS5, M1, W6). The
value of Re for transition between these two types of wake has been determined
as 110 + 2 (B3) for skirtless bubbles. There is some evidence (H5) that the
transition Reynolds number may be increased if skirts are present.

Closed wakes have been modeled as completing the sphere or spheroid of
which the particle forms the cap [e.g. (C5, P2)]. However, the wake is smaller
than that required to complete a spheroid for Re < 5 and greater for larger
Re (B3). The wake becomes more nearly spherical as Re — 100, but is still
somewhat “egg-shaped” (B3, H5). Wake volumes, normalized with respect to
the volume of the fluid particle, are shown in Fig. 8.6 for Re up to 110. Note
the close agreement with results (K1) for solid spherical caps of the same aspect
ratio. This is not surprising since separation necessarily occurs at the rim of the
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F1G. 8.6 Dimensionless wake volumes for ellipsoidal-cap and spherical-cap bubbles and drops,
compared with solid spherical-caps.

spherical-cap whether it is rigid or circulating, even if the boundary layers over
the curved portion of the cap differ in the two cases. The wake volume is well
represented by

V/V =0037Re'* (3 <Re < 110). (8-19)

Bhaga (B3) determined the fluid motion in wakes using hydrogen bubble
tracers. Closed wakes were shown to contain a toroidal vortex with its core
in the horizontal plane where the wake has its widest cross section. The core
diameter is about 70% of the maximum wake diameter, similar to a Hill’s
spherical vortex. When the base of the fluid particle is indented, the toroidal
motion extends into the indentation. Liquid within the closed wake moves
considerably more slowly relative to the drop or bubble than the terminal
velocity Uy. If a skirt forms, the basic toroidal motion in the wake is still
present (see Fig. 8.5), but the strength of the vortex is reduced. Momentum
considerations require that there be a velocity defect behind closed wakes and
this accounts for the “tail” observed by some workers (S5). Crabtree and
Bridgwater (C8) and Bhaga (B3) measured the velocity decay and drift in the
far wake region.

There has been considerably less work on open turbulent wakes, although
some excellent photographs have been published (B3, M1, W5, W6). Wake
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shedding appears to be responsible for the wobbling motion often shown by
spherical-cap bubbles with Re > 150, and for erratic motion of trailing satellite
bubbles. Wakes for large two-dimensional bubbles have received some attention
(C3,C7,L1, L2).

G. EXTERNAL FLow FIELD

Bhaga (B3) determined streamlines relative to rising ellipsoidal and spherical-
cap bubbles in high M systems using hydrogen bubbles as tracers. Results for
Re = 29 and 82 are shown in Fig. 8.7. As the external liquid moves past the
bubble and wake boundary, its velocity decreases, especially at low Re. Thus
the motion deviates from the potential flow field used in deriving Uy (see above),
but the deviation decreases as Re increases and is very small at distances from
the bubble of the order of the radius of curvature. The value of u,/Uy at the
equator increases from about 0.56 to 0.81 as Re increases from 2.5 to 42, whereas
a value of 1.5 is expected for potential flow; see Eq. (1-31). At higher Re, the
modification to Hill’s spherical vortex proposed by Harper and Moore (H3),
applied to the spherical region approximately containing the spherical-cap and
its closed wake, gives a reasonable description of the flow field both outside
and inside this region.

Re =21 Re = 82

Fi1G. 8.7 Streamlines in the outer fluid relative to an ellipsoidal-cap and a spherical-cap bubble,
after Bhaga (B3). Points on streamlines show positions at intervals of 0.03 sec.
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[II. MASS TRANSFER IN THE CONTINUOUS PHASE

Transfer from large bubbles and drops may be estimated by assuming that the
front surface is a segment of a sphere with the surrounding fluid in potential
flow. Although bubbles are oblate ellipsoidal for Re < 40, less error should
result from assumption of a spherical shape than from the assumption of
potential flow.

Transfer from a spherical segment in potential flow is described (B1, B4, J2,
L4) by

kA = [8ma’UsZg(0w)]'%, (8-20)

where a is the radius of the spherical-cap, Oy is the maximum angle of the
segment measured from the stagnation point, and

g(Ow) = 2 — 3cos Oy + cos® Oy, (8-21)

A. HiGH REYNOLDS NUMBER
For a spherical cap with a flat base:

a

o= [290w]7"7, (8-22)

and Eq. (8-20) for transfer over the forward portion can be rewritten

kA 2 (U2 )\'?
(A)F=ﬁ<; ) , (8-23)
or
[(kA)F/Ae]de/@ = 2(PC/T[)1/2, (8'24)

regardless of the wake angle. Equation (8-24) is the so-called Higbie equation,
Eq. (5-35), written in terms of the equivalent diameter, and represents transfer
from the entire particle if there is negligible transfer through the base. Many
investigations have shown that Eq. (8-24) provides a fair estimate of the contin-
uous phase resistance regardless of bubble size as long as Re is large [e.g., (C1)].
At high Re the transfer through the base is not negligible. Weber (W4)
showed that basal transfer may be estimated using the penetration theory,
assuming complete renewal each time vortices are shed. He obtained

kA Srsin® 0y \Y2/2a\3?/ U .2\/?
G G e

€

where Sr = fyw/U; is the Strouhal number for eddy shedding based on the
maximum width of the bubble, w. For Re > 150, 0y, = 50° as discussed earlier.
For Sr = 0.3 (L3)

(kA)/A, = 0.357(UrD/d)"'>. (8-26)
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Assuming that base and frontal transfer are independent, we obtain

(/\'_A) (kA)g + (M)R UrZ\'?
= — = 1 . -
o i 49 i (8-27)
Use of Eq. (8-11) leads to the final recommended relationship:
(kA)/A, = 1.25(g Ap/p) * GV 2d; M. (8-28)

Equation (8-28) gives good agreement for spherical-cap bubbles in liquids at
Re > 100 (W4) as shown in Fig. 8.8. No data are available for large drops.
For bubbles in liquids, Ap/p = 1 and Eq. (8-28) becomes

[(kA)/A]/2"* = 6.94d, V%, (8-29)

with d, in cm and the left side in s~ /2. This form was used for bubbles in water
in Eq. (7-50). Surfactants reduce transfer rates from spherical-cap bubbles in
low-viscosity liquids (B1), and this effect has been analyzed by Weber (W4).

002 ‘ T r T

(o]

o [
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FiG. 8.8 Mass transfer factor kA4/A, for dissolution of CO, bubbles in aqueous solutions.

B. Low REYNOLDS NUMBER

For Re < 110 the wake is closed and laminar as discussed above. Transfer
over the front portion of the cap is again described by Eq. (8-20). Transfer
from the base occurs by diffusion into the wake fluid as it moves along the
bubble base, producing a concentration boundary layer. The solute in this
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boundary layer then diffuses both into the interior of the wake and into the
continuous phase as the wake fluid circulates (B4).

Figure 8.9 shows a model of a large indented or dimpled fluid particle at
low Re composed of two spherical segments. The front surface has radius a
and angle 6y, while the rear surface or base has radius gz and angle 0. Brignell
(B4) showed that if 0y, is small, the wake large, and a = ag, the transfer
coeflicient from the rear segment is equal to that from the front segment, both
being given by Eq. (8-20). In reality these assumptions are not valid. The
velocity in the wake is less than the velocity over the forward segment. These
considerations suggest that transfer rates may be bounded. The lower bound
is given by neglecting transfer from the rear surface.

Front Surface

Rear Surface

FiG. 89 Two spherical-segment model of an indented fluid particle.

For the geometry of Fig. 8.9, the volume of the fluid particle is
V = (ra®/3)g(0w) — Va, (8-30)
where
Va = (rag®/3)g(0g) (8-31)
is the volume of the rear spherical-cap and ¢(6) is given by Eq. (8-21). The
frontal radius is given by:
a/d. = [2g(Ow)/(1 + (Ve/V))] 172, (8-32)
This value of a with Oy from Eq. (8-1) is used with Egs. (8-20) and (8-23) to
obtain the lower bound.
The upper bound is found by adding to the lower bound the transfer from the

rear segment given by Eq. (8-20) written with az and 0g in place of a and 6Oy .
Application of Eq. (8-20) to the front and rear surfaces gives

ke [ a\" g0 ]
(kA)((aI) [g(ok)] ‘ (8-33)
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Combination of Egs. (8-30), (8-31), and (8-33) yields

(kAy V12
A~ <1 + 7R> : (8-34)

If the front and rear transfer rates are independent,

kA (kAN (kA
A" A [”(kA)J'

The upper bound is then calculated from Egs. (8-35), (8-34), and (8-20).

Although V;/V, the fractional indentation, varies with Re for Re > 2 as dis-
cussed above, a reasonable average is V/V = 0.2. Using this approximation
and measured bubble terminal velocities, we have calculated the upper and
lower bounds shown in Fig. 8.8. In all cases agreement with the experimental
data is good.

Mass transfer rates for skirted bubbles in polyvinyl alcohol solutions have
been measured by Guthrie and Bradshaw (G9) and Davenport et al. (D4).
When a skirt is present the transfer rate increases, but not in proportion to
the increase in surface area. Davenport attributes this to the accumulation on
the surface of the skirt of surface-active impurities which immobilize the inter-
face and reduce the transfer rate. Presumably transfer rates from skirted bubbles
or drops in very pure liquids would be appreciably higher than from fluid
particles without skirts.

(8-35)

IV. SPECIAL SYSTEMS

Gas bubbles in liquid metals and in fluidized beds have been the subject of
special studies because of their practical importance and because of the experi-
mental difficulties associated with studying bubble properties in opaque media.
Much of the work has been carried out in so-called “two-dimensional” columns,
where a sheet of liquid or fluidized particles, typically 1 cm thick, is confined
between two parallel transparent walls. Bubbles span the gap between the
front and rear faces and can be observed with backlighting.

A. BUBBLES IN LIQUID METALS

There is considerable evidence (D3, G7, P1, P4, S1) that bubbles in liquid
metals show the behavior expected from studies in more conventional liquids.
Because of the large surface tension forces for liquid metals, Morton numbers
tend to be low (typically of order 10~ *2) and these systems are prone to con-
tamination by surface-active impurities. Figure 8.10a shows a two-dimensional
nitrogen bubble in liquid mercury. For experimental convenience, the bubbles
studied have generally been rather large, so that there are few data available
for spherical or slightly deformed ellipsoidal bubbles in liquid metals. Data
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(b)

FiG. 8.10 (a) “Two-dimensional” nitrogen bubble in liquid mercury [Paneni and Davenport
(P1), Trans. Metall. Soc. AIME, copyrighted by the American Institute of Mining, Metallurgical
and Petroleum Engineers, Inc]. (b) X-ray photograph of bubbles in a fluidized bed. Reference grid
spacing is 2 cm in vertical direction. Fluidized particles are 79 um silicon carbide particles. (Repro-
duced with permission of Prof. P. N. Rowe).
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tend to be subject to abnormally high scatter due to experimental difficulties
associated with opaque media and high temperatures. For reviews of the
properties of bubbles in liquid metals, see (D5, R1, R2).

B. BuUBBLES IN FLUIDIZED BEDS

Fluidized beds are beds of solid particles supported by upward flow of a gas
or liquid. Because of their temperature uniformity, excellent heat transfer
characteristics, and solids handling possibilities, fluidized beds have found wide
application for physical and chemical processes.

Gas fluidized beds are inherently unstable to the growth of voidage dis-
turbances and this is believed to be the origin of bubbles in fluidized beds (J1).
Rowe (R5) has reviewed the properties of these bubbles and experimental
techniques used in their study. As a first approximation, the particulate phase
(particles and interstitial gas) is usually treated as a Newtonian liquid of zero
surface tension and of kinematic viscosity of order 5 cm?/s (G4). There is a
strong analogy between bubbles in liquids and in fluidized beds (D7). In view
of the negligible surface tension forces and the fact that bubbles are usually
at least a centimeter in diameter, bubbles are generally in the spherical-cap
regime. Reynolds numbers tend to be of order 10 to 100 with the result that
bubbles have large values of 0y (see Fig. 8.1) and closed laminar wakes. A
photograph taken with the aid of x-rays is reproduced in Fig. 8.10b. The ter-
minal velocity of bubbles in fluidized beds is usually estimated using Eq. (8-10)
or (8-11) with Ap/p = 1 (D6), while the influence of bubble size on shape for
bubbles from 1 to 16 cm in diameter has been represented (R7) by

V = (n/6)dy e 07, (8-36)

where dy is the maximum bubble width in centimeters in a plane normal to
the direction of motion. There is evidence that the particulate phase is signifi-
cantly non-Newtonian. Slip surfaces (P3) give evidence of yield stresses, and this
had led some workers [e.g. (G1)] to treat the particulate phase as a Bingham
plastic.

Internal circulation for bubbles in fluidized beds is an aspect in which
the analogy between liquids and fluidized beds ceases to apply since the
bubble/particulate phase interface is permeable. There is a net upward gas
flow through a bubble (G2). If the bubble rises more quickly than gas which
is percolating through the particle interstices in the remote particulate phase,
gas recirculation occurs in an annular shell called a “cloud” surrounding each
bubble (R6). Cloud formation has considerable importance with regard to
efficient utilization or treatment of gases in fluidized beds. Transfer between
bubble and particulate phase results both from diffusion and from convection
by the gas “throughflow.” The overall transfer rate is commonly estimated by
treating these components as additive (D6), although they probably interact
strongly (C2, H6).
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Three-phase (solid/liquid/gas) fluidized systems are also of some practical
importance. There is again a strong analogy between the rise of gas bubbles
in normal liquids and in liquid fluidized beds (D1, R3), although there is evidence
of solid/liquid segregation in wakes (R3, S6) which has no parallel for two-
phase systems.
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Chapter 9
Wall Effects

I. INTRODUCTION

In terms of the analytic solutions for flow around rigid and circulating par-
ticles, the effect of containing walls is to change the boundary conditions for
the equations of motion and continuity of the continuous phase. In place of
the condition of uniform flow remote from the particle, containing walls impose
conditions which must be satisfied at definite boundaries.

Consider the example shown schematically in Fig. 9.1; a sphere of diameter d
is moving parallel to the axis of a cylindrical tube of radius R through which a
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F1G. 9.1 Sphere falling through a fluid in laminar flow: schematic.
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fluid is passing in Poiseuille flow with centerline velocity U,. Taking a refer-
ence frame moving with the particle, the new boundary conditions are:

u="Ui at the walls, (9-1)

where i is the unit vector directed vertically upwards and U is the absolute
downward velocity of the particle, and

u=i[U + Ul — r?/R?)] (9-2)

at large distances upstream and downstream from the particle. These new
boundary conditions cause changes in the drag force and transfer rate. For
fluid particles there is the additional effect of the container walls on the particle
shape.

Here we concentrate on cylindrical containing walls, although there is
some work on particles near plane boundaries and surfaces of arbitrary shape.
Most of the work on rigid particles refers to spheres, and it is then convenient
to use the diameter ratio

), = d/D. (9-3)

For fluid particles, the volume-equivalent diameter is used in defining /.

1. RIGID PARTICLES

A. Frow PATTERNS

Little work has been reported on the motion of bounded fluids past rigid
particles, except for the creeping flow range. Coutanceau (C8) reported visual-
ization of the flow around a sphere moving along the axis of a tube containing
an otherwise stationary fluid. The walls were found to delay formation of the
attached recirculatory wake, and the onset of separation was given for 2 < 0.8
by

Re, = 20(1 — 4)~ %56, (9-4)

Taking detectable departure from fore-and-aft symmetry as the upper limit of
Stokes flow, Coutanceau found that increasing / increased the range of validity
of the creeping flow approximation.” The upper limit of Stokes flow was
proposed as:

Re, = (Re/7) — 275 (2 <0.38). 9-5)

Johansson (J1) reported numerical calculations of the flow around a sphere
fixed on the axis of a Poiseuille flow (Fig. 9.1 with b = 0, U = 0). Only solutions
for 4 = 0.1 were considered, and wake formation was predicted for Re = 20.4
based on the centerline velocity U,,.

 As noted in Chapter 3, the inconsistency in Stokes’ solution occurs in the outer flow field.
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At the other extreme of Re, Achenbach (Al) investigated flow around a
sphere fixed on the axis of a cylindrical wind tunnel in the critical range. Wall
effects can increase the supercritical drag coefficient well above the value of
0.3 arbitrarily used to define Re, in an unbounded fluid (see Chapter 5). If Re,
is based on the mean approach velocity’ and corresponds to Cp, midway be-
tween the sub- and super-critical values, the critical Reynolds number decreases
from 3.65 x 10° in an unbounded fluid to 1.05 x 10° for 2 = 0.916.

B. DRAG AND TERMINAL VELOCITY

There are three useful measures of the effect of bounding walls on drag. A
drag factor can be defined, based on the same particle at the same fluid velocity:

__drag in bounded fluid  Fp,

F=

drag in infinite fluid ~ Fp, (9-6)

Alternatively, a velocity ratio can be defined, based on constant particle di-
mensions (i.e., constant Np):

terminal velocity in infinite fluid Uy,

= : . — = . 9-7
Y™ terminal velocity in bounded fluid ~ Uy, -7
For falling sphere viscometry, it is most convenient to define a viscosity ratio
based on constant particle dimensions and terminal velocity (S7):

Ku = Ms/ﬂ? (9'8)

where p is the actual fluid viscosity and g is the viscosity of the unbounded
fluid which would give the observed U+ if Stokes’ law were to apply, i.e.,

The term K, includes the effect of departures from the creeping flow approxi-
mations. In creeping flow, K = Ky = K, = K, but at higher Re the relation-
ships are more complex. In general, any of these ratios is a function of 1 and
one other group (such as Re) chosen to suit the problem at hand.

1. Low Reynolds Numbers

For a complete review on low Re motion in bounded fluids, see Happel and
Brenner (H3). Some general results are of immediate interest. For a particle
moving through an otherwise undisturbed fluid, without rotation and with
velocity U parallel to a principal axis both of the body and the container,

K =[1 — CFy, /6muUl + O(c/1)*] ", (9-10)

where ¢ is the maximum particle dimension, / the shortest distance from the
center of the particle to the wall, and C depends on the nature of the boundary

¥ Achenbach based Re on flow conditions in the smallest cross section between sphere and tube.
With this definition, wall effects increase Re,.
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TABLE 9.1

9. Wall Effects

Wall Correction Coefficient C in Eq. (9-10) for Rigid Boundaries

Boundary Location of particle Direction of motion C
Circular cylinder Axis Axial 2.10444
Eccentric Axial Fig. 9.2

Parallel plane walls Midplane Parallel to walls 1.004

ldistance across channel  Parallel to walls 0.6526

Single plane wall Parallel to wall =

Normal to wall 3

Spherical Center 7

but not on the shape of the particle.” Thus correction factors determined for
one particle shape can be applied to another shape, provided that ¢/l is suffi-
ciently small for the higher-order terms to be neglected. Table 9.1 gives C for
various rigid boundaries; different values apply for free surfaces. For a particle
settling eccentrically in a cylinder, C depends upon distance from the axis as
shown in Fig. 9.2. For small b/R,

C = 2.10444 — 0.6977(b/R)* + O(b/R)*.
Note that K is insensitive to position provided that b/R < 0.6.

(9-11)

25 | | | 1 | |
24—
23—
C
22—
Eq.(9-11)
21 |
~
20 | | I~ | |
0 01 02 03 04 05 0.6 07
b/R

F1G. 9.2 Wall correction coefficient [ C in Eq. (9-10)] for a rigid particle settling eccentrically in
a circular cylinder.

To obtain higher-order approximations, it is necessary to consider specific
shapes. Various correction factors have been proposed for rigid spheres moving
through an otherwise undisturbed fluid. The most widely used are summarized
in Table 9.2. Experimental determinations of K reported by Fidleris and

* This result also applies to a circulating particle provided that the appropriate Fp,, is used.
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TABLE 9.2

Wall Correction Factor K for a Rigid Spherical Particle Moving on
the Axis of a Cylindrical Tube in Creeping Flow

Author Expression for K
Ladenburg (L1) 1+ 2.105/.
Faxén (F1) (1 —2.104/ + 2.09/° — 0.95,5)7 1
1 —0.75857:3

Haberman and Sayre (H1)

I — 2.1050/ + 2.0865,% — 1.7068.5 + 0.72603,°
Francis (F6) (empirical) [(1 —0.475/(1 — 2)]*

Whitmore (F4) for 4 < 0.6 lie between the expressions of Haberman and Sayre
and of Francis. The Haberman and Sayre result shows about 19 less deviation,
but the equation due to Francis has the virtue of simplicity. Experimental
results due to Sutterby (S7) for 4 < 0.13 with Re — 0 agree with the Faxén,
Haberman, and Francis curves which are virtually indistinguishable in this
range. The Ladenburg result is only accurate for 2 < 0.05.

The results in Table 9.2 apply when no end effects are present. Sutterby (S7)
determined simultaneous wall and end correction factors for the creeping flow
range. His correlations are shown in Fig. 9.3 where the cylindrical column has
closed ends a distance L, apart and the center of the spherical particle is dis-
tance Z from one end of the tube. The curve for D/L, = 1.0 and Z/L, =1/2 is

[ T I I 7
/
/
/
1.6 S
A
/3
| / —
-——-Z/L =13 or2/3 /
L =13 or 2/ , //
— zZ/L =2 // Vi
14— , s
’ // //
K // / 7/
- , / —
A7y
7 7
Y/ 1
7/
— /7 JSs 7,
1.2 S —
ALY/
W/
24 i
— /,
/, 7z,
V,
y.
10 | | 1
0 005 01

Diameter ratio A

Fi16. 9.3 Wall correction factors K for a rigid sphere on the axis ol a cylinder of finite length in
creeping flow (S7): (1) L./D = 1;(2) L,/D = 3:(3) L,/D = }.
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indistinguishable from the Haberman and Sayre result for a long tube (Table
9.2), so that the relative displacement of the other curves indicates the magni-
tude of end effects. These are least when the sphere is at the midpoint of the
column. For a column with L ,/D = 2.0, end effects are negligible if 1/3 <
Z/L, < 2/3. A theoretical treatment of simultancous wall and end effects by
Tanner (T2) gives values of K which are asymptotic to the curves in Fig. 9.3
for small /, but underpredicts K otherwise.

For a rigid sphere on the axis of a tube through which a fluid moves in
laminar flow (Fig. 9.1 with b = 0), Haberman and Sayre (H1) showed that the
magnitude of the drag force is

Fy= —3nudK(U — K'U,), (9-12)
where

K’ =[1—(232/3) — 0.20217:5]/[1 — 0.75857.%]. (9-13)

2. Higher Reynolds Numbers

As for particles in infinite fluids, analytic solutions have not been success-
fully extended beyond the creeping flow range. Faxén (F1) applied the Oseen
linearization to a sphere moving axially in a tube, but the resulting drag pre-
dictions are no more reliable than for an unbounded fluid (F4, H3, S7). How-
ever, reliable experimental results are available for freely settling spheres (F4,
M4, S7), spheres fixed in a fluid flow (A1, M5), and spheres freely suspended
in an upward-flowing liquid (R2). The results of these investigations are in
remarkably good agreement. For particles in ducts of noncircular section, it is
usual to define D as the conventional “hydraulic diameter,” but the accuracy
of this approximation does not appear to have been seriously assessed.

Figure 9.4 shows curves for the drag coefficient (based on the velocity for a
freely settling sphere and the mean approach velocity for a fixed or suspended
sphere) and for the fractional increase in drag caused by wall effects, (Kp — 1).
Up to Re of order 50, the results are approximated closely by an equation
proposed by Fayon and Happel (F2):

Cp=Cp, + (24/Re) (K — 1), (9-14)
Le.,
Kp =1+ (24/ReCp (K — 1), (9-15)

where K is given by Table 9.2. For Re in the range from roughly 100 to 10,
available data indicate that K is independent of Re, and given within 6% by:

Kg=1/1 —1.6°) (2 <0.6). (9-16)
For Re > 10°, Achenbach’s result (A1) may be used:
Kp = (14 1.45:%%)/(1 — ;%)? (~<092) 9-17)
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Fi1G. 9.4 Drag coefficient C}, and fractional drag increase (K. — 1) for rigid sphercs on the axis
of circular ducts.

For treatment of terminal settling velocities, it is more convenient to work in
terms of Ny defined in Eq. (5-15). Figure 9.5 shows the terminal Reynolds
number and (K, — 1) as functions of N*. For N}* > 10%, K, is approximated
closely by \/f;, with K given by Eq. (9-17).
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FiG. 9.5 Terminal Reynolds number and velocity correction factor for rigid spheres on the axis
of circular ducts.
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Sutterby (S7) gave a useful tabulation of the viscosity ratio K, defined in
Eq. (9-8), for relatively low Re and /. These values, intended primarily to correct
for departures from Stokes’ law in falling sphere viscometry, are shown in
Fig. 9.6. Reynolds number is defined using the measured Uy and y defined in
Eq. (9-9). The curve for /. = 0 accounts for departures from the creeping flow
approximations in an unbounded fluid, and the relative displacement of the
other curves indicates the wall effect.

1.0 L | | l
Re

F1G. 9.6 Viscosity correction factor K, for rigid spheres settling axially in circular columns with
Re = Urpd/p, (S7).

C. PRrESSURE DropP

In addition to the effect of the walls on the drag on the particle, the particle
alters the shear on the duct. Consider a particle settling through a quiescent
fluid (Fig. 9.1 with U, = 0). Brenner (B3) showed that, for low particle Re with
the particle small by comparison with the distance between particle and wall
(ie., A < 1 — p, where = b/R), there is an excess pressure drop, AP™, between
points far below and far above the particle given by

APTA/Fy =2(1 — 2 — 412 + 0033 (A< 1—p), (9-18)

where Fp, is the force on the particle and A is the cross-sectional area of the duct.
Bungay and Brenner (B7) carried out a complementary analysis which predicts
AP* for particles close to the wall. For a small particle settling on the axis

AP* A = 2Fy, (9-19)

so that the walls exert a total force F, downwards on the fluid. Surprisingly in
view of the assumptions, Eq. (9-19) appears to apply up to quite high particle
Re, for a variety of different particle shapes (F3, L3), but then AP™ 4/Fy, falls
sharply from two to unity. This transition corresponds roughly to

2RU/v = 2300, (9-20)
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where U is the terminal velocity of the particle. The coincidence with the
Reynolds number characterizing laminar/turbulent transition in pipe flow
remains a curiosity (L3).

D. PARTICLE MIGRATION

It is noted in Chapter 10 that, if inertial terms are neglected, a freely rotating
particle suspended in a sheared fluid experiences no lift. However, in a classic
series of experiments, Segré and Silberberg (S3) demonstrated that neutrally
buoyant rigid spheres suspended in a Poiseuille flow migrate to a position
given roughly by f# = 0.6. This effect has been confirmed many times (B3, G4,
H2, L4, T1). If y # 1, a sphere in a Poiseuille flow migrates towards the wall if
its velocity exceeds the local undisturbed fluid velocity, but towards the center
line if its velocity lags the fluid. Both neutrally buoyant and sedimenting spheres
in a Couette flow migrate to the central plane (V2). The reason for this migra-
tion has been widely debated. It must result from a lift force, but this cannot be
explained by particle rotation [see (L4)]. The only explanation is the presence
of inertial effects. Ho and Leal (H5) and Vasseur (V2) have confirmed this by
applying the method of matched asymptotic expansions (C9). The migration
velocity depends on the particle size and position, and on the duct and particle
Reynolds numbers. Resulting trajectory predictions agree closely with obser-
vation. Eichorn and Small (E2) measured the lift on a solid sphere fixed in a
Poiseuille flow with 80 < Re < 250.

E. HEAT AND MASS TRANSFER

There are two useful measures of the effect of bounding walls on the heat- or
mass-transfer rate. A mass transfer factor can be defined based on the same
relative velocity between the particle and the fluid:

Sherwood number in bounded fluid ( Sh )
U

Ky = (9-21)

Sherwood number in infinite fluid §h—00

where the subscript U denotes the fact that the relative velocity is the same in
the bounded and unbounded fluids. Alternatively, a mass transfer factor can
be based upon constant particle dimensions

Sherwood number in infinite fluid (Sh X)
D

Ko = i =
MD ™ Sherwood number in bounded fluid Sh

(9-22)

where the subscript D denotes the fact that the particle dimensions, i.e., N>,

are the same in the bounded and unbounded fluids.

1. Low Reynolds Numbers

The stream function expressions of Haberman and Sayre (H1) for creeping
flow permit the calculation of the effect of cylindrical containing walls on the
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F1G. 9.7 Mass transfer correction factors Ky and Ky, for a sphere on the axis of a cylinder in
creeping flow.

Sherwood number under the thin concentration boundary layer assumption
through Eq. (3-46). The results are plotted in terms of Ky, and Ky, in Fig. 9.7.
For a rigid sphere in creeping flow, the relationship between these quantities
and the velocity ratio K is

Kyp = Ky /K, (9-23)

For a rigid sphere (k = o0) on the axis of a cylindrical tube, the Sherwood
number is larger than in an unbounded fluid with the same particle/fluid ve-
locity. The ratio of Sherwood numbers is approximated within 3%, for 2 < 0.6
by

Kyu =01 -035)/1 — A). (9-24)

The presence of container walls has a much smaller effect on Sherwood number
than on drag since the mass transfer coefficient is only proportional to the
one-third power of the surface vorticity. For a sphere with given N3 settling
on the axis of a cylindrical container, the Sherwood number decreases with /,
but it is still within 8%, of the Sherwood number in an infinite fluid for £ = 0.5.
No data are available to test these predictions.

2. Higher Reynolds Numbers

For Re > 10° there are a number of studies of the effect of walls on heat and
mass transfer from solid particles in wind and water tunnels. In these studies
it was customary to define a velocity ratio K ,. based on the same Sherwood
number in bounded and infinite fluids:

Ky = U/Uy (9-25)
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where U+ is the true relative velocity between the particle and the fluid and
U., the effective velocity, is the velocity required in an unbounded fluid to
give the same Sherwood number. The large number of relationships proposed
for Ky have been reviewed by Pei (P1) and Morgan (M6). The expression
proposed by Leppert and coworkers (P2, V3) gives good agreement with data
for rigid spheres located on the axis of cylindrical ducts:

Kye = 1/(1 — 32%). (9-26)

Equation (9-26) can be used with the Sherwood number equations for solid
spheres in Chapter 5 to determine the increase in Sh due to container walls.
For a settling sphere, a more useful velocity ratio is U,/Ur,,, the ratio of the
effective velocity to the terminal velocity of the sphere in an infinite fluid:

Ue/Ur, = 1/(1 — 34)Ky. ©-27)

Here Ky is obtained from Fig. 9.5. Equation (9-27) and the equations of Chap-
ter 5 can be used to determine the decrease in Sh for a rigid sphere with fixed
N3 settling on the axis of a cylindrical tube. For example, for a settling sphere
with 2 =04 and N}? =200, Uy/Uy,, =0.76 and U,/U; = 0.85. Since the
Sherwood number is roughly proportional to the square root of Re, the
Sherwood number for the settling particle is reduced only 8%, while its terminal
velocity is reduced 24%,. As in creeping flow, the effect of container walls on
mass and heat transfer is much smaller than on terminal velocity.

1I1. BUBBLES AND DROPS

It is convenient to divide the discussion of wall effects for bubbles and drops
into two parts. Section A covers cases where the diameter ratio, 4 = d,/D, is
less than about 0.6. At low 2, the walls cause little deformation beyond that
which may be present for the fluid particle in an infinite medium, so that the
discussion of wall effects for rigid particles forms a good starting point. Section
B treats the case of slug flow (4 > 0.6) where the container walls have a domi-
nant effect on the shape of the bubble or drop.

A. WALL CORRECTIONS FOR 4 < 0.6
1. Low Reynolds Numbers

We recall from Chapters 2 and 3 that fluid particles at low Re in infinite
media tend to be spherical and that the interface is usually stagnant due to
surface-active contaminants or large values of x = p,/u. If 4 is less than about
0.3, deformation due to the container walls tends to be minor and the correc-
tions given above for rigid spheres at low Re may be used.

For an interface free of surface-active contaminants, Haberman and Sayre
(H1) obtained approximate solutions for a circulating sphere traveling in steady
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motion along the axis of a cylindrical tube. As with rigid particles, the drag
force on a circulating particle tends to increase as . increases. However, the
effect is less than for a rigid particle under corresponding conditions. The drag
force on a circulating sphere is given by

Fp = nudUKQ + 31)/1 + x), (9-28)

where the correction factor, K is given by

1—x
1+ 2.2757/15<*>
2 + 3k

2+3 < 2—-3 1 —r >
107017 ") + 20865 — )2.3 ¥ 05689( K>;.5 - 0.72603<—L>2,“
1+k 1+« 1+« 1+«
(9-29)

which reduces to the result in Table 9.2 as x — co. This correction factor was
found to give good agreement with experimental results for relatively large
aqueous glycerine or silicone oil drops falling on the axes of cylindrical tubes
through castor oil (H1). As 4 increased, the presence of the walls caused droplet
deformation, elongation occurring in the vertical direction to yield approxi-
mately prolate ellipsoid shapes. The theory gave an accurate prediction of the
wall correction for / up to about 0.5, although significant droplet deformation
had occurred.

The analysis was extended to apply to circulating particles on the axis of
cylinders where there is a parabolic (laminar) velocity profile well upstream
and downstream of the particle (Fig. 9.1 with b = 0). The drag force is given by

Fp=—nud[(2 + 3)/(1 + K)(KU — K'U,), (9-30)
where K is given by Eq. (9-29) and

2K "2 1 — K ~5
— 12 + 0.60651 L
K — ! (2 + 3IC>/ * (2 + 3;c>/

B 1 —x\.5
1+ 2.2757<2 n 3K>A

K =

(9-31)

The above results give good predictions for bubbles and drops that would
normally be spherical, provided that 2 is less than about 0.5, Re less than unity,
and the fluid particle near the axis of the tube.

2. Intermediate Size Drops and Bubbles (Eo < 40)

All studies of drops and bubbles have been carried out in containers of finite
dimensions; hence wall effects have always been present to a greater or lesser
extent. However, few workers have set out to determine wall effects directly
using a series of different columns of varying diameter. Where studies have
been carried out, the sole aim has usually been to determine the influence of
/. on the terminal velocity. While it is known that the containing walls tend to
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cause elongation of fluid particles in the vertical direction, suppress secondary
motion, and alter the wake structure, there is insufficient experimental evidence
on these factors to allow useful quantitative generalizations to be drawn.

Previous correlations of the influence of /. on terminal velocities (E1, H4, M1,
S1, S6, T3, Ul) are limited to specific systems, fail to recognize the different
regimes of fluid particles (see Chapter 2), or are difficult to apply. In the present
section we consider both bubbles and drops, but confine our attention to those
of intermediate size (see Chapter 7) where Eo < 40 and Re > 1. Only the data
of Uno and Kintner (U1), Strom and Kintner (S6) and Salami et al. (S1) are
used since other workers either failed to use a range of column sizes for the
same fluid—fluid systems, or it was impossible to obtain accurate values of the
original data. This effectively limits the Reynolds number range to Re > 10
for the low M systems studied.

A plot of all the data as Uy/Uy,, = K{! (where Uy, is the terminal velocity
which the drop or bubble would have in an infinite container, as taken
or extrapolated from the authors’ own data) versus Re shows that, as for
rigid spheres in cylindrical columns, the terminal velocity ratio deviates further
from unity as 4 increases and as Re or Ny, decreases. In fact, the curves in
Fig. 9.5 may be taken over and used directly for the prediction of Uy/Uq,, for
/. < 0.6. This may appear surprising, but it should be remembered that un-
bounded drops and bubbles in this range tend to be flattened in the vertical
direction, while the containing walls tend to cause elongation. Hence the
resulting shape may not deviate greatly from a sphere. For wall effects to have
negligible influence (less than about 29) on terminal velocities, the following
conditions should apply:

Re < 0.1 4 < 0.06, (9-32)
0.1 < Re <100 4 <0.08 + 0.021log, Re, (9-33)
Re = 100 A <0.12. (9-34)

These empirical relationships have been used in Chapters 7 and 8 to eliminate
experimental results subject to significant wall effects.

For Re greater than about 200, the effect of Re on U/Uq,, is relatively small
(see Fig. 9.5). It is therefore possible to represent the results by a unique relation-
ship between Uy/Uq, and /. The experimental results are shown in Fig. 9.8
together with the equation

Ur/Ure, = [1 = 2712, (9-35)

which gives an excellent fit for J up to about 0.6." There appears to be a sys-
tematic and inexplicable difference between the Salami et al. (S1) data and
the other data at 4 values greater than about 0.5. Equation (9-35) is recom-
mended for bubbles and drops for Eo < 40, Re > 200 and /. < 0.6. When the
first and third of these conditions apply but 1 < Re < 200, Fig. 9.5 should be
used.
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FiG. 9.8 Retarding effect of column walls on the terminal velocity of drops and bubbles of
intermediate size.

3. Large Bubbles and Drops (Eo = 40)

Collins (C5, C6) carried out a thorough study of the influence of containing
walls on the velocity of spherical-cap bubbles. The work was extended to lower
Re by Bhaga (B1) who also investigated the influence of wall proximity on
wake size, external flow fields, bubble shape, and skirt behavior. Generally
speaking, increasing / for a given large fluid particle in a system of fixed fluid
properties was found to cause bubble elongation, a decrease in terminal veloc-
ity, a marked reduction in the wake volume and the rate of fluid circulation
within the wake, and a delay in the onset and waviness of skirts. Excellent
photographs of bubbles subject to wall effects have been published (B1, C1).
Tracings showing the effect of increasing 4 at constant bubble volume on
bubble shape are shown in Fig. 9.9. Some data illustrating the strong depen-
dence of wake volume on / appear in Table 9.3.

Experimental results show that wall effects are negligible for 1 up to about
0.125 for spherical-caps in low M systems. Collins suggested semiempirical
equations for U4/Uy,. A simpler equation proposed by Wallis (W1) which
agrees well with the results of Collins is

Ug/Up, = 1.13¢% (0125 < 7 < 0.6). (9-36)

* This result also fits the values for rigid particles at N§?= 100 and 0.25 < 4 < 0.6.
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Re=369 Re=310 Re=211
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(g) A=0192 (h) A =0.390 (i) A =0795
Re=50,9 Re=437 Re=295

FiG. 9.9 Bubble shapes traced from photographs (B1) showing the influence of 4 on the shape of
large bubbles: (a, b, ¢) ¥ =27.8 cm®, M = 1.64 x 1073;(d, e, f) V = 92.6 cm®, M = 1.64 x 107 %;
(g h,1) V=926cm? M =42

TABLE 9.3
Wall Effect on Wake Volume for Large Bubbles in Viscous Liquids (B1)*

D(cm) p) U (cm/s) Re Wake volume (cm?)

(a) V=188 cm? Eo = 184:

29.2 0.112 382 58.3 187.1
14.4 0.228 35.6 54.4 129.2
7.1 0.468 27.1 41.5 28.2

(b) V= 93cm? Eo = 116:

29.2 0.089 33.1 40.2 55.6
14.4 0.181 320 389 46.8
7.1 0.369 26.5 321 20.2

 Air bubbles in sucrose solution (¢ = 2.89 poise, p = 1.35 g/ecm?, ¢ = 77.7 dyne/cm,
M = 0.109).

Lin (L6) derived a further equation which shows reasonable agreement with
experiment for 2 less than about 0.6. While Collins’ work was restricted to
low M, high Re systems, Bhaga’s results show that Eq. (9-36) can be applied
down to Re = 10 regardless of whether skirts are being trailed.

While all the data discussed in this section are for large bubbles, it is rea-
sonable to expect the results to apply also to large liquid drops for which
Eo > 40. For drops and bubbles in columns of noncircular cross section the
results derived for cylindrical columns may be used with D replaced by the
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conventional hydraulic diameter. This practice is expected to give reasonable
results for cross sections which do not deviate radically from circular, but
experimental confirmation is lacking.

B. SLuc Frow (/. > 0.6)
1. Slug Flow in Vertical Tubes of Cylindrical Cross Section

For appreciable values of 4 it is obvious that wall effects influence fluid
particles differently from rigid particles since a rigid particle will block the tube
if too large whereas a bubble or drop can deform and maintain a nonzero
terminal velocity even for /. > 1. When the diameter ratio 4 exceeds a value
of about 0.6, the tube diameter D becomes the controlling length governing
the velocity and the frontal shape of a bubble or drop. Bubbles and drops are
then called slugs™ (or Taylor bubbles) and tend to be bullet-shaped as shown
in Figs. 2.41 and 9.9f. The slug can be considered to be composed of two parts,
a rounded nose region whose shape and dimensions are independent of the
overall slug length and a cylindrical section surrounded by an annular film
of the continuous fluid (C3). Since the slug flow regime is of special interest for
applications of boiling heat transfer (G9) and fluidized beds (S5), almost all
work has been devoted to gaseous slugs. Reviews of the behavior of slugs
have been given by Wallis (W1) and Govier and Aziz (GS).

The terminal velocity of slugs may be estimated quite accurately using a very
useful graphical correlation presented by White and Beardmore (W2), repro-
duced in Fig. 9.10. Although originally derived for gaseous slugs, the correlation
can be generalized to apply to liquid slugs as well (H4, R1, W1), and it is in
the generalized form that it appears in Fig. 9.10. Angelino (A2) found that the
correlation could be extrapolated to larger values of Eop,. Figure 9.10 can also
be replotted in terms of any three independent dimensionless groups, e.g., as
Re vs. Eop, with M as parameter, analogous to Fig. 2.5 for the case where wall
effects are negligible.

Providing that the length of a slug exceeds about 1.5D, slug length has vir-
tually no influence on slug velocity (G9, L2, R1, Z1). The terminal velocity is
achieved within a distance of 2D from release (W2). Expressions are available
for predicting the terminal velocity of slugs for the following special cases:

a. Viscosity and Surface Tension Forces Negligible (M < 10™° and Eop, >
100) For this case it can be shown, based on potential flow theory, that

Frp = /p/Ap(Ug/</gd) = constant, 9-37)

where values of 0.33 (D1), 0.35 (D2), 0.36 (L5, N1), and 0.37 (T4) have been

T 1n North American usage, the word slug is often used to refer to the plugs of continuous liquid

separating a series of elongated bubbles or drops. This difference can create considerable confusion.
Here we use the term slug to refer to the elongated bubble or drop of dispersed phase fluid.
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F1G. 9.10  General correlation for the rise velocity of slug flow bubbles (W2).
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FiG. 9.11 Slug flow bubble shapes: (a) Eop, > 10%, M < 107° (low viscosity liquid); (b) viscous
liquid; (c) inclined tube.

derived for the constant. Experimental results (N2, S4) favor a value of 0.35.1
Garabedian (G1) showed that the shape (and hence the value of Frp) is not
uniquely determined and suggested that the shape observed is that which leads
to the maximum rise velocity. Tung and Parlange (T4) applied this argument
to obtain a first estimate for the lowering of Uy by surface tension. Brown (B6)
extended the theory by considering the effects of viscosity in the annular film.
The slug velocity was shown to depend only on the frontal radius of curvature
which is influenced in a minor way by the fluid properties through their control
of the thickness of the annular film. Equation (9-37) is for single slugs rising
along the axis of a vertical tube as shown in Fig. 9.11a. If a slug adheres to the

* The mean value for fluidized beds has been found to be 0.36 (O1, S5). Given the scatter in the
experimental data, the difference between this value and the value of 0.35 for slugs in low viscosity
liquids is not significant.
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wall of the tube, the terminal velocity is increased by a factor of approximately
J2 (85).

b. Surfuce Tension Dominant (Eop < 3.4) In this case, the slug remains
motionless with its shape determined by a balance between hydrostatic and
capillary forces (B4, W2).

c. Viscosity Dominant (Eop > 70, Fr, < 0.05) The terminal velocity for
these conditions is given by

Uy = gD?* Ap/102y, (9-38)

where the numerical constant suggested here is a mean of values given in the
literature (W1, W2). The theory for this case has been presented and verified
experimentally by Goldsmith and Mason (G3). The front of the slug was found
to be prolate spheroidal while the rear was oblate spheroidal (see Fig. 9.11b).

When none of the sets of conditions given in (a), (b), or (c) apply, Fig. 9.10
should be used to predict the slug velocity.

2. Slug Flow in Vertical Tubes of Noncylindrical Cross Section

For the special case (a) above where surface tension and viscous effects are
negligible, the terminal velocity of a slug in a column of rectangular cross
section (D, x D,) is given by

U 13D
Fro, = J1_ [ £ _ o34 %1302 (9-39)
NE Ap D,

where D, < D, (G8, W1). In the limit D, « D, this relationship reduces to the
theoretical result (B2, C4, G1) for a plane slug. For a concentric annulus with
inner diameter D; and outer diameter D, and for the special case where inertia
effects are dominant, the data of Griffith (G8) can be fitted by the simple
relationship

Frp = 0.35 + 0.06D,/D,. (9-40)

Extensive data for slugs rising in annular sections have recently been obtained
(R1) in connection with blowouts in oil drilling operations. Bubbles were shown
to assume the shape of “hot dog buns” with the fractions of the annular cross
section occupied by downflowing liquid increasing with increasing viscosity.
Eccentricity of the central tube, vibrations, changes in slug length, and surfac-
tants were all found to have little influence on the terminal velocity of annular
slugs.

For the more general case when surface tension and viscous effects are ap-
preciable, there are few data available. Grigorev and Krokhin (G10) presented
some results for the rise of bubbles in thin rectangular slits and wedge-shaped
channels, while Schad and Bishop (S2) investigated bubble rise in thin annular
and planar gaps.
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3. Slug Flow in Inclined Tubes

Slug flow has been investigated for inclined cylindrical tubes (M3, R3, W2,
Z1) and inclined rectangular tubes (G2, G10, M2). Slugs in inclined tubes tend
to cling to one wall and the shape is altered as indicated in Fig. 9.11c. The ter-
minal velocity tends to increase as the tube is inclined away from the vertical
reaching a maximum at an orientation of about 45° (W1, Z1). Some experi-
mental results for air slugs in water are given in Fig. 9.12. Since

UT/UT(\crucuh = FrD/FrDucrricu!r = f(EOD’ M’ 0)’ (9-41)

it is not possible to give a simple two-dimensional representation of the ex-
perimental results valid for all systems. Wallis (R3, W1) published a family of
curves like those plotted in Fig. 9.12 for different ranges of Eop. For liquid
draining from a horizontal cylindrical tube (6 = 90°) and viscous and surface
tension effects negligible, experimental results (G2, Z1) appear to support the
experimental prediction of Brooke Benjamin (B5) giving Frp = 0.54 for the
advancing slug free surface. Results for the case where the tube is rotating are
given by Collins and Hoath (C7).

Fro/Frg (vertical)

e} 400 x
0.8 a 62
v 24
x 8
0.6 1
04 | | 1 | |
0 15 30 45 60 75 90

Tube inclination—Degrees from vertical

FiG. 9.12  Effect of tube inclination on the rise velocity of slug flow air bubbles in water (Z1).

C. BUBBLES AND DRrROPS ENCLOSING VERTICAL TUBES OR RODS

For large bubbles where inertia effects are dominant, enclosed vertical tubes
lead to bubble elongation and increased terminal velocities (G7). The bubble
shape tends towards that of a prolate spheroid and the terminal velocity may
be predicted using the Davies and Taylor assumptions discussed in Chapter 8,
but with the shape at the nose ellipsoidal rather than spherical. The maximum
increase in terminal velocity is about 16% for the case where /1 is small (G6)
and 259, for a bubble confined between parallel plates (G6, G7) and occurs for
the enclosed tube relatively close to the bubble axis.
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Griffith (G8) obtained some data for gaseous slugs rising in a vertical column
of diameter 5 cm containing seven vertical tubes, one concentric with the main
tube and the others on a circle of diameter 0.59D. The experimental results,
reproduced by Wallis (W1), show that the terminal velocity increases with
increasing enclosed tube diameter reaching a value more than 709, greater
than the empty tube slug velocity for a tube to column diameter ratio of 0.2.

The results referred to in this section refer primarily to gaseous slugs and to
large values of Eo or Eop, where inertia effects tend to be dominant. Experimen-
tal results for liquid drops and for smaller bubbles and columns are lacking.

D. Hgat AND MASS TRANSFER
1. Low Reynolds Numbers

The surface velocities of Haberman and Sayre (H1), when used in the thin
concentration boundary layer equation for circulating spheres, Eq. (3-51),
yield the mass transfer factors Ky, and Ky shown in Fig. 9.7 for k < 2. For
a fluid sphere in creeping flow the relationship between the mass transfer
factors is

Kyp = Kuu/K*?, (9-42)

where K is given by Eq. (9-29). For a sphere of given size, the wall effect on
mass transfer is larger than for a solid sphere at the same A, but it is still less
than 15% at 1= 0.5 for kx =0. Although deformation was not taken into
account, the experimental results of Haberman and Sayre (H1) suggest that it
is sufficiently small for 2 < 0.5 that both Ky and Kyp can be taken to be
ratios of the mass transfer rates.

2. Intermediate and Large Drops and Bubbles

The influence of / on the mass transfer rate has not been determined. Con-
sideration of the tracings shown in Fig. 9.9 and of data of Bhaga (B1) suggests
several different effects. Increasing / elongates the bubble, at first making it
more spherical and reducing its surface area; however, as . approaches unity,
the bubble becomes more cylindrical and the surface area increases again. At
the same time, increasing / decreases the rise velocity causing a reduction
in the mass transfer coefficient. Increasing 4 also decreases the fraction of the
surface in contact with the wake which tends to increase the overall transfer
rate. Comparison of the data of Calderbank et al. (C2) in a 10-cm-diameter
column and of Guthrie and Bradshaw (G11) in a 45-cm-diameter column
indicates that / has little effect on the rate of mass transfer for spherical-cap
bubbles when / < 0.5, suggesting that the effects of 4 cited above are com-
pensatory. This conclusion must be considered tentative, however, because
these studies used different techniques to obtain the mass transfer rate. Measure-
ments of the rate of transfer in a series of columns using a single experimental
method are needed.
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3. Slug Flow

Mass transfer to the liquid phase around a slug can be treated with the thin
concentration boundary layer assumption through Eq. (1-63). Van Heuven and
Beek (V1) completed these calculations for a slug with viscous and surface
tension forces negligible (Eop, > 100, M < 10~ °). The results can be represented
by

kA/m DL = Cs2'*(g/L)"*, (9-43)

where kA is the mass transfer coefficient x surface area product and the values
of Cgare given in Table 9.4 as a function of L/D, the ratio of the slug length to
the tube diameter. For slugs with L/D > 1 the coefficient is essentially constant.
Van Heuven and Beek’s experimental data are in fair agreement with Eq. (9-43).

The resistance to mass transfer within a slug in a liquid of low viscosity has
been measured by Filla et al. (F5), who found that (kA4), was approximately
proportional to the square root of the diffusivity within the bubble, &, as
predicted by the thin concentration boundary layer approximation. In addition,
(kA),/A, was independent of slug length for 1 < L/D < 2.5.

TABLE 9.4

Slug Flow Mass Transfer Constants C in Eq. (9-43)

L/D C, L/D C,

0.3 0.73 3 0.98

0.5 0.80 4 0.99

1 0.88 5 1.00

2 0.95 o 1.09
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Chapter 10

Surface Effects, Field Gradients,
and Other Influences

I. INTRODUCTION

In previous chapters, we have considered smooth particles moving steadily
under the action of gravity in uniform fluids. In this chapter, we consider factors
which commonly complicate the motion and transfer processes for solid and
fluid particles. Surface roughness for rigid particles and interfacial effects for
fluid particles are treated first. Natural convection resulting from density
gradients associated with heat or mass transfer is the subject of the next section.
We then give a brief review of the effects of shear and particle rotation. Free-
stream turbulence can greatly influence particle motion and transfer processes,
and this is treated next. Finally, we give a brief review of the effects of com-
pressibility and noncontinuum flow on particle motion and heat transfer.

II. SURFACE ROUGHNESS (RIGID PARTICLES)

A. EFFECT ON DRAG

Roughness on the surface of a solid particle is normally characterized by the
“relative roughness,” ¢/d, the ratio of the effective roughness height to the mean
outside diameter of the particle. This is analogous to the relative roughness
employed to characterize flow through pipes. Spherical elements on the surface
have an “effective roughness height” equal to 559, of the sphere diameter (A2).
The Reynolds number for a rough sphere is conventionally based on the
diameter of the circumscribing sphere. ‘

The most significant effects of surface roughness on flow past a particle
occur in the critical range (see Chapter 5). Achenbach (A2) investigated this
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range in detail. Roughness induces earlier transition to turbulence in the
attached boundary layer, as in Prandtl’s classic experiment in which a small
wire hoop was attached to the surface of a sphere [see (G14)]. The sudden
rearward shift in the final separation point occurs at Re values which decrease
with increasing surface roughness down to 8 x 10* for a relative roughness of
0.007 (cf. Re, = 3.65 x 10° for a smooth sphere). The resulting drop in Cp
occurs at lower Re,” while the minimum value of Cy, increases with increasing
roughness. In the transcritical range, well above transition, Cp, for roughened
spheres is independent of Re and constant at 0.38 for relative roughness greater
than about 10~ 3. There is some evidence (S20) that Cp, may be higher for a
very rough sphere of low y in free flight. Similar phenomena have been observed
for flow around cylinders (Al, A3, F1) and are likely for any body lacking
edges which fix the separation position. In the supercritical range, smooth
spheres in free motion are subject to random variations in flow which give
rise to an erratic trajectory (see Chapter 5). Scoggins (S19) showed that rough-
ening the surface reduces these fluctuations, causing particles to follow a much
more regular path. This effect has been applied in the design of balloon wind
sensors (S20).

Just below the critical range, roughness has little effect on drag (A2), but for
Re of order 10° roughness can increase Cp, substantially (S23, S28). The increase
in Cp, appears to depend on the ratio of roughness height to boundary layer
thickness. For Re < 500, large-scale roughness reduces the drag (S28). The
general result of Hill and Power (see Chapter 4) suggests that this should extend
into the creeping flow range, since the volume of a roughened particle is less
than that of the circumscribing sphere.

B. EFFECT ON TRANSFER

As for drag, the most dramatic effects of surface roughness on heat or mass
transfer occur near the critical range. The earlier transition to turbulence in
the attached boundary layer yields a maximum in the local transfer rate located
40-60° from the front stagnation point for spheres (J3, S15) and cylinders (A3).
Near the point of final separation on the rearward portion of the body, the
local transfer rate exhibits a minimum. The overall transfer rate is increased
to a maximum of 2 to 3 times the rate for a smooth particle. At Reynolds num-
bers above the critical value, an increase in relative roughness causes the overall
transfer rate to increase to a maximum and then decrease for relative roughness
greater than 0.1 (S17). The few data available at lower Re indicate that rough-
ness has little effect for transfer in gases (Sc, Pr ~ 1) when ¢/d < 10/Re** (A8,
J3). However, for large Pr or Sc, roughness increases the transfer rate down to

 An interesting result of this effect occurs for falling ice spheres. When the surface melts, and
therefore becomes smooth, flow can pass from supercritical to subcritical and the terminal velocity
is suddenly reduced (W6).



246 10. Surface Effects, Field Gradients

lower Re because of the thinness of the thermal or concentration boundary
layer (S16, S17).

III. INTERFACIAL EFFECTS (FLUID PARTICLES)

The effects of surface-active agents on the motion of and transfer from
bubbles and drops have been discussed in earlier chapters. The main effect
is to reduce the mobility of all or part of the interface. In this section we consider
briefly two other interfacial phenomena: interfacial convection during mass
transfer and interfacial barriers to mass transfer.

A. INTERFACIAL CONVECTION: THE MARANGONI EFFECT

Movements in the plane of the interface result from local variations of
interfacial tension during the course of mass transfer. These variations may be
produced by local variations of any quantity which affects the interfacial
tension. Interfacial motions have been ascribed to variations in interfacial
concentration (H6, P6, S33), temperature (A9, P6), and electrical properties
(A10, B19). In ternary systems, variations in concentration are the major factor
causing interfacial motion; in partially miscible binary systems, interfacial
temperature variations due to heat of solution effects are usually the cause.

On the interface between quiescent fluids, interfacial motions may take the
form of ripples (E4, O2) or of ordered cells (BS, L5, O2, S22). Slowly growing
cells may exist for long periods of time (B5, O2), or the cells may oscillate and
drift over the surface (L6, L7). When the phases are in relative motion, interfacial
disturbances usually take the form of localized eruptions, often called “inter-
facial turbulence” (M3). This form of disturbance can also be observed at the
interface of a drop (S8). A thorough review of interfacial phenomena, including
a number of striking photographs, has been presented by Sawistowski (S7).

The shape of a drop moving under the influence of gravity may be affected
by interfacial motions; the drop may also wobble and move sideways (S27, W3).
In one system (S22) the terminal velocity was reduced yielding a drag coefficient
nearly equal to that of a solid particle. Interfacial convection tends to increase
the rate of mass transfer above that which would occur in the absence of
interfacial motion. The interaction between mass transfer and interfacial con-
vection has been treated by Sawistowski (S7) and Davies (D4, DS).

1. Cellular Interfacial Motions

The factors determining the appearance of ordered cell-like motions were
first investigated by Sternling and Scriven (S33) who considered the two-
dimensional stability of a plane interface separating two immiscible semi-infinite
fluid phases with mass transfer occurring between the phases. This system was
shown to be unstable for mass transfer in one direction, but stable for transfer
in the opposite direction. For an interfacial tension-lowering solute, instability
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was predicted for transfer out of the phase with lower diffusivity or out of the
phase with higher kinematic viscosity. A similar analysis by Brian and co-
workers (B16, B17, B18) for a gas—liquid system included the adsorption and
subsequent movement of the solute at the interface. The inclusion of interfacial
convection and diffusion reduced interfacial concentration variations, making
the system more stable.

Cellular interfacial motions are generally observed in quiescent systems when
the mass transfer driving forces and interfacial tension gradients are small,
and when natural or buoyancy-driven convection is suppressed. Under these
conditions, the occurrence of cell-like motions is in agreement with the
Sternling—Scriven theory. The presence of these cells enhances the rate of mass
transfer (B4), since fresh fluid is brought to the interface. The maximum increase
in the rate of mass transfer has been predicted (B5) by assuming that cells of
depth 6 on either side of the interface are in equilibrium as they grow. If there
is no solute in the continuous phase, the amount of mass transferred per unit
area, m, is

m=[5/(1 + H)]¢,.n» (10-1)

where ¢, is the bulk concentration of solute. In the absence of interfacial
motion and assuming diffusivities in each phase to be equal, the penetration
theory gives

m* = (2/n)[(5pen/(1 + H)]Cpoo’ (10_2)

where 0,.,, the penetration depth, is JnZt. Bakker et al. (B5) found experi-
mentally that

1 < 0/0pen < 2. (10-3)
Hence, the maximum increase in mass transfer due to interfacial convection is
/2 < m/m* <. (10-4)
These limits are in good agreement with data on plane interfaces (B4, M3).
2. Interfacial Turbulence

Disordered interfacial motion can occur when there is mass transfer in either
direction. When an eddy of solute-rich fluid reaches the interface, the interfacial
tension is reduced locally at the point of impingement. Small regions of reduced
interfacial tension formed in this manner tend to spread. As spreading occurs,
bulk fluid of lower solute concentration is brought to the interface causing a
local increase in interfacial tension which retards and eventually stops the
spreading. The interfacial motion then reverses toward the original point of
impingement. This reversed flow, if sufficiently strong, produces two jets of
fluid, one ejected into each phase. This ejection is seen as an eruption from the
interface (S8, T9).
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The original eddy motion which sets up the chain of events leading to erup-
tions may be caused by forced flow of the bulk phases, density differences due
to concentration or temperature gradients (B12), or earlier eruptions. Strong
eruptions occur when a critical concentration driving force or a critical inter-
facial tension depression is exceeded (O3, S8, S9). At lower concentration
differences ripples may result (E4), eruptions may occur only over part of the
interface (S8) with the jets taking some time to form (T9), or no interfacial
motion at all may occur. Attempts to correlate the minimum driving force
required for spontaneous interfacial motions have met with little success.

Mass transfer rates are increased in the presence of eruptions because the
interfacial fluid is transported away from the interface by the jets. For mass
transfer from drops with the controlling resistance in the continuous phase,
the maximum increase in the transfer rate is of the order of three to four times
(S8), not greatly different from the estimate of Eq. (10-4) for cellular convection.
This may indicate that equilibrium is attained in thin layers adjacent to the
interface during the spreading and contraction. When the dispersed-phase
resistance controls, on the other hand, interfacial turbulence may increase the
mass transfer rate by more than an order of magnitude above the expected
value. This is almost certainly due to vigorous mixing caused by eruptions
within the drop.

The maximum effect of interfacial turbulence on the mass transfer coefficient
can be estimated using the correlation of Davies and Rideal (D6) for the initial
spreading velocity, U, of a surface tension-lowering material spreading at the
interface between two fluid phases:

Ug=Ac x 107%/(1 + ), (10-5)

where Ag is the surface tension depression causing spreading. This velocity
is then used in the Handlos—Baron (H1) expression, Eq. (7-57) to give

k, = 3.75 x 107° Aa/u(l + K)*. (10-6)

In this equation, Ac is taken as the maximum possible surface tension lowering.
Hence for a solute-free continuous phase, Ao is the difference between the
interfacial tension for the solvent-free system and the equilibrium interfacial
tension corresponding to the solute concentration in the dispersed phase.
Equation (10-6) indicates a strong effect of the viscosity ratio k on the mass
transfer coefficient as found experimentally (L11). For the few systems in which
measurements are reported (B11, L11, O4), estimates from Eq. (10-6) have
an average error of about 30% for the first 5-10 seconds of transfer when
interfacial turbulence is strongest.

B. INTERFACIAL BARRIERS TO MASS TRANSFER

The existence of interfacial barriers to mass transfer caused by films of surface-
active materials has long been recognized (L1). When surfactants are added
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to a system undergoing mass transfer, they reduce the interfacial tension and
make it less sensitive to variations in solute concentration. In addition, sur-
factants cause a resistance (surface viscosity) to motion at the interface. Inter-
facial motion, whether caused by forced flow or by the Marangoni effect, is
thereby reduced. The reduction in the rate of transfer caused by addition of
surfactant to a system undergoing interfacial turbulence can be very striking
(S10). In certain systems the surfactant itself provides a significant resistance
to mass transfer. This is sometimes called the barrier effect. Interfacial resistances
to transfer between quiescent liquid phases in the presence of surface-active
materials have been determined by several workers (D7, M14). The effects
appear to be specific to the solute—surfactant combination. Similar results
have been obtained for gas—liquid systems (G15, P11, S1). Whether there are
interfacial resistances to transfer in surfactant-free systems is still hotly debated
[e.g., see (B14, C2, H15, T14)].

IV. NATURAL CONVECTION AND MIXED FLOW

“Natural” or “free” convective flows are generated by density gradients
resulting from heat or mass transfer. Gradients of temperature and/or concen-
tration cause body forces to be nonuniform throughout the flow field, and these
forces generate the “natural” motion. Because the density depends on com-
position or temperature, the momentum and continuity equations are coupled
to the species continuity or energy equations. Since these equations are ex-
tremely difficult to solve, a set of simplifying assumptions, called the Boussinesq
approximation, is widely used.

A. THE BOUSSINESQ APPROXIMATION
Analyses of time-steady free convection usually assume that:

1. density is constant in the continuity and momentum equations, except
in the body force term;

2. density variations are caused only by temperature and composition
gradients;

3. all other properties are constant.

Under these assumptions Eq. (1-1), the Navier—Stokes equation, becomes
u-Vu=(p/p.)g — (Vp/p,) +vV’u. (10-7)

The variable density is expanded in a Taylor series about the density of the
fluid far from the body, p,:

2 0
p=p.+(T— m({}) +w— ww)<av’;> . (10-9)
PoosWeo
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where w is the mass fraction. The density has been considered only a function
of temperature and concentration of one component. Substitution of Eq. (10-8)
into Eq. (10-7) yields

Vp . 1L dp : L dp
. — = — T — v —w_)g,  (10-
u-Vu o +vVu+ oo 3T (T g + o Bw (w—w,)g, (10-9)

where Vp is the hydrostatic pressure gradient far from the body. It is convenient
to introduce compressibility coefficients

1 [(¢dp
= ——| == 10-1
ﬁl pd‘/<aT>poo’Wuo’ ( 0)
and
1 A
Bw = —~((il> . (10-11)
P o \OW PeosWao

Making Eq. (10-9) dimensionless through reference quantities as in Chapter 1
yields
Gr, g GCr, .8

T =——=—=w—. 10-12
Re? g Re? v g ( )

1
(V')’uw

/_V//:_V// o
u p+Re

The other governing equations—the overall continuity equation, the species
continuity equation, and the energy equation—are identical to the dimension-
less forms presented in Chapter 1. Two new dimensionless groups, a thermal
Grashof number

Gr = L*B(T, — T,)g/v* (10-13)
and a composition Grashof number,
Gr,, = LB (w, — W, )g/v? (10-14)

appear. These are algebraic quantities and may be negative. When natural
convection coexists with forced convection (termed mixed convection) the
relative effect of natural to forced convection is indicated by Gr/Re® where
Gr = Gr, or Gr,,.

For isothermal mass transfer (Gr, = 0),

Sh = f(Gr,, Re, Sc), (10-15)
while for heat transfer under uniform composition conditions,

Nu = f(Gr,, Re, Pr). (10-16)

The functional forms for these two equations are identical for equivalent
boundary conditions when Pr, Sc » 1.

The adequacy of the Boussinesq approximations has been tested for natural
convection from a vertical plate (S31) and for mixed convection from a hori-
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zontal plate (R4). The approximations give an adequate representation of
velocity and temperature profiles except near the point where buoyancy causes
flow separation. Fluid properties are best evaluated at the reference conditions
given by Sparrow and Gregg (S31) although the film condition is adequate
for the calculation of average Nusselt and Sherwood numbers.

B. NATURAL CONVECTION

We consider either isothermal mass transfer (Gr, = 0) or uniform composition
heat transfer (Gr,, = 0) from a particle with constant surface composition or
temperature. The Rayleigh number Ra is used for both Gr,Pr and Gr,Sc.

1. Flow Around Spheres

The details of natural convective flows over surfaces other than flat plates
have only recently been studied experimentally (A7, J1, P3, S12). We consider
a heated sphere in an infinite, stagnant medium. Flow is directed toward the
surface over the bottom hemisphere and away from the surface over the top
hemisphere with a stagnation point at each pole (P3, S12). The lower pole is
considered the forward stagnation point.

The buoyancy force can be resolved into components parallel and normal
to the surface. The parallel component acts in the direction of increasing 6,
measured from the forward stagnation point. Over the lower hemisphere the
normal component of the buoyancy force is directed toward the surface, while
over the upper hemisphere the normal component is directed away from the
surface. Therefore, the flow over the lower hemisphere is similar to that over a
heated, inclined plate. This flow is of boundary layer type near the leading edge,
but exhibits an instability in the form of longitudinal waves triggered by two-
dimensional disturbances (L10, P4). The flow over the upper hemisphere is
more unstable than the flow over an inclined flat plate because the periphery
available for flow and the angle of inclination decrease as 0 increases. Near
the rear stagnation point the normal component of the buoyancy force makes
the fluid turn away from the surface and form an axisymmetric plume above the
sphere (J1). Some distance above the sphere the plume becomes turbulent.
As the Grashof number is increased, the point of plume instability approaches
the sphere (J1) until at a sufficiently high Grashof number the flow over the
rear hemisphere is disturbed (S12, W4). At higher Grashof numbers the location
of velocity disturbances moves forward (S12). Even at high Grashof numbers
no standing eddy occurs; the flow turns away from the sphere under the action
of the normal component of buoyancy (P3).

2. Mass or Heat Transfer from Spheres

For Gr = 0, the Sherwood or Nusselt number is given by Eq. (3-44). For
Gr — 0, neither perturbation nor asymptotic expansion methods have proved
capable of yielding solutions for Sh comparable to Eq. (3-55). At larger Gr
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the boundary layer approximations become appropriate (G10). For an axisym-
metric body the resulting equations (for Gr, = 0) are Eq. (1-55) and

A a ~2
ou ou i 0%y

Uy — + Uy — = gh,(w — w,)sino + v——, (10-17)
0X oy dy
ow ow 0w

o g T (10-15)
0X cy oy

where o is the angle between the outward normal to the surface and the direc-
tion of gravity. For a body with constant surface composition, w,, the boundary
conditions are

at y=0 u, =0, u,=0,w=w,
y— u, =0, w=w,, (10-19)
x=0 u, =0,
where the boundary condition on u, at the surface, y = 0, is correct for large
Sc and for uniform composition heat transfer. A similarity solution of these
equations is possible for Sc — oo for any arbitrary body contour which does

not have horizontal planes, sharp corners, or surface depressions (A5, S34). The
mean Sherwood number is given by

Sh
—— = 0.6705
Ra'/* OXM Rdx’

X 3/4
[fo Y @43 (sin o) ? dx’}

, (10-20)

where # = R/L and X = x/L; Sh and Ra are based on length L. For spheres
with L taken as d, Eq. (10-20) yields

Sh = 0.589Ra'/*. (10-21)

For finite Sc similarity solutions are not possible for most shapes and approxi-
mate methods have been used [e.g., see (L4)].

Experimental local Sherwood numbers on a sphere are shown in Fig. 10.1
as a function of angle from the front stagnation point. The curves for Sc = 0.72
and 10 are approximate boundary layer solutions (L4), while the curve for
infinite Sc is the asymptotic similarity solution (AS5). Except for high Ra, the
data are in good agreement with the results of the boundary layer calculations.
The large increase in mass transfer rate beyond 120° at the largest Ra results
from the instability in the flow discussed earlier. The minimum transfer rate
occurs before the flow instability (S12) since instability and longitudinal waves
bring freestream fluid to the surface, thus increasing the transfer rate.

Experimental mean Sherwood numbers are shown in Fig. 10.2. The asymp-
totic solution, Eq. (10-21), gives a good representation of the data for large Sc
when Ra = 105, For extremely large Ra, a turbulent range is expected where
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Sh oc Ra'/3. Additional data are needed to confirm the existence of such a re-
gime. For Ra < 10* the asymptotic solution is inadequate because the bound-
ary layer thickness becomes large compared to the sphere radius. Since no
solutions have yet been obtained in this region, the data must be fitted em-
pirically. There are few solutions available for finite Sc, but the function of
Churchill and Churchill (C5) fits the available solutions and data for flat plates
and horizontal cylinders. The following correlation is proposed for 1 < Ra <
101°:

Sh = 1.7 + 0.3{1 + 14.86[ f(Sc)]Ra}'/4, (10-22)

with
f(Sc) = [1 + (0.5/Sc)%1e] 1o/, (10-23)
Equation (10-22) becomes essentially identical to the asymptotic solution,

Eq. (10-21), for Sc >» 1 and Ra > 10°. In Fig. 10.2, lines are drawn corresponding
to Eq. (10-22) for Sc = 0.7 and Sc = 0.

3. Mass or Heat Transfer from Arbitrary Shapes

The boundary layer equations for an axisymmetric body, Egs. (1-55), (10-17),
and (10-18) have been solved approximately for arbitrary Sc (L4). For Sc — o
the mean value of Sh can be computed from Eq. (10-20). Solutions have also
been obtained for Sc — oo for some shapes without axial symmetry, e.g., in-
clined cylinders (S34). Data for nonspherical shapes are shown in Fig. 10.3 for
large Rayleigh number. The characteristic length in Sh” and Ra’ is analogous
to that used in Chapters 4 and 6:

area for mass transfer

V= —— : : . (1029
maximum perimeter projected on a plane normal
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FiG. 10.3  Average Sh' or Nu' for nonspherical particles at high Ra.
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For shapes which have an appreciable fraction of area over which the normal
component of the buoyancy force is directed away from the surface (e.g., a
heated horizontal plate facing upward) the turbulent regime where Sh’oc
(Ra’)}’3 occurs at low Ra’. For example, the horizontal plates of Fig. 10.3 have
only one side exposed, the side for which the normal component of buoyancy
is directed away from the plate. Here the 4-power relation applies at Ra’ = 107.
For horizontal cylinders, on the other hand, such a relationship is exhibited for
Ra’ = 5 x 10°. For spheres in Fig. 10.2, there is no indication of this transition
even at Ra’ = 10'°. The critical Rayleigh number, Ra_’, above which the -
power relationship applies is correlated by

Ra, = 107/f,*, (10-25)

where f, is the fraction of the total surface area over which the normal com-
ponent of the buoyancy force is directed away from the surface and the angle
between the outward normal to the surface and the vertical is less than 45°.
The solid line in Fig. 10.3 is the asymptotic (Sc — co0) solution, Eq. (10-21) with
the Sherwood and Rayleigh numbers based on the I’ of Eq. (10-24). For Ra’ >
Ra_’ the 3-power relationship should be used as shown by the dashed line for
horizontal plates in Fig. 10.3.

Based on Eq. (10-22) the following relationship is recommended for arbitrary
shapes at any Ra’ < Ra,”:

) , , 0.589 \* QM
Sh’ = 0.85Shy’ + 0.15Sh, {1 + <()T8ho7> [f(Sc)]Ra} ,  (10-26)

where Shy’ is the Sherwood number for diffusion into a stagnant medium dis-
cussed in Chapter 4 and f(Sc) is given by Eq. (10-23). Equation (10-26) agrees
well with the only set of data available at low Ra’ (G13).

4. Simultaneous Heat and Mass Transfer

When heat and mass are transferred simultaneously, the two processes in-
teract through the Gr,, and Gr, terms in Eq. (10-12) and the energy and diffusion
equations. Although solutions to the governing equations are not available for
spheres, results should be qualitatively similar to those for flat plates (T4),
where for aiding flows (Gr,,/Gr, > 0) the transfer rate and surface shear stress
are increased, and for opposing flows (Gr,,/Gr, < 0) the surface shear stress is
predicted to drop to zero yielding an unstable flow.

Solutions to the boundary layer form of Eq. (10-12) have been obtained for
spheres in aiding flow with Sc > Pr and Sc — oo, a situation relevant to a
sphere in a liquid (T4). These results are approximated (S6) within 10%, by:

(Sc/Pr)*/?

(SC/Pr)1/3 14 Ral/4
Gr,,/Gr, '

1/4
Nu = 0.589[1 n Mr—'] Rall, (10-27)

Sh = 0.589[1 + (10-28)
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C. Mixep FREE AND FORCED CONVECTION

In mixed convection the orientation of the freestream velocity with respect
to the gravity vector is an important variable. The three orientations which
have received most attention are opposing flow, aiding flow, and crossflow.
Aiding flow results when the velocity which would be induced by buoyancy
acting alone is in the same direction as the forced flow, e.g., a stationary heated
sphere in an upward flowing gas stream or a heated sphere falling in a stagnant
gas. Opposing flow is the reverse while crossflow occurs when the freestream
velocity vector and the gravity force vector are at right angles to each other.

1. Creeping Flow

In creeping flow the effect of aiding and opposing buoyancy has been ob-
tained for uniform composition heat transfer by the method of matched asymp-
totic expansions (H9) and numerically (W7). For Re < 1, the buoyancy increases
the drag coefficient in aiding flow and decreases it in opposing flow, e.g., a
sphere which is hotter than a gas settles more slowly than if the sphere and gas
were at the same temperature. Figure 10.4 shows the effect of temperature
difference upon the terminal settling velocity at Re < 1. The parameter on the
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Fi1G. 10.4 Dimensionless terminal velocity Ny'/? as a function of-dimensionless diameter Nj,'/3
for spheres whose temperature differs from the fluid temperature. Calculated from Woo (W7) and
Hieber and Gebhart (H9).
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curves is a thermal number, N,, defined by

L Grt :Epﬁl(Ts - Too) __é Px — Ps
CoRe? 4 o, —p|  4lp,—po|
In Fig. 10.4 the sphere diameter, terminal velocity, and temperature difference
each appear in only one dimensionless group. The effect of natural convection
on N{/? is smaller at Pr = 10 because the region over which the buoyancy force
acts is much thinner than for Pr = 1. As Pr — o the effect should disappear
altogether. For Pr = 0, numerical solutions (W7) show effects about 50%, larger
than for Pr = 1.

The effect of natural convection on Cj, is shown in Fig. 10.5 for aiding and
opposing flow. The ordinate is the ratio of the drag coefficient in mixed con-
vection to Cpq, the drag coefficient in pure forced convection (Gr, = 0). The
abscissa is the parameter GrRe ™ !*8°Pr~ %3 which brings all of the calculated
values together for 0.7 < Pr < 10 and Re < 30. The effect on the mean Nusselt
number is appreciably less than on Cp. Nu increases less than 3%, in aiding
flow and decreases less than 3% in opposing flow for Re < 1.

N, = (10-29)
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FiG. 10.5 Effect of Gr,, Re, and Pr on drag coefficient for spheres whose temperatures differ
from the fluid temperature.

2. Higher Reynolds Numbers

Fluid velocities have been predicted numerically (W7) for mixed convection
to spheres in aiding and opposing flow at Re < 30, Pr =0.71, and Gr/Re < 10.
Aiding flow delays separation, while opposing flow moves the separation point
forward, e.g., at Re = 5 the flow separates at 154° with Pr = 0.71 and Gr, = 15
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in opposing flow. As in creeping flow, Cp, is increased in aiding flow. Although
no computations of Nu are available, the average Nusselt number should
increase in aiding flow because of the decreased size of the attached wake
where local transfer rates are low. The reverse should occur for opposing flow.
These expectations are borne out by data for spheres (P1, Y1) and cylinders
(H5) at Re less than required for eddy shedding in forced flow. Data for heat
transfer from spheres to an air stream (Y1) are shown in Fig. 10.6 on coordi-
nates suggested by a boundary layer analysis (A4). In crossflow Nu exceeds
that expected for forced flow at all Re, while for opposing flow Nu goes through
a minimum and approaches the forced flow limit from below. Aiding flow data
lie slightly above those for crossflow. Similar behavior occurs for cylinders
(HS, O1).
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F1G. 10.6 Heat transfer in combined convection to spheres with Pr = 0.71 and 3 < Re < 300.

At higher Re, where eddy shedding occurs in forced flow, the behavior is
similar to that in Fig. 10.6 if Ra < 10° (O1, P2). As Ra increases, the minimum
becomes shallower and moves to higher Gr,/Re?, while aiding and opposing
flow Nu values approach each other (F2, H5, O1). For larger Ra, the situation
is reversed with opposing flow yielding larger average transfer rates than aiding
flow (B13, G7, W5). This reversal is caused by two factors. First, if Ra is high
enough in aiding flow, the transfer rate on the rear surface is reduced below its
value in pure natural convection (G7, W5). Second, if Ra is high enough in
opposing flow, there is a strong interaction between the forced flow and the
opposed natural convective flow at the rear of the particle. Flow visualizations
(B13, W4) indicate a complex turbulence-like flow pattern which yields higher
transfer rates over the entire surface than in aiding flow (G7).

Consideration of the available data for spheres indicates that forced flow
correlations are accurate to about 10%, for Gr,/Re? < 0.2. The analogous limit
for natural convection is not so well defined, being about 10 at Pr = 0.7 and
increasing with Pr. Additional studies of mixed convection are needed to elu-
cidate the physical phenomena and provide correlations. Simultaneous mass
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and heat transfer have been studied for drops evaporating into gases with
Pr = 1. The aiding flow data agree with those shown in Fig. 10.6 (N1). The
Nusselt numbers are larger in opposing flow than in aiding flow, probably due
to flow instability induced by the mass flow outward from the surface (N1, S5).

V. PARTICLE ROTATION AND FLUID SHEAR

It is convenient to distinguish between particle or fluid rotation about axes
normal and parallel to the direction of relative motion. These two types of
motion may be termed respectively “top spin” and “screw motion” (T11). Top
spin is of more general importance since this corresponds to particle rotation
caused by fluid shear or by collision with rigid surfaces. Workers concerned
with suspension rheology and allied topics have concentrated on motion at
low Re, while very high Reynolds numbers have concerned aerodynamicists.
The gap between these two ranges is wide and uncharted, and we make no
attempt to close it here.

A. Tor SpIN

1. Low Reynolds Numbers

Figure 10.7 shows schematically a sphere undergoing top spin in an un-
bounded fluid' moving with undisturbed relative velocity Uy at its center. The
fluid is in uniform shear in the plane of the figure, with shear rate:

u, =Gy, u,=0, u,=0. (10-30)
It is convenient to define a shear Reynolds number:
Reg = Gd?/v. (10-31)

The angular velocity of the sphere, €, is taken as positive for rotation in the
same sense as that of the fluid. The resulting lift on the particle is taken as
positive in the direction @ x Uyg.

Lift, F,

T

Ug Drag.F
[
X | l
k—d—s)

FiG. 10.7 Schematic diagram of sphere rotating in a fluid in simple shear.

* Rigid boundaries have a significant effect on lift and migration (H13) as discussed in Chapter 9.
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Much of the work on particle rotation at low Reg follows from the early
work of Jeffery (J2) who considered a rigid, neutrally buoyant spheroid subject
to the uniform shear field defined by Eq. (10-30). Jeffery showed that the particle
center moves with the velocity which the continuous fluid would have at that
point in the absence of the particle, while the axis of the spheroid undergoes
rotation in one of a family of periodic orbits with angular velocities

do _

AR (a*cos? @ + b*sin? @) (10-32)
and

av  G(a® — b? .

dit’ - %#sin 205in 20, (10-33)

where 0 is the angle between the axis of symmetry of the spheroid and the
z axis and ¢ is the angle between the yz plane and the plane which contains
both the z axis and the axis of symmetry of the spheroid. Integration of these
equations yields

tan 0 = Coa/\/a® cos® ¢ + b*sin? ¢ (10-34)
and

tan ¢ = (a/b)tan[(2nt/t,) + @] (10-35)

where the integration constant C, is the orbit constant, i.e., the eccentricity of
elliptical orbits traced out by the ends of the particle; ¢, is the initial phase
angle; and t, is the period of rotation about the z axis given by

1, = 21/G)(E + 1/E). (10-36)

For a sphere where a = b, the particle rotates with an angular velocity of G/2
and a period of rotation of 47/G.

Mason and co-workers (B8, F3, G11, M5, T15) have shown that Egs. (10-32)
to (10-35) can also be applied to disks and cylinders provided that one uses an
apparent value of E, calculated from Eq. (10-36) and the observed t,. Bretherton
(B15) considered more general shapes and proved that most bodies of revolu-
tion, except for some extreme shapes, show periodic rotation with no lateral
migration (i.e., no lift) provided that inertia terms are neglected. In reality all
these particles migrate in the direction of positive lift (see Chapter 9). For a
useful extended review on particle motion in shear fields, see Goldsmith and
Mason (G12).

Theoretical attempts to explain lift have concentrated on flow at small but
nonzero Re, using matched asymptotic expansions in the manner of Proudman
and Pearson for a nonrotating sphere (see Chapter 3). In the absence of shear,
Rubinow and Keller (R6) showed that the drag is unchanged by rotation. With
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FiG. 10.8 Schematic diagram showing Magnus effect on rotating sphere.

both spin and shear, Saffman (S2) showed that the drag is slightly increased,
while the lift is given by

FL = 1.6154dUg/Reg. (10-37)

Harper and Chang (H4) generalized the analysis for any three-dimensional
body and defined a lift tensor related to the translational resistances in Stokes
flow. Lin et al. (L3) extended Saffman’s treatment to give the velocity and
pressure fields around a neutrally buoyant sphere, and also calculated the first
correction term for the angular velocity, obtaining

Q = (G/2)(1 — 0.0384 Re/?). (10-38)

From flow visualization and angular velocity measurements, Poe and
Acrivos (P12) concluded that the analysis leading to Egs. (10-37) and (10-38)
is valid only for Reg < 0.1, while for Reg > 6 a sphere rotates unsteadily and
the wake is oscillatory. Theoretical or numerical treatments appear to be
lacking beyond the near-Stokesian range until much higher Reynolds numbers.

Shear fields often induce splitting of fluid particles. This is treated in
Chapter 12.

2. Higher Reynolds Numbers: The Magnus Effect

At high Re(based on Uy), rotating cylinders and spheres experience significant
lift in the absence of fluid shear. This effect is well known to players of golf
and tennis, and is normally known by the name of its supposed discoverer
(M2)." The conventional Magnus lift acts in the direction shown schematically
in Fig. 10.8, i.e., in the same sense as positive lift at low Re. Lord Rayleigh (R3)
gave a qualitative explanation for the lift in terms of ideal fluid theory, showing
that the fluid velocity is higher and the pressure therefore lower near A than
near B. The phenomenon is rather more complex and related to the formation
of an asymmetric wake (see Fig. 10.8), demonstrated for spheres by Maccoll
(M1) and Taneda (T3) and for cylinders by Prandtl [see (G14)]. Drag and lift
on a spinning sphere must be determined experimentally.

* Although this effect is associated with Magnus, it was investigated for spheres much earlier by
Benjamin Robins (B6).
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F1G. 10.9 Drag and lift coefficients for rotating spheres. All data plotted are for smooth spheres.

Figure 10.9 summarizes available measurements on smooth spheres for Cp,
and the lift coefficient C;. A measure of the spin on the sphere is given by the
ratio of the maximum surface speed v, to the relative velocity Uy. Data of
Maccoll (M1) and Davies (D3) for Re close to the critical transition indicate
that Cy, is relatively insensitive to spin. However, C; is negative in this Re range
for v /Uy < 0.6. Taneda (T3) showed that this “negative Magnus effect” is
restricted to the range 6 x 10* < Re < 5 x 10°. The cause of negative lift was
shown to be earlier transition to turbulence around point B on Fig. 10.8 so
that final separation on that side of the particle occurs further to the rear (see
Chapter 5). In the negative lift region, the wake is distorted in the opposite sense
to that shown in Fig. 10.8 with the pressure at B lower than at A. Freestream
turbulence, which displaces the critical transition to lower Re (see section VI),
also displaces the region of negative lift. Well below the critical range, the data
of Barkla and Auchterlonie (B7) indicate a steady rise of C,, and a slight fall
in Cp, with increasing v,/Uy.

Davies (D3) found that roughened spheres behave rather differently at Re =
9 x 10* Both Cp and C;, rose steadily with increasing v,/Uy, presumably due
to the effect of roughness in displacing the critical transition to lower Re (see
Section II). It is therefore possible that rough spheres show negative lift at
somewhat lower Re, but this has not been confirmed.

B. ScrRew MoTION

For a sphere rotating about an axis parallel to the direction of relative
motion, flow may be characterized by Re and by the ratio v,/Uy of equatorial
surface speed to the approach velocity.” As for top spin, screw rotation in

T This ratio, its inverse, and various multiples are often called the “Rossby number.”
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creeping flow has no effect on the drag experienced by a sphere; i.e., there is
no coupling between rotation and translation (D10, G9). Results for non-
spherical shapes are reviewed by Happel and Brenner (H3). The Oseen ap-
proximation leads to the following expression for the ratio of sphere drag to
drag in Stokes flow (S3):

Fp 3 o, \2 60913 0/ Ug \?
D14+ R “) (51163 + 2= . (10-
RRET: e+<UR>< + e >+0[< e (10-39)

If v,/Ug exceeds a critical value of order unity, reverse flow occurs near the
forward stagnation point for oblate and prolate axisymmetric bodies (M8, M9),
leading to formation of an “upstream separation bubble.”

Luthander and Rydberg (L13) investigated the effect of screw rotation on
flow patterns and drag for a sphere near critical transition. Rotation with v,/Ug
up to 1.4 had virtually no effect on transition or on Cy,. Faster rotation de-
creased Re, to approximately 10° for v,/Ug = 3. Again the drop in Cp was
associated with increased turbulence and delayed separation of the boundary
layer; very rapid rotation caused the separation point to move forward again,
causing a rise in supercritical drag. Below the critical range, rotation with
vy/Ug < 2 had little effect on Cp,. These experiments were carried out with a
sphere whose location in a wind tunnel was fixed, so that the implications for
bodies in free flight are not clear. It is well known that the trajectories of pro-
jectiles are stabilized by screw rotation, and this presumably results from
elimination of the erratic lift forces in supercritical flow (see Chapter 5).

Somewhat similar considerations apply to a particle moving through a fluid
which is rotating about an axis not necessarily passing through the center of
the particle. Taylor [e.g., see (TS, T6)] did much of the early work on the subject
and showed that two-dimensional cylinders tend not to be deflected by the
rotation whereas three-dimensional symmetrical bodies (including spheres) are
deflected. For recent work on this problem, see (M4, M7, M12, M13).

Gas bubbles in screw motion show flattening as the angular velocity is
increased (R35). Coriolis forces must be considered in predicting trajectories of
fluid particles and a method of doing this is given by Catton and Schwartz (C1).
Slugs in rotating tubes are treated in Chapter 9.

C. HEeAT AND MASS TRANSFER

The effect of rotation on transfer to a translating sphere has been studied for
both screw motion (El, F6, T2) and top spin (N3, T2) with Re > 1500. The
effect of rotation on the transfer rate is less than 109 for v,/Ug < 0.5. The ratio
of the Sherwood number in screw motion to that in pure translation at the
same Uy is correlated within 10% by

Sh,/Sh = [1 + 1.04(v,/Ug)*]* (10-40)
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For top spin at higher rotation rates, Sh first decreases and then increases
with increasing rotational Reynolds number, Qd?/v, at constant translational
Reynolds number, Re. The overall change in Sh is generally relatively small
except for very rapid rotation. Analyses have been carried out (F4, P13) for
spheres and cylinders with Reg « 1 and Peg = Reg Sc > 1 in simple shear. At
low Reg there are closed streamlines around the body; at high Peg these
streamlines are also lines of constant composition so that Sh (or Nu) becomes
independent of Peg. For a sphere, Sh = 8.9 for Peg — oo (P13). More complex
velocity fields have also been considered at low Reg.

VI. FREESTREAM TURBULENCE

A. EFFECT ON PARTICLE MOTION
1. General Considerations

The motion of a particle in a turbulent fluid depends upon the characteristics
of the particle and of the turbulent flow. Small particles show a fluctuating
motion resulting from turbulent fluid motion. Generally speaking, a particle
responds to turbulent fluctuations with a scale larger than the particle diameter
(K9). A particle which is much larger than the scale of turbulence shows rela-
tively little velocity fluctuation. The effect of turbulence is then to modify the
flow field around the particle, so that the drag may be affected.

The range between these “small” and “large” particles is less well understood
although some experimental studies have been reported (K9, Ul). Similar
problems arise in interpretation as with accelerated motion (see Chapter 11).
Measurements are commonly correlated by a turbulence-dependent drag co-
efficient, which contains a number of possible acceleration-dependent compo-
nents. With fundamental understanding so poorly advanced, it is impossible to
say to what extent results are specific to the experimental conditions employed.

2. Small Particles

If the fluid turbulence is represented as a Fourier integral.
= fo“’ A, cos (ot + ¢,) do, (10-41)

the response of the particle to individual angular frequencies @ can be examined
using the results for sinusoidal fluid motion given in Chapter 11. This approach
has been developed by a number of workers [e.g. (F5, H10, H12, L2, L8, S30)],
with one or more drag components often neglected. The results in Table 11.2
and Fig. 11.15 can be used to estimate the particle—fluid amplitude ratio 5 and
phase shift ff for a given frequency of oscillation characterized by the dimension-
less period (or Stokes number), 7, = v/wa®. The results are useful for eval-
uating techniques, e.g., flow visualization or laser-Doppler anemometry, in
which suspended particles must follow the fluid closely. Figure 10.10 shows
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shift B for spheres. The continuous lines give the full solution, while the broken lines are for the case
where the history component is neglected.

plotted as a function of the density ratio y for constant values of # and f. A
tracer particle can be considered to respond to frequencies in the range above
the curve corresponding to the required accuracy, provided that the particle
also meets the conditions for smallness given by Eq. (11-72) and has low
Reynolds number based on the r.m.s. relative velocity.

Simplified expressions for predicting # and f are available, corresponding to
neglect of various terms in the unsteady drag equation. These expressions are
summarized in Table 11.2. Hjelmfelt and Mockros (H12) examined the validity
of the simplifications; unfortunately, the most commonly neglected term, the
Basset history term, is often significant at high frequencies.” Figure 10.10 shows

* Ahmadi and Goldschmidt (A6) showed that the history term has a negligible effect on the
mean motion of a particle in a turbulent fluid. The discussion here concerns fluctuations in particle
motion.
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curves of constant # and f calculated neglecting the history term. Although
neglect of this term is reasonable for density ratios typical of particles in gases
(y > 10%), this approximation is not advisable for particles in liquids, especially
if the amplitude is of interest.

As a rough guide, a particle follows the fluid motion faithfully if its relaxation
time, a*(2y + 1)/9v, is small compared with the period of oscillation (L12),
ie., if

7o > (2y + 1)/9. (10-42)

Figure 10.10 shows the curve 1, = 10(2y + 1)/9. Equation (10-42) is a useful
guide unless y is close to unity.

The approach of representing the fluid and particle motion by their com-
ponent frequencies is only valid if drag is a linear function of relative velocity
and acceleration, ie., if the particle Reynolds number is low. This is the
reason for the restriction on “small” particles noted earlier. The terminal
velocity of the particle relative to the fluid is superimposed on the turbulent
fluctuations and is unaffected by turbulence if Re is low (see Chapter 11).

3. Large Particles

If the particle Re is well above the creeping flow range, mean drag may be
increased or decreased by freestream turbulence. The most significant effect is
on the critical Reynolds number. As noted in Chapter 5, the sharp drop in
Cp at high Re results from transition to turbulence in the boundary layer
and consequent rearward shift in the final separation point. Turbulence reduces
Re,, presumably by precipitating this transition.

As in Chapter 5, it is convenient to define Re, as the Reynolds number at
which Cp falls to 0.3. Freestream turbulence may be characterized by the
relative intensity:

Iy = Ju'*/Uk, (10-43)

where Uy is the mean velocity of the particle relative to the fluid and \/F
is the r.m.s. fluctuating velocity of the fluid. Since Uy is usually much smaller
than the freestream velocity, Iy is generally much higher for entrained particles
than for fixed particles. For fixed particles, Dryden et al. (D11) found that Re,
decreased as Iy increased up to 0.045. This effect has been used to estimate
turbulence intensities in wind tunnels [e.g. (G14)]. A weak effect of turbulence
macroscale, L, was also found, and Re, correlated well with Ix(d/L,)"5. This
correlating group was derived by Taylor (T7), who suggested that fluctuating
pressure gradients provoke boundary layer transition. Subsequently Torobin
and Gauvin (T12), working with entrained spheres and 0.1 < I < 0.4, found
that Re, continued to decrease, down to approximately 400 for Iy = 0.4 (cf.

T Seeley (S21) discounted this mechanism on the basis of flow visualization studies. However,
the experiments were at Re < Re, given by Eq. (10-44), and thus appear to be in near-subcritical
flow.
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Re, = 3.65 x 10° for turbulence-free flow). No effect of turbulence scale was
detected. The data of Torobin and Gauvin do not (C7, U1) readily extrapolate
to those of Dryden et al. Whether the mismatch results from differences between
fixed and entrained particles or from differences in turbulence characteristics
is not clear. In the absence of further experimental data, Re, can be estimated
by modifying the empirical equations proposed by Clift and Gauvin (C7),
neglecting the weak effect of d/L:

log,oRe, = 5.562 — 1641,  (Ix < 0.15), (10-44)
log,oRe, = 3371 — 1751y (I > 0.15). (10-45)

Equation (10-44) gives a reasonable interpolation between the lower Iy range
examined by Torobin and Gauvin and the data of Dryden et al. (D11), but
implies a stronger dependence of Re, on I than indicated by Dryden’s
experiments.

Clamen and Gauvin (C6) measured Cp, for entrained spheres at Re above
the turbulence-induced critical transition, and Cp, was found to rise for Re > Re,
to pass through a maximum which increased with I;. The point at which Cp
again achieves 0.3 may be termed the “metacritical Reynolds number,” Rey,,
and can be estimated (C7) by:

log,o Rey = 6.878 — 2321, (Ip < 0.15), (10-46)
log,oRey = 3.663 — 1.8I; (I > 0.15). (10-47)

Correlations for Cp, in the critical and supercritical ranges are given in Table 10.1
and plotted in Fig. 10.11. The dependence of Cp, on Re in the supercritical

TABLE 10.1

Correlations for the Effect of Turbulence on Sphere Drag®

Range Correlation for Cp, Source
1. Subcritical
a) Re < 50;0.05< I <0.5 Cp=162I13Re™! (U1)
b) 50 <Re < 700;0.07 < Iy <0.5 Cp=0.133(1 + 150/Re)'->%° + 4I, (U1)
2. Critical
09Re, < Re < Re,, Cp = 0.3 (Re/Re,) 3 (C7)

3. Supercritical
a) Re, <Re < Rey Cp = 0.3(Re/Rey, )04 120w (C7)
b) Rey < Re <3 x 10%Ix >0.07 Cp=3990Re™ "0 — 447 x 10°[g%°"Re~ 8%  (C6)

“1In the above equations, Re,, the critical Reynolds number, is given by Eqgs. (10-44) and (10-45);
Re,,, the metacritical Reynolds number, is given by Egs. (10-46) and (10-47), and Re(3:45+20Ir) —
Re 3Re(0-45+20Ix)

(4 X -
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F1G. 10.11  Effect of relative turbulence intensity Iy on drag coefficient Cp.

range has not been verified and is not readily explainable, although some
tentative explanations have been advanced (C6).

Several workers investigated the effect of turbulence in subcritical flow,
but their results are somewhat contradictory. Uhlherr and Sinclair (Ul) deter-
mined drag on entrained particles, and gave correlations which appear in
Table 10.1 and Fig. 10.11. Generally, turbulence increased Cp, but Fig. 10.11
shows a region in which Cp, is reduced. They report that for 50 < Re < 700,
Cp has a minimum value for Iy = 0.04. Petrak (P7) also found a decrease in Cp,
in approximately the same Re range. However, Nicholls and co-workers (528,
71, 72) found that turbulence levels up to I = 0.08 had negligible effect on
Cp for Re < 200, while at higher Re, C increased monotonically with I,
but less rapidly than indicated by Uhlherr and Sinclair. Neither set of experi-
ments indicates any effect of d/L, in the lower Re range, although Zarin (Z1)
found that Cp, decreased with increasing d/L, for 600 < Re < 5000. In addition,
Cpmay depend on the turbulent energy spectrum (K 3). Qualitatively, turbulence
increases the Reynolds number at which separation first occurs (Ul), but
decreases the value at which wake shedding occurs (S28, Z2). Relatively high
I causes disturbances in the boundary layer, especially near the front stagnation
point and the separation circle (S21), and reduces the width and length of the
attached wake (S21, Ul).

Clift and Gauvin (C7, C8) discuss application of the correlations in Table 10.1

to particles falling at their terminal velocities. High /u'> can stabilize the

critical regime by making it a region in which drag increases with Uy. It was
noted in Chapter 5 that the critical range is unstable for a particle falling
through a quiescent fluid. Clamen’s correlation indicates that there can
be a range of particle sizes with two stable terminal velocities, the upper
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corresponding to critical flow and the lower to supercritical flow above Rey,. For
a given particle @meter, the terminal velocity can be increased or decreased,
depending on +/u'?.

4. Fluid Particles

There has been relatively little work on the motion of bubbles and drops
in well-characterized turbulent flow fields. There is some evidence (B3, K7)
that mean drag coefficients are not greatly altered by turbulence, although
marked fluctuations in velocity (B3) and shape (K7) can occur relative to flows
which are free of turbulence. The effect of turbulence on splitting of bubbles
and drops is discussed in Chapter 12.

B. EFrrecT ON HEAT AND MASS TRANSFER

Experimental data are available for large particles at Re greater than that
required for wake shedding. Turbulence increases the rate of transfer at all
Reynolds numbers. Early experimental work on cylinders (V1) disclosed an
effect of turbulence scale with a particular scale being “optimal,” i.e., for a
given turbulence intensity the Nusselt number achieved a maximum value
for a certain ratio of scale to diameter. This led to speculation on the existence
of a similar effect for spheres. However, more recent work (R1, R2) has failed
to support the existence of an optimal scale for either cylinders or spheres.
A weak scale effect has been found for spheres (R2) amounting to less than a
29 increase in Nusselt number as the ratio of sphere diameter to turbulence
macroscale increased from zero to five. There has also been some indication
(M15, S21) that the spectral distribution of the turbulence affects the transfer
rate, but additional data are required to confirm this. The major variable is
the intensity of turbulence. Early experimental work has been reviewed by
several authors (G3, G4, K3).

In subcritical flow, increasing turbulence increases the rate of transfer only
slightly over the forward portion of a sphere (G5, N2); larger increases are
experienced over the separated (rear) portion. For cylinders, there appears
to be a larger effect on the forward portion (G2, K4, M10) as well as a significant
effect on the rear portion (M 15, P8). Figure 10.12 shows local Nusselt numbers
for heat transfer from a sphere to a turbulent air stream at Re =2 x 10*.
The experimental results show little effect of turbulence over the forward
portion of the sphere at low turbulence intensities. The highest intensity is above
Ig. = 0.077, the turbulence intensity required to make Re, =2 x 10* as cal-
culated from Eq. (10-44). The large Nu on the forward hemisphere and the
local maximum on the rear hemisphere for Iy > 0.077 indicate a turbulent
boundary layer and supercritical flow conditions.

The average Nusselt number for a sphere also increases with turbulence
intensity. For spheres in air at Re < 1.5 x 10* there is a rather rapid rise of
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Nu with intensity up to Iy ~ 0.01 (E2, R2). As I increases further, but still
Iy < I, Nu increases roughly linearly, but more slowly. Similar effects have
been observed for cylinders (M10). For spheres at higher Re, the average
Nusselt number increases linearly with Iy for Iy < Iz, (R2). Few reliable data
are available for Iy > I . Figure 10.13 presents a tentative correlation for the
effect of turbulence on the average Nusselt number for spheres. The ordinate
is Nu/Nuy, the ratio of the Nusselt number at I to the value in the absence
of turbulence, while the abscissa is the ratio of I, the intensity, to Iy, the
critical intensity. The value of Nu, was calculated from the correlations in
Table 5.4 and I, from Egs. (10-44) and (10-45). The correlation is divided into
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Fi1G. 10.13  Effect of intensity of turbulence on the average Nusselt number for a sphere in an
air stream. (Note scale change on abscissa axis.)
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a linear portion for Iy/Ix. < 1 and a largely unexplored region for Iy /I, > 1.
For Iy/Ix. < 1 a reasonable fit to the data is obtained by straight lines drawn
from Nu/Nu, = 1.0 to the value of this ratio at Iy = I, denoted by Nu./Nu,
and given by

Nu,/Nug = 1 + 4.8 x 10~#Re®57, (10-48)

The linear relationship between Nu and [ at a fixed Re proposed in Fig. 10.13
has also been found experimentally for stagnation point transfer from cylinders
(K4) and spheres (G6). In addition, it has received some theoretical confirmation
from predictions of turbulence models for stagnation point transfer (G1, S29,
T13, W2).

Few reliable data are available on the effect of turbulence on transfer at high
Pr or Sc. The data of Henry and Epstein (HS) for transfer from spheres in
turbulent gas streams with Sc < 5 and the data of Mizushina et al. (M 10) for
cylinders with Sc = 10° suggest that the representation in Fig. 10.13 should be
independent of Pr or Sc.

VII. COMPRESSIBILITY AND NONCONTINUUM EFFECTS

Elsewhere in this book attention is focused on particles whose Mach and
Knudsen numbers are small. The Mach number is defined as the ratio of the
relative velocity between the particle and the fluid to the speed of sound in the
fluid:

Ma = Ug/c. (10-49)

For all practical purposes, isothermal flows with Ma < 0.2 can be treated as
incompressible, i.e., density variations in the fluid around the particle are neg-
ligible. Compressibility effects become important as Ma is increased, especially
for Ma approaching and in excess of unity. The Knudsen number is defined
as the ratio of the molecular mean free path in the fluid to some characteristic
particle dimension. For a spherical particle

Kn = A/d. (10-50)

For Kn less than a value of order 103, the particle is large by comparison with
the scale of molecular processes in the continuous phase and the fluid can be
treated as a continuum. Above this range, slip effects become significant. For
liquids, ¢ is sufficiently large and / sufficiently small that these effects are vir-
tually never significant. This is not the case for gases. The mean free path in
centimeters for air at temperature T(K) and pressure p(kP) may be calculated
(B10) from

J.=215uT"?/p, (10-51)

where p is the viscosity in kg/ms. For air at 293 K and 100 kP, ¢ is 343 m/s
and / is 6.53 x 10~ ° cm. Compressibility effects are significant then for relative
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velocities greater than about 70 m/s, while noncontinuum effects are significant
for particles smaller than about 10 um.

Compressibility and noncontinuum effects are related. For an ideal gas,
kinetic theory leads to the relationship (S11):

nk Ma
Kn= |™Ma 10-52
n 2 Re (10-52)

where k is the ratio of specific heats for the gas forming the continuous phase.’
Hence the drag coefficient can be treated as a function of any two of Re, Ma,
and Kn and in place of a unique relationship between Cp, and Re (the “standard
drag curve” discussed in Chapter 5), we require a family of curves. The dis-
cussion is simplified by distinguishing two distinct kinds of system showing
noncontinuum and/or compressibility effects. Particles entrained in gases may
be small enough for Kn to lie above the continuum range, although Re and
Ma are very small. Flow around such particles shows noncontinuum effects
but no appreciable compressibility, and this is discussed in Section A. The
particles are subject to Brownian motion, so that for nonspherical particles
the orientation is random and the hydrodynamic property of interest is the
mean resistance to flow (see Chapter 4). The other class of flows corresponds
to larger particles with high Uy, often in rarefied gases, and is of interest in
connection with high-altitude flight and rocket propulsion. In this case, Ma is
large and Re may be above the creeping flow range. Conventionally, this kind
of system is described in terms of Re and Ma. We discuss this case from the
viewpoint of compressibility effects in Section B. Effects of rarefaction on heat
transfer are treated in Section C.

A. NonconTINUUM FLow

It is conventional to distinguish three noncontinuum flow regimes. At small
but not negligible Kn, where / is up to 10% of d (or of the boundary layer
thickness at higher Re), the gas adjacent to the particle surface has a significant
tangential velocity or “slip.” This range is termed the “slip flow regime,” and
flow is normally calculated by conventional methods with modified boundary
conditions [see Pich (P10)]. When the mean free path and body dimensions
are comparable, this approach breaks down, since both surface collisions and
molecular collisions in the free stream are significant. This range, which is
poorly understood, is termed the “transition regime.” At high Kn, molecules
moving away from the particle only undergo collision at large distances from
the surface, so that the flow is dominated by molecule—particle interactions
(D1, P9). This range is known as the “free molecule regime.” The boundaries
between these regimes are somewhat arbitrary. Table 10.2 summarizes two
attempts at classification, but these are clearly not entirely consistent.

" For air at 293°K and 100 kP: Kn = 1.49 Ma/Re.
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TABLE 10.2

Classification of Continuum and Noncontinuum Flow Regimes.”

Schaaf and Chambré Devienne (low Ma)
General Air
Continuum Re < 1: Ma < 0.01Re Kn<15x 1072
, Kn <1072
Re > 1: Ma < 0.0l /Re Kn<15x 1072Re 72
. Ma _
Slip flow Re < 1: 0.01 <—R~r<0.1 1.5 x 107% < Kn < 0.15
c

1073 <Kn <025
Ma
Re>1: 00l <-— -<01 15x1072<KnyRe<0.15

JRe
Transitional ) Ma
flow Re < 1: 0.1<i€<3 0.15 < Kn < 4.5
025 < Kn< 10
Ma - - 015
Re>1: 01<—=- <3yRe ---<Kn<45
\/'RC V"RC
Free molecule Ma > 3Re Kn > 45 Kn > 10
flow

9 After Devienne (D8) and Schaaf and Chambré (S11).
Drag on a particle at nonnegligible Kn, but low Ma and Re, is conveniently
expressed by the “slip correction factor™:

c drag in continuum flow at same Re

drag on particle (10-53)
In the creeping flow range, C is equal to the ratio of the terminal velocity to
the terminal velocity in continuum flow. The value of C is sensitive to the
nature of molecular reflections from the surface of the particle (E5). The “ac-
commodation coefficient,” g, may be interpreted as the fraction of molecules
undergoing diffuse reflection, the balance being specularly reflected. Typical
values for gy lie between 0.8 and unity. For near-continuum flow, Basset (B9)
showed that

C=[1-(2 - opKn/og + O(Kn?)] ", (10-54)

while Epstein’s result (E5) for the opposite extreme of free-molecule flow may
be written

C = 18Kn/(8 + noy). (10-55)

Phillips (P9) proposed an approximate theoretical solution which yields Egs.
(10-54) and (10-55) in the limits of low and high Kn, and appears to give a
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close fit to available data in the transitional range:

154 12¢; Kn + 9(c;? + DKn? + 18¢5(c, > + 2)Kn?
N 15 — 3¢, Kn + ¢,(8 4 nog)(c,? + 2)Kn? ’

C (10-56)

where
;=02 —opfog and ;=02 - L (10-57)

For particles whose accommodation coefficient is known, Eq. (10-56) appears
to give the most accurate estimate for drag. Since oy, is rarely known to sufficient
accuracy, C may instead be estimated for spheres over the whole range of Kn
by a semiempirical expression whose form was first proposed by Knudsen and
Weber (K6). With the numerical values due to Davies (D2):

C =1+ Kn[2.514 + 0.8exp(—0.55/Kn)]. (10-58)

The constants in Eq. (10-58) depend upon oy, and other authors (D1, P10, S11)
give slightly different values.

For nonspherical particles, values for the slip correction factor are available
in slip flow (M11) and free-molecule flow (D1). To cover the whole range of
Kn and arbitrary body shapes, it is common practice to apply Eq. (10-58) for
nonspherical particles. The familiar problem then arises of selecting a dimen-
sion to characterize the particle. Some workers [e.g. (H2, P14)] have used the
diameter of the volume-equivalent sphere; this procedure may give reasonable
estimates for particles only slightly removed from spherical, or in near-con-
tinuum flow, but gives the wrong limit at high Kn. An alternative approach

T T | T [ T -
Random orientation /

= — — — Axis parallel to flow —
20 ~——— — Axis normal to flow /

CYLINDERS - =

Adjusted Sphere Diameter/d

2
Aspect Ratio

FiG. 10.14  Ratio of adjusted sphere diameter to diameter of cylinder and equatorial diameter of
spheroids. After Dahneke (D1).
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(D1) uses the “adjusted sphere,” i.e., the sphere with the same value of C in
free-molecule flow. The justification for this approach is that it gives the correct
result in the limits of high and low Kn, and is therefore likely to be a good
approximation in slip and transition flow as well. Figure 10.14 shows values
for the diameter of the “adjusted sphere” for spheroids and cylinders, taken
from Dahneke’s tabulation. For cubes the “adjusted sphere diameter” to be
used in defining Kn in Eq. (10-50) is 1.43 times the length of a side.

B. CoOMPRESSIBILITY EFFECT ON DRAG

The following discussion is concentrated on rigid spherical particles. There
are many treatises [e.g. (K8, S13, S25, T10)] which consider aerodynamics and
compressible external flows in a general manner, particularly with reference to
aerofoils, wings, sharp cones, and other flight-related geometries. High-velocity
flows are commonly accompanied also by significant aecrodynamic heating and
the temperature field can interact strongly with the velocity field. For simplicity,
we restrict our attention to cases where the ratio of particle to gas absolute
temperature, T,/T,,, is approximately unity. [For a review of data showing
the effect of T, /T, , see (B1).]

Early work in this area was reviewed by Hoerner (H14). [ For more recent
reviews of data, see (Bl, B2, C10).] Many of the data in the literature for
Ma > 0.2 are unreliable, just as for the low Ma results discussed in Chapter 5,
because of high levels of freestream turbulence, interference by a support, wall
effects, etc. The curves given in Fig. 10.15 have been prepared largely using
data given in (B1) obtained in ballistic ranges where particle decelerations were
measured over relatively short flight distances so that particle heating effects
were small. The ratio of particle to gas density was sufficiently great that added
mass and history effects (see Chapter 11) can be safely neglected in calculating
Cp. The estimated accuracy of the data is +2%.

For subsonic velocities where 0.2 < Ma < 0.9, the drag may be greater or
less than that at low Ma depending on the value of Re. For 10* < Re < 3 x 107,
a curve containing a dip at Ma = 0.85 given by Hoerner (H14) (see Fig. 10.15)
was generally accepted for many years, but more recent work shows no evi-
dence of this dip. Instead the drag increases monotonically with Ma at high Re.
At very low Re, Kn becomes large [see Eq. (10-52)], and drag approaches the
free-molecule flow limit. For intermediate Re (e.g., Re = 20) there is relatively
little effect of Ma on drag.

For transonic velocities (0.9 < Ma < 1.1), Cp changes sharply with Ma,
which accounts for the difficulty in obtaining reliable measurements in this
range. Bailey and Hiatt (B1) give photographs showing the formation of wake
and bow shock waves in this Ma range for Re = 10°. Sharp pressure increases
occur across shock waves, and strong interactions with boundary layers there-
fore occur which tend to promote boundary layer separation (C4, S35). In the
supersonic range (1.1 < Ma < 6), Cj, becomes almost independent of Ma (see
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F1G. 10.15 Drag coeflicient for rigid spherical particles in air as a function of Mach number
with Reynolds number as parameter, for the case where the absolute temperatures of the particle
and fluid are essentially the same.

Fig. 10.15) and depends primarily on Re, except for Re < 10, where Cyp, con-
tinues to fall as Ma increases. For hypersonic velocities (Ma > 6), temperature
variations become more important with high local temperatures leading to
ionization of gases. Available results (B2, K11) show that drag coefficients
increase toward the free-molecule flow limit as Ma increases in the hypersonic
range, while there is a monotonic decrease in drag coefficient with increasing
Re in this range, at least up to Re = 10*. Wake characteristics become par-
ticularly important and complex at super- and hypersonic speeds (C4).

In the free-molecule flow range, the drag on a sphere is given (S11), for
diffuse molecular reflection’ (¢ = 1), by:

2 2 4 2

(1+2s )e)fp( 5%/2) N (4s* + 4s 1)erf(s) 3 nT, (10-59)

B

Coppm = +
Dfm \/;t 3 254 3s\ T,

¥ The last term is absent for specular reflection. However, Eq. (10-59) is normally the applicable

form.
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where s is the “molecular speed ratio”:
s = Ma/k/2. (10-60)

Crowe et al. (C10) developed a semiempirical procedure for estimating sphere
drag coeflicients as a function of Re and Ma, using Cpy,,, and Cp, the standard
drag coeflicient for continuum flow at the appropriate Re, calculated as in
Chapter 5. A so-called “inviscid drag coefficient” is first estimated, corre-
sponding to the hypothetical drag at large (but subcritical) Re:

Cp = 0.66 + 0.26 tanh(2In Ma) + 0.17exp[ —2.5(In Ma/1.4)*]. (10-61)

The drag coefficient for the case in question is then estimated as

Cp = fCpm + (1 = )Cpy, (10-62)
where the ratio f is:
B
f= B {1 — exp[ —Re Kn%°eK"(Cp, — 0.4)/8]} (10-63)
and
B = Kn®*exp(1.2{/Kn). (10-64)

This procedure has some advantage over the results presented graphically in
Fig. 10.15 in that it allows for values of T,/T, other than unity via its effect
on Cpg,. Walsh (W1) and Henderson (H7) have also proposed empirical equa-
tions for Cp, as a function of Ma and Re.

The results presented above are for cases where the fluid may be considered
isothermal, except as outlined in the preceding paragraph where there may be
gradients near the particle associated with aerodynamic heating of the particle
itself. Another situation in which compressibility effects are important arises
when there are substantial property gradients in the fluid through which a
particle is moving. This case has been considered theoretically and experimen-
tally by several workers [e.g. (C3, K1, S24)] for low Re, low Ma motion of
spheres in gases with marked temperature gradients leading to simultaneous
momentum and heat transfer. For example, Seymour (S24) carried out a nu-
merical and experimental study of the motion of small spheres in an argon
plasma at temperatures up to 13000 K for a sphere surface temperature of
2000 K and Re varying between 0.3 and 1.5. Not surprisingly, characterization
of gas properties and experimental drag determination become very difficult
under such extreme conditions.

Wortman (W8) has given an approximate method of extending results for
spheres to other shapes which undergo random tumbling. The method requires
calculation of an effective radius of curvature, using kinetic theory (H11) to
define an equivalent cross section. The only restriction, aside from Ma > 1, is
that the flight must last for a sufficiently long period that there is no statistically
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preferred orientation. This approach gave good agreement with supersonic
data for cubes, especially in the hypersonic range, but it has not been confirmed
for other shapes. Nevertheless, it appears to be the best method available for
estimating the drag at supersonic velocities for shapes for which no direct
measurements are available, especially if the particle is not far removed from
spherical in shape.

C. EFfFrecT oN HEAT TRANSFER

Analogous to the slip velocity between gas and particle at Kn above the
continuum flow range discussed in Section A above, a temperature discontinuity
exists close to the surface at high Kn. Such a discontinuity represents an addi-
tional resistance to transfer. Hence, transfer rates are generally lowered by
compressibility and noncontinuum effects. The temperature jump occurs over a
distance 1.996kA(2 — ¢,)/Pro(k + 1) (K2, S11) where g, is the “thermal accom-
modation coefficient,” interpreted as the extent to which the thermal energy of
reflected molecules has adjusted to the surface temperature.

For small particles, subject to noncontinuum effects but not to compress-
ibility, Re is very low; see Eq. (10-52). In this case, nonradiative heat transfer
occurs purely by conduction. This situation has been examined theoretically in
the near-free-molecule limit (S14) and in the near-continuum limit (T8). The
following equation interpolates between these limits for a sphere in a motionless
gas:

Nu = 2b/(1 + b), (10-65)
where
ol + k) -
b= ok —5 Kn™1. (10-66)

Equations (10-65) and (10-66) give a good fit to data of Takao (T1) for heat
transfer from a brass sphere to air with ¢, = 0.8. Natural convection at low
pressures has been studied for cylinders and spheres (D9, K12).

At high Re and Ma in the free-molecule regime, transfer rates for spheres
have been calculated by Sauer (S4). These results, together with others for
cylinders and plates, have been summarized by Schaaf and Chambré (S11).
The particles are subject to aerodynamic heating and the heat transfer coeffi-
cients are based upon the difference between the particle surface temperature
and the recovery temperature (see standard aerodynamics texts). In the transi-
tional region, the semiempirical result of Kavanau (K?2),

x Ma Nu* Kn Nu*
Nut_ g Malu® oy Knhu®
u RePr Pr\/E

may be used to relate the Nusselt number Nu to its value Nu* in continuum
flow (Kn — 0) at the same Re and Pr for 0.1 < Ma < 0.7 and 2 < Re < 120.

(10-67)



References 279

Alternatively, one can use the interpolation formula suggested by Sherman
(S26),

Nug,/Nu = 1 + (Nug, /Nu*), (10-68)

where Nug,, is the Nusselt number in the free-molecule limit at the given Ma
[see (S11)]. The latter equation has been found to give good predictions for
cylinders as well as spheres. Equation (10-65) is a special case of Eq. (10-68)
for Re = 0. A more complete review of heat transfer in rarefied gases is given
by Springer (S32) who also covers the transition region at Ma greater than
unity.
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Chapter 11

Accelerated Motion without
Volume Change

I. INTRODUCTION

Prediction of fluid motion, drag, and transfer rates becomes much more
complex when the motion is unsteady. Dimensional analysis gives an indication
of the problems. A rigid sphere moving with steady velocity in a gravitational
field is governed by an equation of the general form

f[g A,D, 12925 d, UR] =0. (11'1)

Since there are three dimensions, two dimensionless groups, e.g., Np and Ny
defined in Chapter 5, suffice to describe the motion. If the motion is unsteady,
it is necessary to introduce the particle density explicitly, since it determines
the particle inertia as well as the net gravity force. Also, since Uy varies with
time and position, a further parameter must be introduced. This may be the
distance x moved since the start of the motion. Equation (11-1) is then replaced
by

f[g,ﬂ,p,d, UR,,OP,X] =0. (11'2)

Two additional dimensionless groups are therefore required. These can be
chosen as the density ratio® y and displacement modulus, M, = x/d. Hence

fINp,Ny,y, Mp] =0. (11-3)

The additional complexity is not limited to introduction of two new groups.
For example, Eq. (11-3) takes different forms for a particle accelerating from
rest and a particle projected in a stagnant fluid. In principle, all time derivatives

T 1t has already been noted in Chapters 5 to 7, that y = p,/p must be included when secondary
motion is superimposed on steady particle translation.
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of Uy should be included in Eq. (11-3), leading to a series of new groups, of which
the first is the acceleration modulus, M, = (dUg/dt)d/Ug>.

In this chapter we first discuss the equations of motion for particles at low
Re. Semiempirical extensions beyond the creeping flow regime are then con-
sidered. It is useful to distinguish two general kinds of unsteady motion:

Type 1 Characterized by rapid change of Re with M.
Type 2 Characterized by slow change of Re with M with the instanta-
neous flow pattern similar to that in steady motion at the instantaneous Re.

For Type 2 motions, drag is insensitive to acceleration, and calculation of the
motion is greatly simplified. For Type | motions, the instantaneous drag may
differ radically from the corresponding steady drag. In practice, Type 2 usually
corresponds to particles moving through gases (high y), whereas Type 1 gen-
erally describes motion in liquids.

Although a number of workers [e.g. (C5, D1, D2)] have considered flow
around particles started impulsively from rest at constant nonzero velocities,
this situation is of little practical interest. Attention is concentrated on free fall
from rest and oscillatory motion.

II. INITIAL MOTION

A. GENERAL CONSIDERATIONS

As for steady motion, analytic solutions for unsteady motion of rigid and
fluid particles are available only in creeping flow. The solution was developed
by Basset (B3); the outline given here follows the treatment of Landau and
Lifshitz (L4). The governing equation is the unsteady form of Eq. (1-36), ie.,
for axisymmetric flow,

A(E?)/ot = E%y. (11-4)
The boundary conditions are the same as for steady motion considered in
Chapters 1, 3, and 4, i.e., uniform flow remote from the particle, no slip and no
normal flow at the particle boundary, and, for fluid particles, continuity of
tangential stress at the interface. For a sphere the normal stress condition at
the interface is again formally redundant, but indicates whether a fluid particle
will remain spherical.

Consider a rigid sphere of radius a, executing rectilinear oscillatory motion
relative to remote fluid with its velocity given by":

U(t) = U, e, (11-5)

By analogy with the solution for steady creeping flow, we assume that the
stream function relative to the particle takes the form

W = f(r)e”“"sin? 0. (11-6)

" In Egs. (11-5) to (11-10), only the real part is to be considered.
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The form of f(r) is obtained from Eq. (11-4) and the boundary conditions
leading to

b= U sinz2 e[rz 3 fli 3 iczié{(] +i)a+is (1 i ’é)e(i—n(ra)/a}}
r r r

(11-7)

where

= /2v/o. (11-8)

For w — 0, Eq. (11-7) reduces to the stream function for steady creeping flow
past a rigid sphere, i.e., Eq. (3-7) with ¥ = co. The parameter 6 may be regarded
as a characteristic length scale for diffusion of vorticity generated at the particle
surface into the surrounding fluid. When w is very large, ¢ is small, and the
flow can be considered irrotational except in the immediate vicinity of the
particle. In the limit w — oo, Eq. (11-7) reduces to Eq. (1-29), the result for
potential flow past a stationary sphere.

The total drag on the sphere may be obtained, as in steady flow, by inte-
grating the normal and shear stresses over the surface. In terms of the instan-
taneous velocity U the result is (L4):

Vv dU 2uU dU
_F. = = el =~ 11-
Fy 67r,uaU+2pd +3na[5 + op dt] (11-9)
where V is the volume of the sphere. Although the above results refer to pure
oscillatory motion, they may be generalized to arbitrary rectilinear motion by
representing the velocity as a Fourier integral:

U(t) = f_“’w U, e do. (11-10)
Equation (11-9) then becomes (L4)
dw
—Fy = 6mpaU + 22 L 6 fmp f > (111
2 dt t—s

The first term of Eq. (11-11) is the Stokes drag for steady motion at the instan-
taneous velocity. The second term is the “added mass” or “virtual mass” con-
tribution which arises because acceleration of the particle requires acceleration
of the fluid. The volume of the “added mass” of fluid is 0.5V, the same as ob-
tained from potential flow theory. In general, the instantaneous drag depends
not only on the instantaneous velocities and accelerations, but also on con-
ditions which prevailed during development of the flow. The final term in
Eq. (11-11) includes the “Basset history integral,” in which past acceleration is
included, weighted as (t — s)” /%, where (t — s) is the time elapsed since the
past acceleration. The form of the history integral results from diffusion of
vorticity from the particle.
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Equation (11-11) depends on neglect of inertial terms in the Navier-Stokes
equation. Neglect of inertia terms is often less serious for unsteady motion
than for steady flow since the convective acceleration term is small both for
Re — 0 (Chapters 3 and 4), and for small amplitude motion or initial motion
from rest. The second case explains why the error in Eq. (11-11) can remain
small up to high Re, and why an empirical extension to Eq. (11-11) (see below)
describes some kinds of high Re motion. Note also that the limited diffusion
of vorticity from the particle at high w or small ¢ implies that the effects of a
containing wall are less critical for accelerated motion than for steady flow at
low Re.

Similar analyses have been developed for fluid spheres (S8, S9) and for rigid
spheroids (L3) moving parallel to their axes. The main conclusions are dis-
cussed below.

B. RIGID PARTICLES
1. Spheres

For a spherical particle released from rest at = 0 in a stagnant fluid, the
equation of motion follows from Eq. (11-11) as

U(s

dU
(p, + p/2)V CT—quV—6n,uaU 6a*/np f‘ (11-12)

where the overdot denotes a time-derivative. Introducing dimensionless times
T=vt/a®, o =vs/a’, (11-13)

and the ratio, W, of the instantaneous velocity U to the steady velocity in
Stokes flow, i.e.,

W, = U/Urs = 9uU/2a*g Ap = Re/Rers, (11-14)
we can rewrite Eq. (11-12) in dimensionless form as
2y + 1\d
p o+ Lydw, 1—W-—f (11-15)
9 d'E T — O'
which may be transformed (B5, K1) to an ordinary differential equation:
a*w, dw, 1
=+ BQ2—-B)— "+ BW,=B*1—-——|, (11-16)
dT dT T

where B is the dimensionless acceleration, dW,/dz, at T = 0:
B=9/2y+1). (11-17)

Equations (11-15) to (11-17) correspond to the general results for spheroids
given in Table 11.1. The velocity and displacement can be calculated as func-
tions of time, either by direct numerical integration (K1) of Eq. (11-16) with
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Fig. 11.1 Variation of dimensionless velocity and position with time for spheres of various
density ratios accelerating freely from rest in creeping flow.

initial conditions

att =0: W, =0,

= B, (11-18)

or from the analytic solutions in Table 11.1. The displacement is expressed as:

Mp
= W, d 11-19
Rers 8a gp Ap ! f * ( )

The general solution in Table 11.1 was first given for a sphere by Boggio (BS).
For y greater than a critical value denoted by y., « and f are complex. This
does not imply an oscillatory component in the motion, since the imaginary
part of the expression is identically zero (H15). However, it may be more con-
venient to use the purely real forms (H7) given in Table 11.1.7 Figure 11.1 shows

* Tabulations of erfc(z) and W(Z) are available (A2). Brush et al. (B9) gave alternate results,
including a series for W,(t) which converges rather slowly.
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predictions for spheres of various density ratios. The validity of these results
for creeping flow is well established (M6, M10), and the range of applicability
is discussed below.

It is of interest to compare the predictions from Eq. (11-15) with simplified
treatments which are often employed. If the troublesome history term is
neglected,

My 1 W,
W,=1- —B d =—{71—-—). -
4 exp(— Br) an Rers 4<T B> (11-20)

If added mass is also neglected, leaving only “steady drag,”

97 M 1 20,
W.=1- - d D (7 -2 1-21
8 exp( 2y> an Reqs 4(1 5 > (1 )

Figure 11.2 shows these approximate results for y = 2.65 together with the full
solution. Neglect of the unsteady drag terms is clearly unjustified, with the
history term being more important than added mass. Comparisons for other
values of y are given elsewhere (H7, H15). Figure 11.3 shows the times and
distances required for a particle to reach various fractions of its steady terminal
velocity. Neglect of the unsteady terms becomes less serious at high 7, but
discrepancies from the exact solution are still apparent as W, — 1.

®-2.65 .

Dimensionless Velocity and Displacement
-

Eq.(11-15)
e — Eq.(11-20)
————— Eq.(11-21) .

| J
1 2 3 4

Dimensionless Time, T

FiG. 11.2 Variation of velocity and position with time for a sphere with y = 2.65 accelerating
freely from rest in creeping flow.
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Dimensionless Time, T
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FiG. 11.3 Dimensionless time and distance required for sphere to reach various fractions of its
steady terminal velocity in creeping flow.
2. Spheroids

Lai and Mockros (L3) generalized Eq. (11-11) for a spheroid moving parallel
to its axis of symmetry to give the approximation:

. U(s)ds

VduU
—FD:Aa6nuaU+AAp7—dt—+AH6a2 72:p,uf_ N (11-22)
©Jt—s

where a is the equatorial radius defined in Fig. 4.2 and A, is the ratio of steady
drag to that on a sphere of radius a, as discussed in Chapter 4; its value is
given by Eq. (4-20) with the axial resistance, ¢, from Table 4.1. The ratio of
the history term to that on a sphere of radius « is

Ay = A2 (11-23)
The added mass coefficient, A,, is given by:
2[Ecos 'E — /1 — E*]
= \ (11-24)
E*J1 —E? —Ecos 'E

Oblate (E < 1) Ay



II. Initial Motion 293

_2[Eln(E+E*— 1) = JE* — 1]

B JEE—1—EWE+JEP— 1)

The coefficient of the added mass term, 1A, , is identical with the ratio of form
drag to friction drag in steady creeping flow given in Table 4.1. The ratio of
the added mass on a spheroid to that on a sphere of radius a is EA,. For a
spheroid falling from rest with its axis vertical, Eq. (11-22) leads to a result
equivalent to Eq. (11-15) for a sphere, as summarized in Table 11.1. If the
history term is neglected, Eq. (11-20) applies. If both history and added mass
are neglected, the trajectory is given by,

9A, 1 My 1/ 29EW,
d . _ S
2yE} an ( 9A,

Prolate (E > 1) A,

(11-25)

W,=1- exp{— ) (11-26)

Rers 4 !
Figure 11.4 shows the velocity-time curves from the full solution for weightless
rigid spheroids (y = 0) and for density ratios typical of particles in liquids
(y = 2.65) and gases (y = 10°). Figure 11.5 shows the ratio of the value of t for
which W, = 0.5 to the corresponding value for a sphere. The effect of spheroid

Dimensionless Velocity, W,

1II|‘TII]

——

-

10
Dimensionless Time, T

F1G. 11.4 Variation of velocity with time for spheroids accelerating freely from rest in creeping
flow.



294 11. Accelerated Motion without Volume Change

T

3 l I
PROLATE

OBLATE

T RATIO

01

0.03

1
0 05 10 15 20 2.5
ASPECT RATIO, E

F1G. 11.5 Dependence of time required to reach 50%; of steady terminal velocity (W, = 0.5) on
aspect ratio for rigid spheroids. Solid lines give ratio of ¢ for spheroids to that for a sphere of the
same equatorial diameter. Broken lines give the ratio of  from Eq. (11-20) neglecting history terms
to the value from the complete solution. Analysis is for creeping flow.

shape is generally weak,™ except for disk-like particles. As the spheroid becomes
more prolate, the time and distance required to achieve a given fraction of the
terminal velocity increase. Figure 11.5 also shows the effect of neglecting the
history term. As for spheres, the errors become smaller as y increases. For very
small y, neglect of the history term predicts the wrong effect of aspect ratio.

3. Disks

The drag on a thin disk moving normal to its faces is obtained by setting
E =0in Eq. (11-22) (L3), i.e.,

d !
—FD=16auU+8‘;p v 128“ [PE f q)‘s. (11-27)

The motion of a disk of small aspect ratio accelerating freely from rest is then
given (L2) by Table 11.1, with A, = 8/3r and B = 24/(3zEy + 4). For an “ideal”
disk (E = 0), B = 6 and the variation of W, and M/Reg with 7 is independent
of the density ratio. The corresponding velocity-time curve is indistinguishable
from that fory =0, E = 0.1 in Fig. 11.4.

T1f 7 is based on volume-equivalent radius, rather than equatorial radius as used here, E has
almost no effect on the trajectory for prolate spheroids (L1). However, this definition of t obscures
the effect of shape for oblate particles.
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FiG. 11.6  Variation of velocity with time for rigid (x = oc) and circulating inviscid (k = 0)
spheres accelerating freely from rest.

C. FLUID PARTICLES

Sy et al. (S8, S9) and Morrison and Stewart (M12) analyzed the initial motion
of fluid spheres with creeping flow in both phases. For bubbles (y = 0, x = 0),
the condition that internal and external Reynolds numbers remain small is
sufficient to ensure a spherical shape. However, for other k and y, the Weber
number must also be small to prevent significant distortion (S9). For x = 0,
the equation governing the particle velocity may be transformed to an ordinary
differential equation (K1), to give a result corresponding to Eq. (11-16), i.e.,

W, d*w aw, 2
=+ (4B —9)——" + 4B(B — 3) —— — 4B*W, = 4B? — 1] (11-28)
d‘[.' d'E dT 3 /T
The initial conditions are (K 1):
dw, 2B d*W, 4B
att =0: W, =0, = = (11-29)

dt 3’ dz? 3
As for a rigid sphere, the initial acceleration is g(1 — y)/(y + 1/2), i.e., the added
mass is half the displaced mass regardless of the nature of the sphere.

Explicit forms for W,(t) and Mp(z) are not available, while numerical solu-
tion of Eq. (11-28) is complicated by stability problems (C7). Sy et al. gave
analytic solutions for y = x = 0 (S8), and numerical results for other cases (S9).
Figure 11.6 shows the velocity-time curves for two density ratios and for k = 0
and x = co. For short times, rigid particles show higher W, than circulating
particles (because the dimensional initial acceleration is the same for the two
cases while the rigid particle has a lower terminal velocity). A reduction in the
dispersed phase viscosity reduces the time and distance required to attain a
given W, at longer times. Curves for intermediate k generally fall between these
curves, but near the intersection of the k = 0 and x = oo curves, a drop with
finite k shows a higher W, than either a rigid or an inviscid sphere.
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11I. RECTILINEAR ACCELERATION AT HIGHER Re

A. RIGID PARTICLES
1. General Considerations

The only rigid particle for which accelerated motion beyond the creeping
flow range has been considered in detail is the sphere. Odar and Hamilton
(O6) suggested that Eq. (11-11) be extended to higher Re as:

nd? Vo dU 3d?
—Fy=Cp 8pU + A, zp Ay «/TCpJ‘

(11-30)

The first term again represents drag in steady motion at the instantaneous
velocity, with C, an empirical function of Re as in Chapter 5. The other terms
represent contributions from added mass and history, with empirical coeffi-
cients, A, and Ay, to account for differences from creeping flow. From mea-
surements of the drag on a sphere executing simple harmonic motion in a
liquid, A, and Ay appeared to depend only on the acceleration modulus
according to:

Ay =21 — 0.132M /(1 + 0.12M,2), (11-31)
Ay = 0.48 + 0.52M3/(1 + M,)*. (11-32)

For initial motion from rest, ie, as U —» 0 and M, - oo, then A, = Ay =1,
and Eq. (11-30) reduces to Eq. (11-11).

Equations (11-30) to (11-32) give a good description of the motion of particles
released from rest (C8, O1, O2). In dimensionless form, the equation of motion
is (C8):

WgARe’ = ReTS—%—— li;__a)d:’ (11-33)
where
Rerg = gd*p Ap/18u72, (11-34)
Ap = CpRe?, (11-35)
and
Re’ = d(Re)/dt = Re* M /4. (11-36)

Here Ay is a function of Re, analogous to Ny, used for steady motion in Chap-
ter 5, and may be evaluated using the correlations in Table 5.2. Since Ny, =
24Rerg for a spherical particle at its terminal velocity, Reg fixes the terminal
Reynolds number Re; via the correlations in Table 5.3. The relationship be-
tween Rer and Reqg is shown by the uppermost curve in Fig. 11.11. In view of
the complex dependence of A, and Ay on Re and Re’, Eq. (11-33) must be
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F1G. 11.7 Variation of Re with dimensionless time for sphere falling from rest; y = 1.22, Re;g =

3371, Re; = 364. Data are from Moorman (M10), run 33.(1) Eq. (11-33); A, and A, from Eqgs. (11-31)
and (11-32); (2) Eq. (11-33); Ay = Ay, = 1: (3) Creeping flow solution, Table 11.1; (4) Steady drag
only (Ay = A, = 0);(5) Steady drag with A, = 1. Bottom part of figure, giving drag components and
coefficients, corresponds to curve 1.

solved numerically. Suitable integration procedures™ are described by Odar
(02) and Clift (C7). For fall from rest, the initial conditions are

att=0: Re=0, Re =9Rerg/(2y + 1), (11-37)

and the particle displacement follows by numerical solution of
1 pe
= fo Re dx. (11-38)

There is no a priori justification for Eq. (11-30) since the form of Eq. (11-11)
(and not simply the coefficients) depends on the assumption of creeping flow.
Moreover, the form of the equation is open to criticism; for example, momen-
tum arguments suggest that the added mass term be written (pV/2)d(A,U)/dt.
However, Eq. (11-30) is the form for which Egs. (11-31) and (11-32) were deter-
mined (OS5), and appears to give an accurate description of the motion of
spheres from rest as demonstrated in Fig. 11.7. Curve 1 shows the predictions

T Kuo (K3) proposed a procedure based on piecewise application of the results in Table 11.1,

taking Cp, A4, and Ay as constant over each interval. For extensive calculations, this procedure is
more laborious than numerical integration.
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for the instantaneous Reynolds number, Re(), corresponding to one run from
the extensive data of Moorman (M10). Similar comparisons have been made
for all of Moorman’s runs, covering the range 1.22 <y < 9.55, 5.8 < Reyg <
7.6 x 10* (01, O2), for the data of Mockros and Lai (M6) where 1.15 < y < 500,
6.4 < Rerg <2 x 10* (C8), and for data of Richards (R3) with y < 0.1 and
9 < Reqg < 1.5 x 107 (C7, C8). Richards’ results provide a particularly critical
test since the added mass and history terms become more significant as y — 0.
In each case, Egs. (11-31) to (11-38) give a good description of the motion
except for limitations due to secondary motion noted below.

Richards’ results agree with the predictions for Re as high as 10* (C7). This
is not only far removed from creeping flow, but is also well above the range for
which Odar and Hamilton derived Egs. (11-31) and (11-32). The fact that A,
and Ay values determined for oscillatory motion work well for unidirectional
motion at much higher Re probably arises because the trajectory is relatively
insensitive to these coefficients. This is demonstrated by curve 2 in Fig. 11.7,
obtained with A, = Ay = 1. In the early part of the motion, changes in these
terms tend to compensate, so that curves 1 and 2 only differ when approaching
Rey. Similar conclusions apply for other particle characteristics (H1), although
the errors introduced by assuming A, = Ay = 1 are generally larger for lower
Reqs (C8).

Although Egs. (11-30) to (11-32) give a good description of free acceleration
from rest, this does not necessarily mean that they apply to all types of unsteady
motion. Fall or rise from rest is a particular case in which the creeping flow
assumptions apply initially. The approach is less realistic if Re is initially large
(e.g., for a particle released in a flowing fluid).

2. Solutions for Particles in Liquids

Unless y >» 1, all terms in Eq. (11-33) must be retained. Since Eq. (11-30) has
no formal justification, the individual terms cannot definitely be ascribed to
added mass or history effects. Even so, the relative magnitudes of the terms are
of interest. Figure 11.7 shows the three terms for specific values of y and Reys,
expressed as fractions of the immersed particle weight. “Added mass” domi-
nates initially; “history” passes through a maximum and decays slowly; “steady
drag” increases monotonically to become the sole component at the terminal
velocity. Both A, and Ay depart from unity early in the ‘motion. For smaller
Reqg, “history” may be the dominant drag component for a brief period (O2).

Figure 11.8 shows typical curves for Re/Rey as functions of t and M, cal-
culated from Egs. (11-31) to (11-36) for y = 2.65. Even for low Re; (curve 2),
the velocity approaches the terminal value more rapidly than predicted by the
creeping flow solution. At higher Rey the steady terminal velocity is approached
more rapidly, but the M, value required to achieve a given fraction of Rey
increases with Rey. The trajectory is generally more sensitive to Rer than to y
as shown by Fig. 11.9, where we have plotted the T and My/Re; required to



0 I ERTIT B W R RTTT] R I U R TIT] I el gl

.01 . 1 10 . 1 10
Dimensionless Time, T Displacement Modulus,Mp

FiG. 11.8 Variation of velocity with time and distance for spheres with y = 2.65. (1) Re; = Rerg
(creeping flow); (2) Rep = 1.0, Reqg = 1.132; (3) Rey = 10.0, Rerg = 17.7; (4) Rep = 100.0, Rers =
453;(5) Rey = 10, Reqg = 19600.
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achieve 50 and 90%, of U;. Figure 11.9 enables rapid estimates to be made for
particles in liquids. All drag components are significant and the motion is
considered “Type 1.”

3. Approximate Solutions

The creeping flow solutions for (Re/Rers) and (M p/Rers) give a close approx-
imation for early motion even for quite high Re (M6). Curve 3 in Fig. 11.7
shows a typical case: due to compensating errors in the drag terms, the creeping
flow predictions are close to the observed velocities up to Re of order 100.
Figure 11.10 shows the M, at which the difference between the numerical and
creeping flow values for My, reaches 5%,. Beyond this point the error increases
rapidly, since the limiting Re for the creeping flow solution is Rerg rather than
Re;. The Re at which the error reaches a given value is almost independent of
y in this range. Figure 11.11 shows the Re at which the error in the creeping
flow solution for Re(z) reaches 1 and 5%,. Mockros and Lai (M6) determined
a range of validity empirically, without specifying what error they considered
to constitute disagreement. Their curve is shown in Fig. 11.11 and typically
corresponds to 209, error in Re.

Neglect of added mass and history simplifies calculation of unsteady motion
considerably. However, for y characteristic of particles in liquids, this intro-
duces substantial errors as illustrated by curve 4 in Fig. 11.7. The accuracy of
the simplification improves as y and Re increase, but even for 7 as high as 10
trajectories calculated neglecting history and added mass substantially under-
predict the duration of accelerated motion. Neglect of added mass causes the
predicted trajectory to be in error from the start of the motion. Since it is the

1_ 1 20 3 50 100 200 500
T Le T T

' I I AN | 18 L1 8 111

10 0 50 100 200 500 1000 2000 1

Re.g

FiG. 11.10  Values of displacement modulus at which error in creeping flow solution for Mp(z)
reaches 5%,.
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FiG. 11.11  Values of Re at which error in creeping flow solution for Re(r) becomes significant.

history integral which complicates Eq. (11-33), it is tempting to neglect this
term alone. Curve 5 in Fig. 11.7 shows the resulting trajectory with A, = 1.
The prediction is somewhat improved, since the initial acceleration is correct,
but the range of validity is much shorter than for the creeping flow approxi-
mation. Thus there is no justification for neglecting the history term and
retaining added mass, since history is only negligible if y is so large that both
terms are negligible.

4.  Development of Flow Field

Numerical solutions have been reported for fluid motion around spheres
falling freely from rest (H4, L5, L7). The value of Re at which wake separation
first occurs may be much higher than in steady motion (Re = 20; see Chapter 5)
and increases with Re’ (H4). Figure 11.12 shows typical results for the case
where y = 1.72, Re; = 145 (Reyg = 770). Lateral wake development occurs
quickly so that the separation circle rapidly approaches its steady position.
Downstream growth is considerably slower. Similar trends are predicted for a
sphere started impulsively (R1, R4).

Free-fall experiments with Rer > 10* show that a sphere released from rest
initially accelerates vertically, and then moves horizontally while its vertical
velocity falls sharply (R3, S2, S3, V2). As for “steady” motion discussed in
Chapter 5, secondary motion results from asymmetric shedding of fluid from
the wake (S3, V2). Wake-shedding limits applicability of the equations given
above. Data on the point at which wake-shedding occurs are scant, but lateral
motion has been detected for M, in the range 4-5 (C7). Deceleration occurs
for Re > 0.9 Rey. The first asymmetric shedding occurs at much higher Re
than in “steady” motion (Re = 200; see Chapter 5), due to the relatively slow
downstream development, as shown in Fig. 11.12.
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I —

Wake length/

Separation angle sphere diameter
T Re (N (Ly/d)
1 0123 102.6 150° 0.095
2 015 1145 138° 0.24
3 0.164 119.3 134.5° 0.31
4 0.185 1254 131° 0.41
5 020 129.1 128° 0.50
6 024 136.4 125°¢ 0.66
At steady
state: 145 121° 1.1

Fig. 11.12  Fluid streamlines relative to sphere falling from rest showing development of wake,
after (LS), y = 1.72, Re,; = 145. Conditions as above.

5. Solutions for Particles in Gases

As noted above, added mass and history contributions can be neglected for
large 7, especially at high Re; or Rerg. The motion is then of “Type 2,” with
the fluid responding rapidly to changes in particle velocity. If the history term
is neglected and y > 1, Eq. (11-33) becomes

2y dRe

9 dr
It is convenient to rewrite Eq. (11-39) in terms of W = U/Uy and a new dimen-
sionless time:

Ap

= = 11-39
Rerg 2% ( )

T = gt/Uy. (11-40)

Equation (11-39) then becomes
aw_ A G Re?
dT ~~  24Rerg Np

(11-41)
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FiG. 11.13  Values of dimensionless velocity, W = U/Uy, and dimensionless displacement,
X = gx/U,?, as functions of dimensionless time, T = gt/ U for spheres released from rest in stagnant
gases (y > 1).

The dimensionless displacement is given by
X = gx/Us? = foT WdT. (11-42)

With these simplifications, W and X can be generated as functions of T,
with the particle characterized by a single dimensionless parameter, either
Rerg, Np or Rey. Figure 11.13 shows predictions for a particle released from
rest (W = X =0 at T = 0), while Fig. 11.14 gives trajectories for particles pro-
jected vertically upwards such that the particle comes to rest at T = 0. Figures
11.13 and 11.14 enable rapid estimations for many problems involving unsteady
motion of particles in gases.

6. Heat and Mass Transfer

Hatim (H2) obtained numerical solutions for heat transfer from a sphere of
constant temperature accelerating from rest. The trajectory was calculated
from Eq. (11-33), and the time-dependent Navier-Stokes and energy equations
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FiG. 11.14 Dimensionless velocity and displacement as functions of dimensionless time for
spheres projected vertically upwards into stagnant gas (y > 1).

were solved numerically.? Two distinct cases were considered. If steady-state
conduction was assumed to be established before the sphere was released (i.e.,
Nu =2 at ¢t = 0), the Nusselt number was calculated to rise monotonically
towards the final value corresponding to the terminal velocity. If the sphere
was assumed to be released into a fluid of uniform initial temperature, Nu was
initially very large, but fell rapidly to a minimum somewhat in excess of Nu = 2,
and subsequently rose to the final steady value. In each case, the minimum
local transfer rate at the sphere surface at any time following separation
occurred downstream of the separation point.

B. FLuiD PARTICLES

As for steady motion, shape changes and oscillations may complicate the
accelerated motion of bubbles and drops. Here we consider only acceleration
of drops and bubbles which have already been formed; formation processes
are considered in Chapter 12. As for solid spheres, initial motion of fluid spheres
is controlled by added mass, and the initial acceleration under gravity is
g(y — 1)/(y + %) (E1, H15, W2). Quantitative measurements beyond the initial
stages are scant, and limited to falling drops with intermediate Rey, and rising

" Instantaneous overall drag coefficients determined from the Navier-Stokes equation were
within about 10%, of values obtained from Egs. (11-30)—(11-33). This provides an additional
justification of the approach discussed above.
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spherical- and circular-cap bubbles. It is not uncommon for fluid particles to
achieve a maximum rise or fall velocity scon after release and then decelerate
somewhat. The deceleration thereafter is caused by accumulation of surface-
active impurities at the interface [e.g. (A4, W4)] and is considered briefly in
Chapter 7.

1. Drops

Edge et al. (E1) studied the motion of oscillating drops immediately after
formation in carefully purified aqueous systems. Their results generally confirm
the observations of other workers (S5, WS5). Drops fall vertically at first. Inter-
nal circulation may be strong at first, depending on the mode of formation
(G1). Shape oscillations may be initiated by deformation immediately prior to
detachment (E1, SS5) and occur at Lamb’s theoretical frequency; see Eq. (7-30).
Thereafter the frequency decreases, and oscillations are associated with growth
and shedding of the wake. Except for drops which show large-scale asymmetric
wake shedding in “steady” motion, a steady velocity close to the terminal value
is attained before macroscopic shedding occurs, as for rigid spheres discussed
above. Drops typically travel 5—-10 equivalent diameters before shedding occurs,
somewhat further than rigid spheres. Once shedding starts, wake shedding
coupled with oscillations of shape and velocity is observed. A drop whose
“steady fall” is accompanied by asymmetric shedding and a zig-zag trajectory
passes through the intermediate regime of oscillating rectilinear motion with
shedding of a vortex chain.

Drops accelerated by an air stream may split, as described in Chapter 12.
For drops which do not split, measured drag coeflicients are larger than for
rigid spheres under steady-state conditions (R2). The difference is probably
associated more with shape deformations than with the history and added mass
effects discussed above. For micron-size drops where there is no significant
deformation, trajectories may be calculated using steady-state drag coeffi-
cients (S1).

2. Large Bubbles

Walters and Davidson (W1, W2) investigated the motion of large spherical
and circular bubbles, initially at rest in a stagnant fluid. As predicted by irrota-
tional flow theory, the initial acceleration following release is 2¢g for a spherical
bubble and g for a cylindrical bubble (the difference being caused by the differ-
ent added mass in the two cases). In each case, a tongue of liquid moves upward
into the rear of the bubble, so that it immediately begins to deform towards a
spherical-cap or circular-cap shape.” Rapid generation of vorticity in the wake
may cause two small satellite bubbles to detach from a two-dimensional bubble

¥ Similar initial motion occurs for bubbles in fluidized beds, where the final shape is attained
after rising through a distance of the order of the initial radius (C10, M 14).
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(W1), or a ring of such satellites to form behind a three-dimensional bubble
(W2).

3. Toroidal Bubbles

If a relatively large bubble, typically 5 ml or more, is formed rapidly (e.g.,
by injection of gas at high velocity through a tube, or bursting of a submerged
balloon in water), a toroidal vortex ring may be formed with the gas bubble as
its “core” (W2). The toroidal bubble is inherently unstable. As time progresses,
circulation inside the bubble decreases, the bubble slows down and the toroid
diameter increases while the core diameter decreases (B8, W2). Eventually, the
bubble becomes unstable and breaks up into a number of approximately equal
segments which may retain their relative positions in the toroid (B8). Theoreti-
cal predictions for toroidal bubbles by Pedley (P1) are in qualitative agreement
with experimental results (B8).

IV. OSCILLATORY MOTION

Periodic fluctuations of fluid velocity usually increase the mean drag and
transfer rates for entrained particles, and this has led to applications of pulsa-
tions in industrial contacting equipment. Certain natural phenomena may also
be affected. For example, modification of drag by flow oscillations may be
important for various flying and swimming organisms (H11, H13). Similarly,
pulsations promote the onset of movement of particles originally at rest on
the bottom of a duct containing a flowing fluid (C2). In addition, fluid oscilla-
tions are related to the motion of particles in turbulent fluids, as discussed in
Chapter 10.

A. RIGID PARTICLES
1. General Considerations

The instantaneous drag on a rigid spherical particle moving with velocity
U, in a fluid whose instantaneous velocity in the vicinity of the particle is Uy
follows from an extension to Eq. (11-30):

pVA, dUg 3d*

2 dt +7AHVEW~£;

d2
—Fp= Eg_,f) CpUg|Uy| +

[t S p dt ’

(11-43)

where Uy = U, — Uy is the velocity of the particle relative to the fluid. Only
rectilinear motion is considered. The first three components are discussed
above. The last component, the “pressure gradient term,” represents the force
required to accelerate the fluid which would occupy V if the particle were
absent. Like Eq. (11-30), Eq. (11-43) is subject to the objection that it is an
empirical modification of a result which is justified only for creeping flow.

UR(S)dS % @
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Although its practical applicability is not so well established as that of Eq.
(11-30) for motion from rest, it represents a convenient starting point for a
discussion of oscillatory motion. If the fluid oscillates in the vertical direction,
and velocities are positive downwards, the equation of motion for a freely
moving particle follows from Eq. (11-43) as:

AN\dUx 3CDUR|UR\ 9 dU;
</+ 2)6,[ =(y—1)g - f\/t—s e

(11-44)

2. Creeping Flow

If the particle Re is always small, the creeping flow assumptions apply.
Equation (1 1-44) then becomes:

18U U(s)ds 3 dU
—(3—1g - Sv e ff’ R8s 34U 1y g5)

o+ s 2 dr

The linearity of Eq. (11-45) implies that the mean terminal velocity is unaffected
by oscillation (M7). The velocities may then be written as sums of mean values
and variations from the mean, ie.,

Uy,=U, + u,; Ur=U; + ug; Ug = Uy + ug, (11-46)
where
Up = Apgd?/18u (11-47)
is the Stokes terminal velocity, Eq. (3-18). Equatlon (11 45) becomes:
3 dug ¢ Ug(s 18vuR
o= —_ = . 11-48
/+1/)dt 2 dt f Jr—s ( )

Molerus (M7) and Hjelmfelt and Mockros (H6) have developed complete
solutions to Eq. (11-48). Velocities can be expressed as Fourier integrals. It
therefore suffices to consider pure sinusoidal oscillations:

= Aw cos wt. (11-49)
The particle velocity is related to u; by an amplitude ratio # and phase shift f:
= ndwcos(wt + f). (11-50)

Table 11.2 gives expressions for # and f in terms of y and a dimensionless
period:

7o = v/wa®. (11-51)

Figure 11.15 shows predictions for density ratios typical of bubbles and of
particles in liquids and gases. For low frequency (high ), the particle follows

T This group is sometimes called a “Stokes number.” It is also 6%/2a>, with & defined by Eq. (11-8).




TABLE 11.2

Amplitude Ratio and Phase Shift for Spheres Entrained in
Oscillating Fluids at Low Reynolds Number
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the fluid motion. This also occurs for all 7, at = 1. Deviation of the particle
from the fluid motion increases at higher frequency, and is most marked for
high 7. It has been shown theoretically (M5) and experimentally (M9) that these
results can be applied to particles in bounded fluids provided that true local
values are used for u;. Application of these results to particles in turbulent
fluids is discussed in Chapter 10.

Various levels of simplification are also available with corresponding results
given in Table 11.2. Hjelmfelt and Mockros (H6) have given detailed com-
parisons. The approximate results agree closely with the exact solutions at
high 7, (low w), but are inaccurate when the particle does not follow the fluid
closely. As in motion from rest, neglect of the history term generally introduces
larger errors than neglect of added mass. Both terms are less critical for high 7.
Neglect of the pressure gradient term introduces errors at low 1.

3. Higher Reynolds Numbers

Outside the creeping flow range, Eq. (11-43) becomes nonlinear, making
solutions more difficult to obtain. Although the nonlinearity implies that it is
no longer sufficient to express an arbitrary oscillatory motion as a Fourier
integral, most treatments have considered purely sinusoidal variations in Us.
Particle motion can be obtained numerically from Egs. (11-44), (11-31), and
(11-32). Since these equations were derived for oscillatory motion, this approach
should have some validity. Oscillations reduce the mean terminal velocity
outside the creeping flow range, due to the convex form of the “steady drag”
term (B6, H12, M7).

A common simplification is to assume constant Cy, (equivalent to assuming
that Re is always in the Newton’s law range). It is then convenient to define
a dimensionless frequency and amplitude:

N, = w2y + A/ pd/39Cp Ap, (11-52)
N, =3CpAAp/2y + A pd. (11-53)

Equation (11-44) now becomes’:

W ) « We(st)ds™
ch: 1 — WeWe| + NaN,sint™ — Ny J‘l —5- )ds (11-54)
dt NG
where
tt =tw and sT = sw, (11-55)
We = Ug/Ur; We = Uy Uy Ur =4gd Ap/3pCp,  (11-56)
and

Ny = 6Ay/30u/ngdCp Ap. (11-57)

* The first term on the right of Eq. (11-54) is —1 for y < 1.
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If the history term is neglected, Eq. (11-54) can be solved if W; does not change
sign (H10). The mean relative velocity is then approximately (H12)

_ 1 N2 4\
WR2:§+T“[ /<1+F> —8NA2—1] (11-58)

Al-Taweel and Carley (A3) gave corresponding expressions for the amplitude
ratio and phase shift. For N *N_? « 1, Eq. (11-58) reduces approximately
(H14) to

Wy =1— NN, */4(4 + N,2) . (11-59)

Figure 11.16 shows Wi as a function of N, calculated from Eq. (11-58) for
various values of N,. Chan et al. (C3) extended this approach to a sphere in
a horizontally oscillating fluid.

0.8
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0 | |
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FiG. 11.16 Ratio of mean terminal velocity to terminal velocity in absence of oscillations for
particles in sinusoidally oscillating fluids. Unbroken lines are predictions from Eq. (11-58); broken
lines are numerical predictions (M8) for 2 mm spheres in water with y = 2.5 and N, values as follows:
curve A—0.28; B—0.42; C—0.56; D —1.11; E —1.67.

A number of authors (B1, B2, H3, H10, M8) have solved Eq. (11-44) numeri-
cally, often neglecting the history term and using empirical approximations for
Cp. Typical predictions are shown in Fig. 11.16." Qualitatively, the trends are
the same as predicted by Eq. (11-58), but the numerical approach predicts less
retardation since Cp, decreases as Re increases (T4). Here W is predicted to
become zero only for N, — oo at finite N,. Thus assumption of constant Cp
leads to significant error. A rather different approach was initiated by Bailey

¥ For the specific particle considered (M8), the terminal Reynolds number is approximately 520,
corresponding to Cp = 0.55, but N, or N, were evaluated using the “Newton’s law” value, Cp, =
0.445.
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(B1), based on a time-averaged form of Eq. (11-44) and applicable to any form
of oscillation if the period is long compared with the response time of the
fluid (see below). At the other extreme of simplification, Rschevkin (R5) showed
that if all effects except added mass and pressure gradient are omitted from
Eq. (11-44), a particle moves in phase with the fluid oscillations (i.e., f = 0)
with amplitude ratio:

n =12+ A2y + Ay). (11-60)

The validity of the various simplifications has been the subject of considerable
discussion [e.g. (A3, B2, H3, T4)]. Schoneborn (S4) showed that in the range
where periodic wake shedding normally occurs (Re > 200; see Chapter 5),
the effect of fluid oscillations depends on the relationship between the forced
fluid frequency and the natural wake frequency:

(a) If the fluid frequency is low, typically 0.02U/d or less, it is reasonable
to use a “quasi-steady” model in which history is neglected and A, = 1. Equation
(11-58) can then be used for particles in the Newton’s law range. Particles with
lower Re; generally settle more rapidly (T4), as shown by the numerical results
in Fig. 11.16.

(b) At higher frequencies, Wy is lower than the value predicted by the
“quasi-steady” approach, providing that A/d is sufficiently great for vortex
shedding to occur (H3). The difference is most marked when the fluid frequency
corresponds to the frequency of wake shedding (see Fig. 5.9). Then W is typically
20-309%, lower than predicted by Eq. (11-54) (B2, S4), due to resonance between
the fluid and wake frequencies. A falling particle then shows substantial sec-
ondary motion, usually following a zig-zag trajectory (S4), and shedding large
vortices at the driving frequency (B2, C1).

(c) For forcing frequencies greater than about twice the natural wake
frequency, wake shedding is suppressed and the particle trajectory is close to
rectilinear. The mean settling velocity is then predicted well by Eq. (11-44)
with the history term included (S4). Schoneborn found little difference between
predictions using A, = Ay = 1, and using the Odar and Hamilton values. The
difference was most apparent at lower Re, where Eqs. (11-31) and (11-32) were
more reliable. As for free fall from rest, these results applied for Re much higher
than the range covered in Odar and Hamilton’s experiments. For particles
not in the wake-shedding range (i.e., Re < 130), Egs. (11-31), (11-32), and (11-44)
gave the best prediction of Wy. This approach also gives the best values for
the amplitude ratio, for all cases.

Other simplifications apply under specific conditions. Bailey (B1) showed
that history can be neglected in calculating W; at high frequencies, i.e., N, » 1.
Al-Taweel and Carley (A3) found that the amplitude ratio for particles in liquids
is given by the creeping flow results in Table 11.2 at low frequency (t, > 0.2),
while the ideal fluid result, Eq. (11-60) with A, = 1, applies at high frequency
(1o < 0.002 to 0.01, dependent on 7).
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4. Levitation

Levitation is defined as a stable condition in which a particle responds to
vertically oscillating fluid so that net gravity forces are completely neu-
tralized and the particle merely oscillates about a fixed position (H12). In
terms of the preceding analysis, this means Wy = 0 (cf. Fig. 11.16). Contrary to
the predictions of the numerical solutions, Feinman (F1) found that levitation
can be caused by sinusoidal oscillations. Equation (11-58) predicts that ¥,
becomes zero if:

NN, =4/2. (11-61)

Levitation is inconsistent with the assumptions leading to Eq. (11-58), since
Wi must change sign during a cycle. Even so, Eq. (11-61) appears to represent
a lower bound on the N,N, needed to initiate levitation. Krantz et al. (K2)
found that levitation conditions were correlated closely by

NN, = 1.86. (11-62)

Inclusion of the dimensionless history coefficient Ny gave no improvement
in the correlation.

As noted above, the nonlinearity of Eq. (11-44) implies that the form of the
oscillations in U, will also affect the particle motion. If the oscillations have
larger upward than downward velocities, the mean upward drag is increased.
Van Oeveren and Houghton (V1) confirmed that particles could be made to
levitate or move against gravity more readily by “sawtooth” oscillations in
which |U,] is greater on the upward stroke. The reverse wave form, in which the
downstroke is more rapid, should increase W; above unity provided that NyN,,
is sufficiently large (B1, B6).

5. Heat and Mass Transfer

There is conflicting evidence regarding the extent to which imposed vibrations
increase particle to fluid heat and mass transfer rates (G2), with some authors
even claiming that transfer rates are decreased. For sinusoidal velocity variations
superimposed on steady relative motion, enhancement of transfer depends on
a scale ratio 4/d and a velocity ratio Af /U (G3). These quantities are rather
like the scale and intensity of turbulence (see Chapter 10). For Af /Uy < 1/2x,
the vibrations do not cause reversal in the relative motion and the enhancement
of mass transfer has been correlated (G3) by

(Sh, — Sh)/Sh, = L.OS[N — 0.06]*-2¢  (0.06 < N < 0.65), (11-63)

where

a4f[24] 0+
T
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Vibration then has less than 109, effect on Sh for N < 0.2, which explains why
earlier workers (B4) failed to detect an effect of vibration normal to the axis
of translation.

B. FLuUID PARTICLES
1. Bubbles

Sinusoidal oscillations of the continuous phase cause levitation or counter-
gravity motion much more readily for gas bubbles, due to changes in bubble
volume which cause a steady component in the pressure gradient drag term
(J1, J2). If the fluid motion is given by Eq. (11-49), the pressure in the vicinity
of the bubble also varies sinusoidally. For normal experimental conditions, the
resulting volume oscillations are isothermal (P2), and given by (J1):

V = V1 — ¢sinwt), (11-65)

where the bubble is at depth H below the liquid surface, the mean pressure
around the bubble is p, and

&= pAw’H/p. (11-66)
For small ¢, bubbles have zero mean velocity if

w*A = J2gp/pH. (11-67)

This result is valid for Re < 2. At higher Re, problems again arise from the
nonlinearity of Eq. (11-43), and larger values of w?A are required to cause
levitation. For Re = 100, conditions for the bubble to have no mean motion
relative to the continuous phase were correlated (B10) by

w?A =g + /39> + 2gp/pH. (11-68)

Jameson (J1) also derived expressions for the amplitude ratio and phase
shift in creeping flow, based on the assumption that fluid stresses due to the
velocity and pressure fields do not affect one another, i.e, the drag terms are
unaffected by volume oscillations. Two limiting cases were considered, cor-
responding to zero tangential velocity and zero shear stress at the bubble
boundary. Resulting values for the amplitude ratio and phase shift are given
in Table 11.2 and shown in Fig. 11.15, with ¢, based on the mean bubble radius.
In the range where the bubble departs most from the fluid motion, mobility
of the interface should increase the amplitude ratio and phase shift. As a result,
a fluid particle follows the motion of ambient fluid less faithfully than a solid
particle (M 12). In practice, 7 is larger than either theoretical value, possibly due
to shape changes not considered in the analysis (J1) and other simplifications
(M2).

The above results apply to spherical bubbles, and analysis for nonspherical
bubbles is considerably more complex (P3). Marmur and Rubin (M3) have
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given an approximate analysis of the motion of spherical bubbles in a radially
oscillating liquid. Large oscillating bubbles produced by underwater explosions
have been reviewed by Holt (H9).

2. Drops

Chonowski and Angelino (C6) studied chlorobenzene drops in an oscillating
water column (y = 1.1, k = 0.8). Over the range of the experiments (50 < Re <
240; 05 < A<2cm; 1 < f<3s™ 1), Wi was a decreasing function of A'/3f.
An equation of motion was developed in which history is ignored’ [cf.
Eq. (11-44)]:

ydUg M
dt Ug

Uy
dt

_ 3CoUx|Us| _
4d

=D,

=~ 1)y (11-69)

with Cp estimated from the Hu and Kintner correlation (see Chapter 7). The
amplitude ratio and mean velocity were well predicted by analytic solutions
to Eq. (11-69), but the general applicability of this result is untested. For high-
amplitude, high-frequency oscillations, the mean drag on drops may actually
decrease (A1)

3. Mass and Heat Transfer

Oscillations are often used to improve the efficiency of transfer processes in
industrial phase-contacting equipment [e.g., see (B7, T3)]. Substantial improve-
ments in mass transfer rates occur (A3), but these are due to a combination of
effects including increased hold-up of fluid particles in the column due to the
increase in mean drag described above, break up of fluid particles to give smaller
bubbles or drops with increased interfacial area, and improved transfer coeffi-
cients. Experimental measurements of transfer coefficients on single drops in
pulsed fluids show an increase in mass transfer with increasing pulsation
amplitude and frequency (A1), with enhancement increased if Ug changes
direction during each cycle. Qualitatively, the greatest enhancement should
occur when the imposed frequency is close to the natural frequency of the
fluid particle [see Eq. (7-30) (M11)], or for bubbles and drops too small or too
large to undergo shape dilations and secondary motion in steady translation
through stagnant fluid (see Chapter 7).

V. ARBITRARY ACCELERATED MOTION

A. GENERAL CONSIDERATIONS

Apart from the specific classes of motion discussed above, understanding of
unsteady fluid—particle interaction is not well advanced. Torobin and Gauvin

" The reason for writing the added mass term in this form is not clearly explained.
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(T2) and Clift and Gauvin (C9) have reviewed the relevant literature. There
have been two distinct approaches to unsteady drag. The first ignores the
history term completely, and either neglects added mass or assumes A, = 1.
The drag force is then correlated using an acceleration-dependent Cp,. This
approach has some justification for Type 2 motion (see below). However, it
has been widely used for Type 1 motion also, and resulting correlations tend
to be specific to the conditions used. Ensuing problems in interpretation are
exemplified by the well-known work of Lunnon (L9) on spheres accelerating
from rest. Similar problems were encountered by Schwartzberg and Beckerman
(S6), who determined the drag on particles following spiral trajectories in
horizontally gyrating liquids. They assumed A, =1 and Ay = 0, and found
that the apparent Cp was increased by a factor dependent on (1/v)
whose form suggests that the unsteady terms would better account for the
additional drag. Acceleration-dependent Cy, values are generally higher than
the “standard” values discussed in Chapter 5 [e.g., see (M1, R6)]. Some workers
report anomalously low drag for water drops in air (I1, O7) but this appears
to result from freestream turbulence and difficulty in accurately determining
particle accelerations (M4, T2). Small liquid drops in gases can be treated as
rigid spheres for trajectory calculations (S1), provided that evaporation rates
are low and that acceleration is insufficient to cause break up or significant
deformation.

The second general approach is based on extension of the creeping flow
result, as in earlier sections. Corrsin and Lumley’s modification (C11) of the
equation proposed by Tchen (T1) allows Eq. (11-43) to be generalized as

ndzpC pVA dUg;
g P dr

3a’ A dUg; dt” DU
H \/—vj‘( R> —pV[ i
i=sJt — s D
where Fp;, Uy;, and Uy, are orthogonal components of the total drag force
and of velocities Uy and Uy, respectively, and

dUp _ dU,; an, oUp
= - i) 11-71
de — dt Z P ox; (117D

The pressure gradient term has been extended to its full form from the Navier—
Stokes equation. Equation (11-70) has been discussed by Corrsin and Lumley
(C11), Hinze (H5), and Soo (S7). It is applicable only if a particle is small
compared to the scale of velocity variations in the fluid (L8), i.e., if

d2 de « 1 and @ 'dZUf
v dx Uy dx?

Effects such as lift due to particle rotation or fluid velocity gradients can readily
be included in Eq. (11-70) if appropriate. The resulting equation of motion is

—Fpi = URz’UR’

- szUf,:l, (11-70)

«< 1. (11-72)
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the usual starting point for analysis of particle motion in turbulent fluids, as
discussed in Chapter 10, and is also the basis of particle trajectory calculations,
For rectilinear motion in which Re is initially small, A, and Ay can be esti-
mated from Egs. (11-31) and (11-32), provided that wake shedding does not
occur. Lewis and Gauvin (L6) found that this approach gives a good description
of the motion of particles in a decelerating plasma jet." If Re is high throughout
the unsteady motion, the history term can be neglected, since the flow pattern
never resembles creeping flow.

Useful trajectory estimates for high Re can frequently be obtained by simply
assuming that Cp, takes its standard value and that A, = 1. For example,
Guthrie et al. (G4) found that this approach gave useful predictions of the
motion of a sphere projected into a stagnant liquid, even though a cavity
formed in the particle wake. Prediction of unsteady drag is generally most
difficult in ranges where the flow pattern changes markedly with Re. Accelera-
tion delays the laminar/turbulent transition in the boundary layer (C4) and
thus increases the critical Reynolds number (W3); deceleration has the reverse
effect.

Additional difficulties arise when the motion is not rectilinear. Odar (02, O4)
measured the drag on a sphere following a circular path in a stagnant liquid.
If the path diameter was at least 7 times the particle diameter, the drag was
virtually unaffected by acceleration or curvature of the trajectory, in agreement
with the approach based on Eq. (11-70). However, the added mass and history
coefficients were both greater than unity (cf. Ay < 1 for motion from rest) and
dependent on the curvature of the trajectory. In addition, a particle moving
steadily on a circular path experiences “lift” in the outward radial direction
(O3), correlated by a “normal drag coefficient”:

Cx = Radial force/(nd?pUg?/8). (11-73)

At Re = 20, Cy increased sharply to pass through a maximum of approximately
0.22 at Re = 40, declining to be very small for Re > 150. Large normal drag is
probably related to wake development, and similar effects may be expected
whenever the flow pattern changes markedly with Re. In the critical range,
lateral acceleration would tend to produce asymmetric boundary layer transi-
tion, so that significant lift can be anticipated.

B. CALCULATION OF PARTICLE TRAJECTORIES

From the examples of experimental studies discussed, it is clear that it is
impossible to predict with any confidence either the magnitude or the direction
of the drag on a particle when the relative velocity and acceleration are not

T This is an unusual case in which v is so high that the history term is significant even though y
is large. It demonstrates the advisability of evaluating the unsteady drag components before as-
suming that motion is of Type 2.
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parallel. Even when motion is rectilinear, accurate predictions are expected
only for the particular cases discussed. The following general guidelines are
proposed for calculation of particle trajectories:

a. Classify Motionas“Type I or “Type 2" Thisimplies estimating wheth-
er terms in Eq. (11-70) dependent on relative acceleration are significant. This
can be done beforehand if rough estimates are available for acceleration and
velocity during the motion. Alternatively, the trajectory can be calculated
according to the relatively simple “Type 2” procedure, with the magnitudes of
the unsteady terms evaluated in the course of the calculations. As a general
rule, motion of a particle in a gas is usually of Type 2, while that in a liquid is
almost always of Type 1.

b. Type I Motion 1f the acceleration-dependent drag terms are significant,
Eq. (11-70) is recommended for estimating the instantaneous drag. Numerical
solution is then necessary (C7). The difficulty lies in estimation of A, and Ay.
If the motion is similar to a case for which experimental results are available,
reported data should be used [e.g., Eqgs. (11-31) and (11-32) for motion which
is close to rectilinear, or the results of Odar or Schwartzberg and Beckerman
for circular or spiral motion]. Otherwise there may be no ready alternative to
the assumption A, = Ay = 1. Errors in the predicted trajectories are especially
serious when such complications as shedding or asymmetry of the wake are
present. If Re is high throughout the motion, it is reasonable to ignore the
history term. The calculation procedure then becomes the same as for Type 2
motion.

c. Type 2 Motion If the history term in Eq. (11-70) can be neglected, and
the added mass is either negligible or constant, estimation of particle trajec-
tories is simpler. The equations for particle velocity form a set of at most three
first-order ordinary differential equations, given by the scalar components of

pA du nd?
(e

, (11-74)

where F, contains body forces (such as gravity), the pressure gradient term,’
and any significant lift terms. The particle displacement is given by the com-
ponents of

dx/dt = U,. (11-75)

Much has been written on the solution of Eqs. (11-74) and (11-75) [see, e.g.,
(H8, K4, M13)], frequently without serious consideration of the validity of
Type 2 simplifications. Approximate methods, avoiding numerical integration,
are also available for specific types of motion, such as a particle projected with
arbitrary velocity in a gravitational field (H&, K4).

* The pressure gradient contribution can be significant, even for high y [see (D3)].
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The drag components contain Cp,Uy;|Ug|, with Cp, evaluated for Re = dUg/v.
Some authors have used CpUg;?, or even Cp;Ug;%, where Cp,; corresponds to
Re; = dUy,/v. These simplifications are only valid in Stokes flow, and can lead
to substantial errors at higher Re [see, e.g., (R7)]. The effect of freestream tur-
bulence can be included, via the correlations in Chapter 10, provided that the
turbulence intensity can be estimated. Alternatively, one of the available corre-
lations for drag in accelerated motion through a turbulent fluid can be used
[see (C9)], although these are only applicable for limited ranges of experimental
conditions.
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Chapter 12

Formation and Breakup
of Fluid Particles

I. INTRODUCTION

In earlier chapters, we have considered steady and unsteady motion and
transfer processes for fluid and rigid particles without treating the initiation or
termination of these processes. This final chapter is concerned with formation
and breakup of fluid particles. The problems are distinct from those encoun-
tered in Chapter 11 for the unsteady motion of rigid particles. A single rigid
particle can be launched, dropped, or suspended in a fluid flow," but a fluid
particle must be formed at the same time as it is launched. In keeping with
earlier chapters, we consider here only cases where single particles or very
dilute dispersions are generated. This division is necessarily arbitrary, since
many techniques can be used to produce dilute or concentrated clouds of
particles. Space limitations have severely restricted treatment, but the reader
is referred to relevant reviews where these exist.

II. FORMATION OF BUBBLES AND DROPS

Generation of small bubbles and drops is essential in a wide range of phase-
contacting equipment. In bubble columns, fermentation vessels, extraction
equipment, etc., bubbles and drops are usually formed by forcing the dispersed
phase through orifices or a porous sparging device into the continuous phase,
frequently with mechanical agitation to aid dispersion. A variety of atomizers,
spray nozzles, and sprinklers have been devised for dispersing liquids into
gases. In most of these applications, the objective is to produce a cloud of

T See (H16, L14) for reviews on dispersal of solid powders.
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small fluid particles. Since we are concerned here only with single particles,
discussion is limited to simple techniques, capable of producing single or widely
spaced drops or bubbles. Mechanically agitated or rotated delivery devices are
not considered, nor are devices using impinging jets, impaction, ultrasonic or
mechanical vibrations, electrical forces, etc. For general reviews of spraying,
atomization, and injection devices, see (G2, G6, H16, L7, O1, S19).

A. FORMATION AT AN ORIFICE

A number of workers (H11, J1, K2, K6, K15, L7, S25, V1) have reviewed the
formation of bubbles or drops by flow through orifices or nozzles. Here, we
consider only injection at modest flow rates through single orifices of diameter
d,, less than about 0.65 cm. At high velocities and for large orifices, significant
jetting and multiple particle formation occur (J2, S25). Sections 1 and 2 are
concerned only with single orifices of circular cross section facing in the flow
direction, ie., upward for p, < p and downward for p, > p. The continuous
phase is stagnant except for motion caused by flow of the dispersed phase.
More complex situations are treated briefly in Sections 3 and 4, and mass
transfer during formation is discussed in Section 5.

1. Bubble Formation

As a bubble is formed by flow of gas through an upward-facing orifice, the
pressure within the bubble decreases due to upward displacement of its cen-
troid and to decrease in the capillary pressure, 2¢/r. Thus, the gas flow rate
may vary with time. If there is a high pressure drop restriction, such as a long
capillary, between the gas reservoir and the orifice, the pressure fluctuations
due to forming bubbles are much smaller than the pressure drop between the
gas reservoir and the orifice. In this case, the gas flow rate can be taken as
constant. Otherwise, account must be taken of both the “line” pressure drop
and the reservoir volume. If the volume of the reservoir or “plenum chamber”
upstream of the orifice is very large by comparison with the volume of bubbles
being formed, the varying gas efflux will not significantly change the pressure
in the chamber. This corresponds to the other limiting case of bubble formation
under constant pressure conditions. For conditions intermediate between the
limits of constant flow and constant pressure, the chamber volume V,,, must be
taken into account. Unfortunately, some workers have failed to report the
characteristics of their orifices and chambers so that their results are hard to
interpret.

Thus bubble formation at an orifice is a surprisingly complex phenomenon.
For intermediate conditions and a perfectly wetted orifice, the volume of the
bubble formed may be written:

sz(Qv dora ps U, g, pp9K7 I/cha 9, H)$ (12'1)

" Even this list is not always complete. For example, if the orifice is a tube projecting into and
poorly wetted by the liquid, the outer tube diameter is also important (S2).
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where ( is the time-mean flow rate, K the “orifice constant,” and H the sub-
mergence. For most practical purposes, u, < pand p, can be omitted. Usually
p, can also be removed (D5), since p, < p for bubble formation except for
cases, such as high pressure formation, where the momentum of the incoming
gas must be considered (L2).

a. Theoretical Models The many models proposed to describe bubble
formation in liquids are summarized in Table 12.1. All are mechanistic in the
sense that they are based on a sequence of events suggested by photographic
observation. All depend on some form of force balance for predicting one or
more stages in bubble growth. Almost all approximate the bubble as spherical
throughout the growth period. The simplest group may be termed “one-stage
models.” In these, bubbles originating at the orifice are assumed to grow
smoothly until detachment, which occurs when the rear of the bubble passes

TABLE 12.1

Theoretical Models for Bubble Formation at a Submerged Orifice

Number

Ref. Conditions of stages  Forcesincluded* Comments

(HS) Constant flow 1 B,Dd, I, P, S

(S22)  Constant flow 1 B,Dd, P, S Same as (H8) but includes cross flow
(DS) Constant flow 1 B, Da Low flow rates

(DS) Constant flow 1 B, Da, Ia Higher flow rates

(D6) Constant flow 1 B, la High flow rate, low-viscosity liquid
(D3) Constant flow 1 B, Ib High flow rate, low-viscosity liquid
(W4) Constant flow 1 B, lab, S, W Low-viscosity fluid

(K13)  Constant flow 2 B, Da, S

(K16)  Constant flow 2 B, Da, la

(R2) Constant flow 2 B, Da, la, S

(Cl) Constant flow 2 B, Dc, Ib, S, W  Also extended to coflowing stream
(W8)  Constant flow 2 B, la, M Hemispherical in first stage

(R11)  Constant flow 2 B, Dc, Ia, S

(T7) Constant flow 1 B, Dbc, S

(DS) Constant pressure 1 B, Da Low flow

(DS) Constant pressure 1 B, Da, la High flow

(D6) Constant pressurc 1 B, Ia High flow, low-viscosity liquids
(S3) Constant pressure 2 B, Da, Ia, S

(L3) Constant pressure 1 B, Ia Extension of (D6)

(K4) Intermediate 2 B, D, Ia,S

(K17)  Intermediate 3 B, 1
(MS5) Intermediate — B, Ib, W Shape originally hemispherical
(S24) Intermediate 1 B, Db, M, P, S
(L2) Intermediate 1 B, la, M
(M2) Intermediate 1 B, Ic, S Shape varies; numerical solution

“B: buoyancy; D: drag (a: Stokes; b: Hadamard; ¢: empirical expression; d: kept as constant
to fit to data); I: inertia (a: C, = 11/16; b: C, = 1/2; ¢: C, kept as constant to fit to data); M: gas
momentum; P: excess pressure term; S: surface tension force; W: wake effect from previous bubble.
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the orifice or when buoyancy exceeds the retarding forces. In “multiple-stage
models,” it is assumed that there is a basic change in the growth mechanism
at one or more points in the growth process. Typically, it is assumed that the
bubble resides on the orifice during the first stage, and that the second stage
begins at “lift-off,” with the bubble subsequently fed by a tongue of gas from
the orifice. There is some photographic evidence for this sequence of events
[e.g. (DS, K17)].

In view of the complexity of the bubble formation process, it is not surprising
that the models are successful only under restricted conditions. The simplest
models, and the only ones to give simple analytic expressions for the volume
of the bubble produced, apply for constant flow formation. All the models
have inherent limitations:

(i) The assumption that bubbles remain spherical is reasonable for most
low M systems, but can be significantly in error for large M systems (M2, W8).

(i) Assumptions regarding the sequence of events, in particular the criteria
for such events as lift-off and detachment, are often arbitrary. In some models,
force balances are applied throughout, while in others they are applied only as
a means of predicting the volume at the end of one stage in growth.

(ili) When surface tension forces and contact angles are included, the ¢ and
0. used are invariably determined under static conditions, even though bubble
formation is a dynamic process.

(iv) Expressions used for drag and added mass are at best approximate.
No allowance is made in any of the models for history effects, which may well
be important since p >» p, (see Chapter 11).

(v) Terms such as the updraught due to the wake of the preceding bubble
are generally ignored, but may be important. Individual models also ignore
other terms (see Table 12.1), often without adequate justification.

b. Constant Flow Conditions Despite the shortcomings noted in many of
the models, useful results can be obtained for constant flow conditions by
judicious combination of dimensional analysis, force balances, and empirical
results. Neglecting p, and p, for the reasons given above and noting that K,
V., and H are not required when Q is constant, we write the reduced form of
Eq. (12-1) in terms of a dimensionless bubble volume as

V= Vg Ap/dora = f(Qla ILL(’ M)a (12'2)
where Q' is a dimensionless flow rate:
Ql = (p/dora)5/6gl/3Q (12'3)

and y' is a dimensionless viscosity:

W = W\ pdeo. (12-4)

For bubble formation with p, «< p, Ap is taken as p. However, V" is defined in
terms of Ap to facilitate its interpretation as the magnitude of gravitational
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forces relative to surface tension forces, and to aid comparison with drop for-
mation. If it is assumed that bubbles remain essentially spherical throughout
formation, then ¢ and the orifice diameter d,, enter only as d,.c which can be
treated as a single quantity. Hence M can be omitted, so that all the simple
models take the form

Vi=f(Q ). (12-5)
For very low gas rates, i.e, Q" — 0,
V' = mihy, (12-6)

where )y is the Harkins correction factor (H5) given in Fig. 12.4 and discussed
below. This correction factor makes allowance for dispersed phase fluid re-
tained at the orifice when detachment occurs. Equation (12-6)" is frequently
employed in measuring surface and interfacial tensions by the bubble forming
or “drop-weight” method [e.g., see (D8)].

At high flow rates with liquids of low viscosity (i.e., relatively large Q’, small
u), a simple equation developed by Davidson and Schiiler (D6) is commonly
used, i.e.,

V' =1.378(Q)"2, (12-7)

or, in dimensional form,
V = 1.378Q!2g~ %6, (12-8)

The numerical coefficient in Eq. (12-7) is obtained using an added mass coeffi-
cient, C,, of 11/16, for a spherical bubble forming at a perforation in a flat
plate. For a nozzle protruding into a fluid C, = 1/2 and the coefficient becomes
1.138 (D3, W2). An early empirical correlation (V3) gave a value of 1.72. Since
the mean frequency of bubble formation is Q/V, Eq. (12-8) predicts that the
frequency becomes only weakly dependent on flow rate at relatively high flow.
In practice, the dependence becomes even weaker than the —0.2 power pre-
dicted, with the mean frequency of bubble formation becoming essentially
independent of Q (e.g., see Fig. 12.2). Hence, for bubble formation in liquids of
low viscosity like water, it is common [e.g. (V1)] to describe formation at low
flow rates where Eq. (12-6) applies as “constant volume formation” and that at
quite high Q as “constant frequency formation,” with an “intermediate region”
for the range where neither result applies. For viscous liquids (high u') and
intermediate Q’, another equation developed by Davidson and Schiiler (DS5)
gives

V' = 6.48(Q'w)°% 7. (12-9)

Ruff (R11) has developed a semiempirical model which approximates to
Egs. (12-6), (12-7), and (12-9) in the appropriate limits. It may be regarded as

T For a projecting nonwetted nozzle, the outer diameter of the tube should be used in place of
the inner (S2) in evaluating V.
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an improvement on the model of Kumar and Kuloor (K15) with a better
expression for the drag coefficient and an empirical correlation rather than an
arbitrary model to describe the second stage of growth. Two successive stages
in bubble formation are considered, with

V=V +V,. (12-10)
The bubble volume achieved in the first stage is predicted from a force balance:

Vi' = 0.0578(V,)"23(Q')> — 2417(V')~13Q' — 02040’/ Q'V, =,
(12-11)

where the first term arises from gravitational forces, the second results from
inertia and drag, the third and fourth from drag, and that on the right-hand
side from surface tension. The volume added in the second stage was correlated
empirically as

V) =(Q)'? +4.0(Q'w)*. (12-12)

Dimensionless bubble volumes predicted by solving Eq. (12-11) numerically
and adding the second stage increment are plotted in Fig. 12.1 as functions of
the dimensionless flow rate Q', with y’ as parameter. It is important to note
that 4’ is constant for a given orifice in a given gas-liquid system. Hence, Fig.
12.1 or Egs. (12-10) to (12-12) give a convenient means of predicting bubble
formation in any liquid—gas system whose properties are known. Over most of
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the range of Q', the correlation agrees within + 159 with most data appearing
in the literature [e.g. (BS, DS, D6, K13, K16, R2, S11, S22, W8)]. Discrepancies
for bubbles formed in liquid metals (A2, S2) are more serious, possibly because of
experimental difficulties, surface effects, or bubble deformation at the low
values of M characteristic of liquid metal-gas systems. Also shown in Fig. 12.1
are lines corresponding to Eqs. (12-6), (12-7), and (12-9). These simplified
equations may be viewed as limiting cases, with the ranges of Q' and u’ for
their application indicated by Fig. 12.1.

Predictions of Ruff’s model for air bubbles forming in water are shown in
dimensional form by the two solid lines in Fig. 12.2 for two commonly used
orifice diameters, 0.63 and 0.32 cm (1/4 and 1/8 inch). Some data are also shown
for the larger orifice and agreement is generally very favorable. Note that the
orifice diameter plays an important role only at low Q, where surface tension
provides the major restraining force.
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F1G. 122 Bubble volume as a function of flow rate for air injection into water at 20°C. Curves for
constant flow obtained from Ruff model, Egs. (12-10) to (12-12): (1) d,, = 0.63 cm, ' = 1.5 x 1073;
(2)d,, = 0.32 ¢cm, 4’ = 2.1 x 1073, Experimental results shown for constant flow, intermediate, and
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Deviations from the theories tend to occur at large Q where the frequency
of bubble formation becomes essentially independent of Q, whereas theory
predicts f oc Q2. For example, the frequency in air-water systems levels out
at about 17 s~! as shown in Fig. 12.2. This almost certainly results from the
updraught caused by preceding bubbles, ignored in almost all the models. At
still higher flow rates, bubble pairing occurs at the orifice, when a bubble
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coalesces with that just formed before it can escape. Incipient pairing occurs for
Q > Cgl/zdorS/za (12_13)
where the constant coefficient C has been given values from 1.3 to 6.2 (W2, W8).

c. Constant Pressure Conditions Bubble formation under constant pres-
sure conditions is of practical interest for sieve trays and other multiorifice
distributors. As noted above, the flow rate through the orifice varies with time.
The “orifice equation” may be written

Q = K(pen — pgH + pga — 20/a)''?, (12-14)

where a is the instantaneous radius of the forming bubble and p,,, the pressure
in the chamber behind the orifice. In general, Eq. (12-14), or a more complete
orifice equation like that proposed by Potter (P10), must be solved simulta-
neously with a force balance equation to predict initial bubble volumes. Models
are outlined in Table 12.1. Due to the added complexity of the formation pro-
cess, analytic results cannot be summarized neatly. Dimensional quantities K
and p(= p., — pgH) are required in addition to those needed for the constant
flow case, so that dimensionless presentation of the results also becomes
cumbersome. Furthermore, fewer experimental studies have been reported for
constant pressure than for constant flow conditions.

If accurate predictions of bubble volume are required, the original models
should be consulted. The Marmur model (M2) appears to work well for low-
viscosity liquids over a broad range of V,;, and Q, but is too complex to be
useful for normal predictive purposes. Of the relatively simple models, the
most reliable are those of Lanauze and Harris for low p' (L3, L4), and those
of Kumar and Kuloor (K15, S3) and Davidson and Schiiler (D5) for viscous
liquids.

For many purposes, approximate predictions suffice, and may be obtained
from the results for constant flow formation using some simple guidelines.
Bubbles obtained under constant pressure tend to be larger than under constant
flow conditions at the same time-mean flow rate, 0, because most of the flow
with variable Q occurs during the latter stages of formation. It is convenient to
define a ratio of bubble volumes formed under constant pressure and constant
flow conditions as

Y = Vep/Ver = Jer/fer- (12-15)
For large Q’, u’ — 0, and large values of the dimensionless orifice constant,
K = Kg0.4p0.5/Q0.8, (12-16)

Y approaches approximately 1.5 (D6). As K'— 0, constant flow conditions
are approached and Y — 1. For intermediate and low flow rates, Y may be as
high as 10, as shown by the curve for approximately constant pressure conditions
in Fig. 12.2.
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d. Intermediate Conditions The importance of the chamber volume, V,,,
was first recognized by Hughes et al. (H23) and Davidson and Amick (D7).
If v, is relatively small and the orifice constant relatively large, then both the
flow rate through the orifice and the pressure in the chamber vary with time.
Practical interest, for orifices in such devices as sieve trays in phase-contacting
equipment, lies as much in reverse passage of the continuous phase (“weeping”)
as in bubble formation.

Models used to describe bubble formation under intermediate conditions
are listed in Table 12.1. Generally, they must be solved numerically. Reasonable
agreement has been obtained (K18, M2, M5) for low-viscosity liquids so long
as “pairing” at the orifice did not occur. In addition to pairing, six other flow
regimes have been identified, and charted for formation in water at three sizes
of orifice (M6). Following Hughes et al. (H23), many workers have used a
capacitance number

Nch = 4g Ap V;:h/ndorzppczs (12-17)

where ¢ is the velocity of sound in the gas, but in other studies [e.g. (K17)]
this group was found to have no significance. In general, bubbles produced
under intermediate conditions are intermediate in size between those formed
at constant pressure and constant flow at the same Q. The results in Fig. 12.2
for a 0.63 cm diameter orifice illustrate the effect of increasing chamber volume
and thus going from constant flow to constant pressure.

e. Bubble Formation in Fluidized Beds As noted in Chapter 8, the surface
tension between the bubble and dense phase of a fluidized bed is generally
taken to be zero. Equations (12-10) to (12-12) can be rewritten as

V' =1"+V" (12-18)
Yy — 0.0578(Q")A(V") ™23 — 24170 (V") ~1* — 0.204(Q")-3(V") 12 = 0,

(12-19)

and
v, =(Q")"% + 4.0(Q")°7°, (12-20)

where

V"= Vg/v? (12-21)

and
Q" =Qg'P . (12-22)

Hence bubble formation in fluidized beds may be predicted in a manner similar
to that employed for liquids using an effective dense phase kinematic viscosity v.
The equations reduce to the Davidson and Schiiler forms, Egs. (12-7) and (12-9),
for large and small Q”, respectively, and show reasonable agreement with
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experimental results (H7). For bubble formation, it is best to take the effective
kinematic viscosity of the bed as about 0.5 cm?/s, a value an order of mag-
nitude less than the value derived from bubble shape measurements (see
Chapter 8).

At flow rates greater than about 100 cm?/s, the frequency becomes essen-
tially constant at a value of about 20 s~ ', close to the value for bubble for-
mation in real liquids (B4, H7). The volume of bubbles formed, however, is
generally less than Q/f due to leakage of gas into the dense phase (N3). The
length of jets, when these occur, feeding forming bubbles is correlated (M12)
by the equation

0.3 2\ 0.2 1
Zjet — 5.2<l;gillol‘> |:13 (%_) — IJ (12'23)

Some effect of chamber volume has been demonstrated (H21) for low pressure
drop orifices, as for bubbles forming in liquids.

2. Drop Formation

a. Regimes of Jet Formation When a liquid of density p, issues steadily
from a horizontal orifice into an immiscible fluid of density p, drops may form
at the orifice or at the end of a disintegrating cylindrical jet as shown sche-
matically in Fig. 12.3. At low flow rates, formation occurs close to the orifice,
as for gas bubbles. As Q is increased, a critical flow, Q;,, is reached at which a
jet forms. At higher flow rates, drops form by jet breakup. At flow rates between
Qi and a value labeled Q,,,,, break up occurs by Rayleigh instability (ie.,
axisymmetric amplification of surface perturbations), while the jet length in-
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creases with increasing Q. Above Q,.., the jet length decreases again, and
breakup results primarily from growth of asymmetric disturbances. The jet
length decreases until, for Q > Q,., the liquid shatters at or very near the
orifice to give many droplets of nonuniform size. Atomization of liquids by
forcing through an orifice (“pressure atomization”) is treated in a number of
reviews [e.g. (B6, F6, G2, G6, H16)]. Only drop formation at much lower
flow rates is discussed here.

The condition for incipient jetting has been derived by Scheele and Meister
(S4) as

d 3

0= 1.36\/6—/)9'— [1—d,/(124V13)], (12-24)
p

where V is the volume of drops which would form if jetting did not occur,

obtained from Eq. (12-28) below. The numerical coefficient, 1.36, applies when

the velocity profile in the jet at the orifice is parabolic; a coefficient of 1.57

should be used for a flat velocity profile.

b. Formation at Low Flow Rates Drop formation with Q < Q;., occurs at
the orifice, and is qualitatively similar to bubble formation. Quantitative
differences arise because the momentum and viscosity of the entering fluid
are often appreciable for drops, but rarely for bubbles. The momentum effect
is particularly important, and causes drops to be smaller than those formed
under near-static conditions (Q' — 0) where

V = Yund,o/Apg, (12-25)

which is the dimensional form of Eq. (12-6) given above for bubbles. The
Harkins factor, Yy, accounts for the fact that a residual drop remains at the
orifice when detachment occurs, causing the volume of the detached drop, V,
to be less than the volume at which the net gravity force exactly balances the
interfacial tension forces. Smoothed values of Yy (H5) are shown in Fig. 12.4
as a function of d,,/V''/3, together with the fitted equations (H13, L5):

d d 2y -1
Yy = {0.92878 + 0.87638 —2. — 0.261(—°'> } 0.6 < d,/V'3 <2.4)

V1/3 V1/3
(12-26)
d dy \?
w = 1.000 — 06023 727 + 0.33936<Vf;3> (0 < dy,/V'3 < 0.6)
(12-27)

If the continuous fluid does not wet the orifice material, corrections must be
made as for bubbles.

As Q' is increased slowly, modifications in shape occur (H3). As for bubble
formation, many equations and models have been proposed for predicting
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initial drop volumes. Some of these [e.g. (G8, H9, N1, N4)] are almost entirely
empirical. Even though these empirical approaches are simple to use and have
enjoyed some popularity, they should be employed with caution outside the
range of variables investigated by the workers who derived them. For example,
some correlations include no viscosity term, and are therefore very unlikely
to apply to viscous liquids. Several more mechanistic, semiempirical models
have also been proposed for drop formation in liquid-liquid systems [e.g. (H13,
K9, R14, S4)]. Because liquids are essentially incompressible, drop formation
corresponds closely to bubble formation under constant flow conditions. Many
of the underlying ideas are the same as those in models for bubble formation,
and the same criticisms apply. For example, the drop is generally assumed to
remain spherical throughout formation. Formation is again usually treated
as a two-stage process, as revealed by photographic observation (S4): the first
stage terminates at “lift-off,” predicted by a force balance, while the second
stage corresponds to “necking” and eventual severing of the liquid filament.
Kumar and co-workers (K14, K15, R5) have attempted to establish models
general enough to cover both drop and bubble formation with constant flow.
Grigar et al. (G7) give a method for calculating pressure drops across orifices
or nozzles, accounting for both hydraulic and drop formation effects. Humphrey
et al. (H25) give a detailed experimental analysis of flow patterns in forming
drops [see also (S1)].

Unfortunately, none of the models for drop formation can be recommended
with complete confidence. Most of the experimental results for liquid—-liquid
systems have been obtained with water as one phase and a low-viscosity organic
liquid as the other. Under these conditions, especially at modest flow rates
(uy, < 15 cm/s, a number of the models predict drop volumes within 15-20%.



II. Formation of Bubbles and Drops 333

Scheele and Meister (S4), for example, give

13p0d,.  16p,Q* 9
Vg AP = l//HI:TEOFdor + V2/3 - 37_“; 2 + E {gl)p Ap Gdor2Q2}1/3 > (12'28)

where the terms account, respectively, for buoyancy, interfacial tension, Stokes’
drag, momentum, and volume added during necking. The factor 16/3 in the
third term assumes a parabolic velocity profile in the orifice, and should be
replaced by 4 for a flat velocity profile. Although appreciable discrepancies may
exist (D9, K9) and the prominence given to yy, derived under static conditions,
is questionable, Eq. (12-28) appears to be the best compromise between accuracy
and ease of use for drop formation with Q < Q,,,, especially for low-viscosity
systems.

c. Formation by Jet Disintegration  With Q;,, < Q < Q,,, drop size is gov-
erned by jet stability. Rayleigh (R6) was the first to apply linearized stability
analysis to the growth of small axisymmetric disturbances on a cylindrical jet,
and his treatment has been extended to account for viscous and nonlinear
effects [ see, e.g. (L11, M9, P3, T8, Y1)]. For most purposes, the linearized theory
is surprisingly accurate for Q;,, < Q < Q,,. It is assumed that the amplitude
of disturbance grows as

a' = ayexplat + 2mix/1), (12-29)

where a is the initial amplitude, /2 the wavelength, and x the distance along
the jet. Values for the “growth rate,” o, can be obtained by solving the fourth-
order determinant equation derived by Tomotika (T8), or by an approximate
procedure proposed by Meister and Scheele (M9). The drop size follows as

d, = (1.5),,/d,)"3d,,, (12-30)

where 2, is the “most dangerous” wavelength, corresponding to disturbances
with the fastest growth (i.e., maximum o). Rayleigh considered a water jet
issuing into air, and by neglecting the viscosity of both phases obtained 4, =
4.5d,, and d, ~ 1.9d,,, results which are in reasonable agreement with experi-
mental findings. Other limiting cases can also be obtained (M9) from the
Tomotika equation. The linearized analysis has been extended to breakup of
stationary liquid threads (R13) and threads undergoing extensional flow (M14).

Meister and Scheele (M10) examined phenomena determining the jet length,
L;.,. For Q somewhat greater than Q;.,, L;, can be predicted from the linearized
stability theory as the distance required for a symmetric disturbance to grow
to an amplitude equal to the jet radius.” For the apparatus and conditions

T The analysis also explains why jets are not normally observed for bubble formation at an
orifice. When a gas is injected into a liquid, unstable disturbances amplify to the radius of the
orifice within a very short distance (M10). Some data on jet lengths for gas flow into liquids have
been published (P4).
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investigated the initial amplitude was well approximated by
ag = (dy/2)exp{— 6.0} = 0.00124d,,,. (12-31)

At somewhat higher Q, drops in many liquid-liquid systems merge since their
terminal velocity is less than the jet velocity; as a result, the jet lengthens
abruptly. This occurs, for example, at a flow rate of about 0.7 cm?/s for the
experimental results shown in Fig. 12.3. Sinuous disturbances are shown to
be unimportant at low Q, but at higher Q they account for the attainment of
a maximum jet length since they are capable of ejecting drops sideways, out
of the path of the oncoming jet. Mass transfer affects jet breakup if concentration
variations are sufficient to cause significant gradients of interfacial tension (B9).

For low-viscosity liquid—liquid systems, tables presented by Hozawa and
Tadaki (H19) offer an alternative means of predicting initial drop sizes for
Qi < Q0 < Q,. This method also has the advantage of giving an estimate of
the spread in drop sizes caused by pairing and other complex interaction effects.
Empirical expressions are also available for predicting the size of drops produced
by jet break up [e.g. (P2, T1)].

3. Influence of Orifice Shape and Orientation

Kumar and Kuloor (K15) have surveyed work on the influence of orifice
shape and orientation. For very low flow rates, where surface tension effects
are dominant, bubbles appear to form from an equisided orifice, such as an
equilateral triangle or regular hexagon, as from the inscribed circular orifice.
At higher flow rates, an orifice with a shape not too far removed from circular
gives roughly the same bubble volume as the circular orifice of the same area
at the same flow rate. Irregular geometries, such as elongated rectangular slots,
show more complex behavior.

Inclining an orifice may increase or decrease the volume of bubbles formed,
although the effect of orientation is often rather small (S22). Kumar and Kuloor
(K15) extended their two-stage model to an orifice inclined at an arbitrary
angle to the horizontal. Equations are given both for constant flow and constant
chamber pressure, and agreement with experiment is favorable. Analogous
equations are suggested for drops forming at inclined orifices.

4. Influence of Flow of Continuous Fluid

If the continuous fluid has a net vertical velocity component, the additional
drag causes earlier or later detachment and hence reduces or increases the
volume of particle formed according to whether the drag force assists or impedes
detachment. Significantly smaller bubbles or drops can be produced by causing
the continuous fluid to flow cocurrently with the dispersed phase (C1).

Horizontal components of velocity also tend to affect the volume of bubbles
and drops produced at an orifice. At low Q there is little effect, but larger bubbles
tend to be produced as the horizontal mean velocity is increased at intermediate
Q (S22), presumably because of a reduction in the updraught effect noted above.
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5. Mass Transfer during Formation

Mass transfer during formation of drops or bubbles at an orifice can be a
very significant fraction of the total mass transfer in industrial extraction or
absorption operations. Transfer tends to be particularly favorable because of
the exposure of fresh surface and because of vigorous internal circulation during
the formation period. In discussing mass transfer in extraction, it has become
conventional (H12) to distinguish four steps: (1) formation, (2) release, (3) free
rise or fall, (4) coalescence. Free rise or fall has been treated in previous chapters.
Steps 1 and 2 are considered here.

By making mass transfer during coalescence negligible and by varying column
heights, one can determine mass transfer during formation and release by
extrapolation to zero column height. However, it is difficult to apportion this
transfer between formation and release. In the period immediately after detach-
ment, mass transfer rates may be high due to internal circulation, shape oscil-
lations, and acceleration. Theoretical models have been proposed for formation,
but not for release. Empirical correlations also exist for the formation step,
but usually include transfer during release. We consider here models for “slow
formation,” ie., formation without internal circulation, and “fast formation”
in which the momentum of the entering fluid causes circulation within the
forming bubble or drop. Both situations correspond to flow rates below Q.

a. Slow Formation The most realistic models for slow formation are based
upon one of two assumptions: “surface stretch,” in which the fluid at the
interface is assumed to remain there throughout formation, and “fresh surface,”
in which fresh fluid elements are assumed to arrive at the interface to provide
the increase in area. The interfacial area during formation is assumed to be

A= Ag + B, (12-32)

where Ay is the surface area of the residual drop or bubble left at the orifice
after detachment. Values of n of 2/3 (R4) and 1 (H10) have been reported for
drop formation at constant flow rate. Combining Eq. (12-32) with Eq. (7-51)
or (7-52) yields

kA = 2BA:\/Z [nt;, (12-33)
where A; is the surface area of the drop or bubble at detachment and ¢; is the
duration of the formation process. Values for the constant B are given in
Table 12.2. Equation (12-33) can be used when resistance in the dispersed
phase controls if k4 is replaced by (kA), and & by Z,. The predicted values
of kA are not strongly sensitive to n, and differ little between the two models.
Experimental data are not sufficiently accurate to differentiate between them,
and good agreement has been found for drops with the controlling resistance
in either phase as long as there is no circulation during formation (G9, H12,
P8, P9, R4). Corrections have been given to account for changing concentration
within the forming drop (W3) and for curvature of the interface for very small
drops (N2).
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TABLE 12.2

Models for Transfer during Slow Formation of
Bubbles and Drops

Surface stretch model:

_ b (A <ﬁ>ﬂm
B=arrym ' s 1\Af>{1 TG,

Forn=1, Az =0: B=0.577. Forn =%, 4, = 0: B =0.655.

Fresh surface model:

A T(n+ 1
B=b+(1 - bh=E, b:ﬁ#)—1
Ar 2 m+9I(n+2)

Forn=1, Az =0: B=0.667. Forn =%, A, = 0: B= 0.737.

b. Fast Formation On the basis of flow visualization, Humphrey et al.
(H26) proposed that circulation occurs in a forming drop if

o> pp2dy o ped > > 0.7, (12-34)

where d, is the equivalent diameter of the drop at detachment and the effective
viscosity is

fe = p, + u[1 —exp{—1/(1 + x)}]. (12-35)

Circulation increases transfer, and two models have been proposed. Zheleznyak
(Z2) assumed that the fluid from the orifice moves along the axis of the drop to
the stagnation point, and then travels with the orifice velocity, u,,, back to
the base of the drop and into the interior. If the drop is spherical, the instan-
taneous mass transfer product with the external resistance controlling is

kA = 2n(u,,2)'?a’. (12-36)

If it is assumed further that the surface area of the residual drop is negligible
and that formation occurs at constant flow, the time-average product is

1/3
M:4Af ﬁ<L> . (12-37)
dor N 3\3674/t;

Equation (12-37) correctly predicts the effect of d,, and Q, and Zheleznyak
found that it agreed closely with his own data. Although proposed for the
external resistance, Eq. (12-37) should also apply to the internal resistance if
written in terms of dispersed phase properties.

Siskovic and Narsimhan (S14) modified the model of Handlos and Baron
discussed in Chapter 7, using an estimate for internal circulation, to obtain

(kA), = 0.01u,, A (12-38)
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for the controlling resistance in the dispersed phase. Agreement with their data
was satisfactory when the constant was reduced from 0.01 to 0.0062.

c. Empirical Correlations Skelland and co-workers proposed empirical
equations for transfer during formation and release, with the mass transfer
coefficient based on the arithmetic mean of the driving forces at the beginning
and end of the whole process. For the continuous phase (S16):

o @ 0.5 po. 0.407 gth 0.148
kA=O.386Ae<Z> ( Apgw) ( 0 , (12-39)

while for the dispersed phase (S17)

o Ad 2\0.089 -9 0.334 / d 0.601
(kA), = 0.0432 t—(”) (f "> <M> . (12-40)

f g de d_ez— :up

where d, and A, refer to a sphere with the same volume as the drop at detach-
ment. Equations (12-39) and (12-40) should be used with caution outside the
limited range of properties covered by the original experiments.

d. Effect of Surface Active Agents Skelland and Caenepeel (S15) added
surface-active materials to examine their effect on transfer during formation
and coalescence. By comparison with Eq. (12-40), addition of surfactant reduced
(kA),/A, by a factor of five during formation with dispersed phase resistance
controlling, but increasing surfactant concentration returned the transfer rate
almost to its value in the pure system. No quantitative explanation for this
behavior is available. As in the work of Rajan and Heideger (R1), surfactants
had relatively little effect when the resistance in the continuous phase controlled,
reducing kA4/A, by at most 50%,.

B. FoRMATION WITH PHASE CHANGE

Bubbles, drops, and solid particles are of importance in many processes,
such as boiling, condensation, sublimation, crystallization, cavitation, elec-
trolysis, and effervescence, in which a change of phase occurs. A detailed review
of these subjects is beyond the scope of this book, but a few basic points and
useful references will be given.

All the above processes involve an initiation stage, called nucleation, followed
by particle growth. Both homogeneous and heterogeneous nucleation are
possible, although the latter is generally more important, except in certain
processes in the atmosphere or in ultrapure systems with large driving forces.
The surface tensions of pure liquids are so high that preexisting nuclei must gen-
erally be present for vapor bubbles to form in cavitation, boiling, or electrolysis.
Frequently microscopic scratches, pits, or crevices on solid surfaces trap gas
pockets at which vapor bubble growth may begin. The equilibrium diameter
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d., of a spherical bubble at a point in a liquid where the local pressure is p, is

deq = 40/(pv + Dy — P1)» (]2_41)

where p, is the partial pressure of any noncondensable gas and p, the vapor
pressure of the liquid at the given temperature. Bubbles smaller than d, decrease
in size while larger pockets grow. Growth may be promoted by lowering the
local p,, as in cavitation or effervescence, or by raising p, as in nucleate boiling,
In atmospheric nucleation, nuclei are commonly provided by sodium chloride
or potassium iodide crystals or by airborne dust or droplets. Microscopic solid
particles may also be important for heterogeneous nucleation in liquids or
at liquid-liquid interfaces. [For discussions and reviews of nucleation, see
(B1, B10, C4, H15, H16, H18, K5, R9, Z1).]

Bubble growth in vaporization is usually controlled by diffusion of mass
or heat, although chemical steps can be rate-controlling for electrolytic processes
(D2). Thorough reviews of diffusion-controlled bubble growth are available
(B1, H20). Theoretical treatments [ e.g. (F4, P7, S8)] generally consider spherical
symmetry with spherical or hemispherical bubbles in a liquid of large extent
and fluid properties assumed uniform within each phase, although extensions
have been made, e.g., to show the effect of other contact angles (B8) and bubble
translation (R10). Sideman (S10) reviewed studies of heat transfer to drops
and bubbles undergoing simultaneous change of phase.

The growth and collapse of cavitation bubbles is commonly described by
considering irrotational expansion of a spherical cavity in an incompressible
liquid of infinite extent, subject to the unsteady form of Bernoulli’s equation
(B3, P3). Effects of compressibility and bubble migration must also be considered
for oscillating bubbles produced by underwater explosions (B3, C5).

C. OTHER MEANS OF FORMING BUBBLES AND DROPS

A horizontal interface between two fluids such that the lower fluid is the less
dense tends to deform by the process known as Rayleigh—Taylor instability
(see Section III.A). Spikes of the denser fluid penetrate downwards, until the
interface is broken up and one fluid is dispersed into the other. This is observed,
for example, in formation of drops from a wet ceiling, and of bubbles in film
boiling. For low-viscosity fluids, the equivalent diameter of the particle formed
is of order \/a/g Ap.

Various experimental techniques have been devised for introducing relatively
large single drops or bubbles into liquids. The most common method is inversion
of a cup, immersed in the fluid for p, < p or at the surface for p, > p. Other
variants are opening a shutter (C6), withdrawal of a solid cylindrical tube (W1),
and bursting of a stretched balloon containing the dispersed phase (W2).
The mode of injection sometimes plays an important role, for example, in
affecting wake shedding from large bubbles (C9). Smaller bubbles may be
generated by a focused laser beam (L10), enabling the exact bubble position
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to be predetermined. Flow visualization using hydrogen bubbles generated by
electrolysis is described by Schraub et al. (S6) and by Tory and Haywood (T9).
Bubbles are entrained when a jet of liquid enters a pool from above (L13, V2).
Formation of bubbles at the surface of liquids in turbulent flow, associated
with “white water,” has also received some attention (F3).

Kintner er al. (K7) and Damon et al. (D1) have discussed photographic
techniques applicable to the study of bubbles and drops. Sometimes it is
desirable to hold a bubble or drop stationary, to study internal or external
flow patterns and transfer processes. To prevent the particle from migrating
to the wall, it is desirable to establish a minimum in the velocity profile at
the position where the particle is to reside, and various techniques have been
devised (D4, F1, G1, P11, M15, R15, S20) to do this. Vertical wandering of
such particles may occur (W7), and may be reduced by using a duct tapered
so that the area decreases towards the top (D4). Acoustic levitation of liquid
drops may also be used (A3).

III. BREAKUP OF DROPS AND BUBBLES

In multiphase flow equipment, the size distribution of drops and bubbles
is commonly determined by the dynamics of break up and coalescence. Coales-
cence involves multiple fluid—particle systems and hence is beyond the scope
of this book. A number of processes may cause breakup and these are discussed
here.

A. BREAKUP IN STAGNANT MEDIA

When one fluid overlays a less dense fluid, perturbations at the interface
tend to grow by Rayleigh—Taylor instability (L1, T4). Surface tension tends
to stabilize the interface while viscous forces slow the rate of growth of unstable
surface waves (B2). The leading surface of a drop or bubble may therefore
become unstable if the wavelength of a disturbance at the surface exceeds a
critical value

Joy = 213/ /g Ap. (12-42)

For rising bubbles and drops, instability manifests itself as an indentation at
the upper surface which grows deeper as time advances. Splitting tends to occur
if the disturbance grows sufficiently quickly relative to the velocity at which it is
swept around to the equator by tangential movement along the interface. A
typical sequence of events is shown in Fig. 12.5. This mechanism of splitting
applies to bubbles in liquids and in fluidized beds (C2, C3, H14) and to drops
in gases and liquids (G5, K8, K10, P12, R15). For unstable drops falling in air,
an indentation develops at the front leading to a hollow rim with an “inverted
bag” of liquid attached (H1, H4, L6). This mode of breakup is shown in Fig. 12.6.
The bag is inflated as time progresses with the penetration velocity given
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Fi16. 12.5 Breakup of a large two-dimensional bubble in viscous sugar solution, traced from
photographs by Clift and Grace (C2). (1) 0s;(2) 0.16 s;(3) 0.32's; (4) 0.56 s;(5) 0.84 s.

° @ L 2 @ D

FiG. 12.6  Breakup of a water drop in an air stream moving downwards relative to a particle,
traced from photographs by Lane (L6).

approximately (F2) by 0.3/U similar to Eq. (9-37) for bubbles in tubes, where
U is the drop acceleration. The wall of the bag thins until the film shatters
into as many as several hundred fragments (M1, M3). The toroidal rim also
breaks up into larger droplets containing about 75% of the original drop
mass (B6).

The time available for a disturbance to grow is approximately (G5)

t—de
“T U

3
(2 +2 K) In{cot(i/4d,)}. (12-43)

The time required for growth, 7, = 1/, may be estimated, to a first approxima-

tion, from the linearized theory which leads to the equation

[ok'® — gk’ Ap +a2(p + pp) (K + m+ w(k' +m,)] + 4ok’ u(k' + kmy)(kk' +m) =0
(12-44)
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where k' = 2r//. is the wavenumber and
m=(k'? + o/v)'/?,

m, = (k2 + a/v,) 2. (12-43)

On intuitive grounds / cannot be larger than about half the circumference.
Maximum values of t, may be obtained by solving Eq. (12-44) for 1, < /2 < nd,/2.
If the density and/or viscosity of one of the phases is much larger than that of
the other phase, simpler approximate forms of Eq. (12-44) may be solved
(P6, W5).

Comparison of the computed values of 7, and t, gives an indication of the
likelihood of splitting. Values of U may be obtained using the correlations
given in Chapters 7 and 8. Experimental evidence shows that splitting occurs
when 1, > 1.4, for liquid drops, and when ¢, > 3.8t, for gas bubbles (G5).
Maximum stable drop and bubble sizes predicted with this procedure are
given in Table 12.3. For x > 0.5, i.e., for liquid drops falling in gases and for
many liquid—liquid systems, the maximum stable diameter is given approxi-
mately (G5, L12) by

(de)max ~ 4 V O'/(] AP (12'46)

Equation (12-46) implies that the Eotvos number cannot exceed a value of
about 16. Since the spherical-cap regime requires Eo > 40 (see Fig. 2.5), stability
considerations explain why drops falling in gases and drops in many liquid—
liquid systems never attain the spherical-cap regime. Moreover, since We =
4E0/3Cy, and Cy, is nearly constant for large drops in air, it is also possible to

TABLE 123

Maximum Stable Drop and Bubble Sizes for Systems at Room Temperature

Experimental Predicted
System (d.) e (cm) Ref  (do)a (cm)
Water drops in air 1.0 (M11) 1.21
Isobutanol drops in air 0.45 (F1) 0.69
Carbon tetrachloride drops in air 0.36 (M11) 0.65
Carbon tetrachloride drops in water 1.04 (H22) 1.34
Nitrobenzene drops in water 1.54 (H22) 1.56
Chlorobenzene drops in water 3.16 (K12) 3.00
Bromoform drops in water 0.56 (K12) 0.69
Diphenyl ether drops in water 3.25 (K12) 3.17
Carbon tetrachloride drops in 31p aq. sucrose solution 13.5 (GS) 13.5
Air bubbles in 0.5p ag. sucrose solution 4.6 (GS) 5.0
Air bubbles in 2p paraffin oil 6.3 (GY5) 6.7
Air bubbles in water 4.9
Air bubbles in mercury 3.4

Air bubbles in fluidized bed 8.4
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use a critical We criterion for breakup [e.g., see (T11)]. Experimental maximum
stable bubble and drop sizes for stagnant media are given in Table 12.3 for
some systems. [ For other systems, see (F1, G5, H22, K12, M11).]

B. BREAKUP DUE TO RESONANCE

There is some evidence that isolated drops may shake themselves apart if
shape oscillations become sufficiently violent (L7). It has been suggested (E1,
G11, H22) that breakup occurs when the exciting frequency of eddy shedding
matches the natural frequency of the drop. However, other workers (S7) have
found that oscillations give way to random wobbling before breakup occurs.
While it is possible that resonance may produce breakup in isolated cases,
this mechanism appears to be less important than the Taylor instability
mechanism described above.

Sevik and Park (S9) suggested that resonance can cause bubble and drop
breakup in turbulent flow fields when the characteristic turbulence frequency
matches the lowest or natural frequency mode of an entrained fluid particle.
Breakup in turbulent flow fields is discussed below.

C. Breakupr DUE 1O VELOCITY GRADIENTS

A drop or bubble in a shear field tends to rotate and deform. If the velocity
gradients are large enough, interfacial tension forces are no longer able to
maintain the fluid particle intact, and it ruptures into two or more smaller
particles (A1, K1, R12, T3, T10). Observations of drop and bubble breakup
have also been obtained in hyperbolic flows (R12, T3). Figure 12.7 shows
tracings of photographs showing the effect of increasing shear rate; further
sequences appear in (R12, T3, T10).

@ O O <& o O o

2 3 L 5

FiG. 12.7 Breakup of liquid drops in simple shear. Velocity gradient G increases in each
sequence. (a) Rumscheidt and Mason (R12): k = 1, ¢ = 4.8 dynes/cm; (b) Torza et al. (T10): k = 1.1,
o = 1.3 dynes/cm.
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Theoretical predictions relating to the orientation and deformation of fluid
particles in shear and hyperbolic flow fields are restricted to low Reynolds
numbers and small deformations (B7, C8, T3, T10). The fluid particle may be
considered initially spherical with radius a,. If the surrounding fiuid is initially
at rest, but at time ¢ = 0, the fluid is impulsively given a constant velocity
gradient G, the particle undergoes damped shape oscillations, finally deforming
into an ellipsoid (C8, T10) with axes in the ratio E~'/?:1: E*2, where

1—E 5(19x + 16)

= , (12-47)
UFE 4+ D19 + (207
with
N = a,Gu/fo. (12-48)
The corresponding orientation at large time is given by
0=§+%tan“1<192’;N>. (12-49)

The relaxation time for the oscillations is approximately
T, = Aoip/0. (12-50)

For the limiting cases, N — 0 and k — co, Egs. (12-47) and (12-49) reduce to
equations derived by Taylor (T2, T3) for fluid particles in steady-state shear
or hyperbolic flows, i.e.,

7 1—E 1+ 19%/16
¢ ~— d =N 12-51
as N -0, 0 1 an T E < o ), (12-51)
i 1—-E 5
as K — O, 0 ~ 5 and 1'—;-E = R (12-52)

Rumscheidt and Mason (R12) proposed that breakup occurs if N exceeds a
critical value

1 1+«
N . =f—""" -
erit 2<1 + 19K/16>’ (12-53)

which varies only between 0.5 and 0.42 as x varies from zero to infinity. The
corresponding value of E would be 1/3 if Eq. (12-47) continued to apply up
to such aspect ratios.

Experimental results show reasonable agreement with the above equations
even for deformations considerably larger than those for which the theory
might be expected to apply. In practice, breakup occurs for E < 0.26 £ 0.05
(R12), whereas observed relaxation times are longer than predicted from
Eq. (12-50) (T10). Experimentally no breakup occurs when k > 3; instead a
drop becomes aligned and elongated in the flow direction with its aspect
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ratio given approximately by Eq. (12-52). There is also a lower limit of x below
which no breakup occurs, k = 0.005 for simple shear fields (K1).

The mode of breakup depends upon the rate at which the shear rate is applied
(T10). If dG/dt is too large, a fluid particle develops pointed ends for « less than
about 0.2 and fragments break off both ends. On the other hand, if G is increased
gradually, necking occurs in the center until rupture produces two large droplets
of nearly equal size separated by tiny satellite droplets (Fig. 12.7a). With large
dG/dt and 0.2 < k < 3, a drop is pulled out into a long thread which eventually
breaks up due to Rayleigh instability (Fig. 12.7b).

In the experiments referred to above, the systems were relatively free of
surface-active agents and Reynolds numbers were small. Care must be exercised,
therefore, when applying these results to drops or bubbles under other
conditions.

D. BREAKUP IN TURBULENT FLOW FIELDS

Two-phase systems are often exposed to turbulent flow conditions in order
to maximize the interfacial area of the fluids being contacted. In addition,
turbulence is often present in wind tunnels and other laboratory equipment,
as well as in nature where it can influence breakup processes (F5). Prediction
of drop or bubble sizes in turbulent contacting equipment for any geometry
and operating conditions is a formidable problem, primarily because of the
inherent theoretical and experimental difficulties in treating turbulent flows.
To these difficulties, which exist in single phase systems, must be added the
complexity of interaction of dispersed particles with turbulent flow fields.

Work in this field tends to follow directly from two simple concepts proposed
by Hinze (H17):

(a) The total local shear stress, 7, imposed by the continuous phase acts to
deform a drop or bubble, and to break it if the counterbalancing surface tension
forces and viscous stresses inside the fluid particle are overcome. The condition
for breakup is then:

T > (0 + Up/T/pp)/de. (12-54)

(b) Only the energy associated with eddies with length scales smaller than
d, is available to cause splitting; larger eddies merely transport the drop or
bubble. Hence, the turbulent energy available to cause breakup of a fluid
particle of diameter d, is given by

T 3 [(© , ,
¢ e f o E(R)dk
where k' is the wavenumber and E(k’) the energy spectrum.

Equation (12-54) leads to a prediction of a critical (or “maximum stable”)
size if 7 can be evaluated. For example, Hughmark (H24) applied Eq. (12-54)
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with some success to experimental data obtained in fully developed turbulent
pipe flow by Paul and Sleicher (P1, S18). These workers arbitrarily specified
the maximum stable size as that for which 209, breakage occurs. It was found
that drops usually split into two daughters of approximately equal size, though
much smaller drops were stripped off larger ones in some cases. There is some
evidence (C7, S18) that most of the breakup occurs in the wall region of the
pipe, where it is possible for the time-mean velocity gradients to cause distortion
and breakup as discussed in the previous subsection. For developing pipe
flow, on the other hand, breakup tends to occur near the center of the pipe,
and may be due to pressure fluctuations which cause one or two small fluid
particles to detach from the original particle (S23).

Concept (b) is less useful, except in rare cases where the energy spectrum
has been measured. It is common to assume that the turbulence is homogeneous
and isotropic and that the eddies in question are in the inertial (—5/3 power)
subrange. This assumption is unlikely to be valid in an overall sense though it
may be reasonable locally (G10) or for the high wavenumber (small) eddies
which are of primary interest. For an example of the application of the theory,
see Middleman (M13).

There is little evidence showing the mode of breakup in turbulent flow fields.
Hinze (H17) speaks of a “bulgy” mode of breakup. Published photographs
(C7, T12) show highly deformed bubbles and necking drops, protuberances
and cell-like surface structures (see Fig. 12.8). Experimental evidence regarding
single bubbles and drops in well-characterized turbulent fields would be most
welcome.

(a)

(b)

| S —|
Tmm.

(c)

FiG. 12.8  Breakup of drops in a turbulent liquid flow, traced from photographs by Collins and
Knudsen (C7). (a) y = 0.79, k = 1.2, ¢ = 40.3 dynes/cm; (b) y = 0.85, k =9, ¢ = 13.0 dynes/cm;
(¢)y =087, k = 16, ¢ = 17.6 dynes/cm.
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E. BREAKUP OF DROPS IN AIR BLASTS

Break up of drops accelerated by air blasts (including shock waves) can
occur by an “inverted bag” mechanism similar to that described in Section A
above, for Eo,. = UApd,?/c between about 16 and 10° (H1, H2, H4, L6).
Reichman and Temkin (R7) give a detailed description of four stages of bag-type
breakup. Under some circumstances, deformation preceding breakup appears
more like a parasol than an inflating bag (S12). The distance x moved by the
drop is given approximately by

x/ag = 1.6T?, (12-55)
where a, is the radius of the drop before exposure to the air blast,
T = tu2ayy'’? (12-56)

is a dimensionless time, and u is the air velocity (R8, S13). Equation (12-55),
corresponds to constant acceleration with a Cp, value of 2.1. A criterion for
breakup has been derived based on a critical thickness beyond which deforma-
tion is irreversible (R7). For water drops accelerated by a shock wave of velocity
u, breakup occurs for

We = u?d_p/c > 6.5. (12-57)

For higher accelerations with 102 < Eo,. < 10°, liquid tends to be stripped
from the surface of the drop as a spray (F2, R3, T5), this phenomenon usually
being called “boundary layer stripping.” The time for the drop to disintegrate
completely by this stripping mechanism is of order T = 3.5 (RS8). Breakup
becomes increasingly chaotic with increasing Eo,.. For Eo,, of order 10° and
higher, the drop tends to shatter due to development of a series of indentations
on the windward surface (R8), in a time interval given approximately by

T iy = 45We ™14, (12-58)

For theoretical analyses of instability of accelerating drops, see (H6, K11, T5).

F. OTtHER CAUSES OF BREAKUP

Breakup of water drops due to strong electrical forces has been studied in
connection with rain phenomena [e.g. (A4, L8, L9, M4, M7)]. As a strong
electrical field is imposed on a freely falling drop, marked elongation occurs
in the direction of thé"field and can lead to stripping of charge-bearing liquid.
A simple criterion derived by Taylor (T6) can be used to predict the critical
condition for instability. It has also been shown (W6) that soap bubbles can
be rendered unstable by electric fields.

Raindrop breakup also occurs when drops collide, and this has been studied
by a number of workers [see (M8)]. It is probable that the collision mode of
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breakup is much more significant in determining the size distribution of
raindrops in the atmosphere than the Rayleigh—-Taylor instability mode dis-
cussed above.

Impaction of water drops on solid surfaces has been studied (G3), and under
some circumstances smaller drops are detached and leave the surface. Impinge-
ment of drops on thin liquid films may also cause breakup (K3, S5). Breakup
of bubbles in fluidized beds due to impingement on fixed horizontal cylinders
has also been observed (G4). Sound waves may lead to instability of bubbles
in liquids (S21).
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APPENDIX

Log,, Re as Function of

1/3

Log Np / 0400 0.01 0.02 0.93 2.04
-0.2 -1.981 -1.951 -1.921 -1.891 ~1.861
-J.1 -1.681 ~1.651 -1.621 ~1+591 -1.561
0.0 -1.382 -1.352 -1.322 -1.292 -1.263
Cal -1.084 -1.654 -1.024 -0.995 -0.965
0.2 -0.787 -0.758 -0.729 -04699 -04670
Ze3 -0.495 -0+466 -04437 -04408 -0.379
0 ea -0.208 -0.180 -0.152 -0.125 -0.097
0.066 0.092 04119 04145 04171
0.6 0.322 0.347 0.372 0.398 0.425
0.582 0.607 0.632 0.657 0.682
0.8 J.825 0.849 0.872 0.894 0.917
] 1.048 1.069 1.090 1.114 1.138
1.0 1.279 1.302 1.325 1.348 14371
1.1 1.505 1.527 1.543 1.570 1.592
1.2 1.720 1.741 1.761 1.782 1.803
1.3 1.924 l.944 16964 1984 240C4
1.4 2.120 2.139 2.158 2.177 2.196
1.5 2.308 2.326 2.345 2,363 2.381
1.6 2.489 2.506 2.524 24542 2,559
1.7 2,663 2.681 2.698 2.715 2.732
1.8 2.833 2.850 2.867 2.884 24900
1.9 3,000 3.016 3.032 3.049 3.065
2.0 3.163 3.179 3.195 3.211 3.228
2.1 3,324 34340 3.356 3.372 3.389
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2.3 3.646 3.662 3.678 3.694 3.710
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2.5 3.939 3.953 3.966 3.980 3.994
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2.9 44516 4.531 4.546 44561 4.576
3.0 4.666 4.681 4.696 4.711 4.726
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3.2 4.966 4.981 4.996 5.010 5.025
3.3 5.113 5.128 5.142 5.157 5e171
3.4 5.257 5.272 5.286 54300 5.314
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Log,, Np'/? for Rigid Spheres
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Log,o N3 as a Function of
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B
Log;, Np'/® for Rigid Spheres
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Nomenclature

ag, dy, dz, Ay
B

BI’BZ
Blv BZ’ B3
Bi

b

b19b2

surface area of particle; cross-sectional area of duct; amplitude of oscillation
CpRe? as defined by Eq. (11-35)

surface area of volume-equivalent sphere

true surface area of bubble or drop at detachment

coeflicient in Kronig—Brink series, Eq. (3-82)

surface area of perimeter-equivalent sphere

projected area of particle

surface arca of residual bubble or drop left at orifice after detachment of parent
fluid particle

amplitude of turbulent oscillations with angular frequency w

minimum surface area of particle undergoing shape oscillations

Archimedes number = gp Ap d,>/u?

radius of sphere, disk, or spherical-cap; equatorial radius of spheroid; semimajor
axis of fluid particle

amplitude of oscillation or disturbance

average radius of curvature over leading portion of large fluid particle

radius of curvature of rear indented surface of large fluid particle

initial radius of bubble or drop

initial amplitude of disturbance

constants in fitted polynomials

function of Kn defined by Eq. (10-64); dimensionless initial acceleration [ Eq. (11-17)
and Table 11.1]; numerical parameter in models for transfer during slow formation
functions of ky in Table 5.7

constants in Eq. (4-34)

Biot number = ka/H%,,, kd.,/2HZ,,, or ha/K,,

semiaxis of spheroidal particle along axis of symmetry; breadth of particle;
vertical semiaxis of spheroidal cap; distance from centre of particle to axis of
tube; group defined by Eq. (10-66); numerical parameter in models for transfer
during slow formation

semiminor axes of particle (see Fig. 7-10)

coefficient in Eq. (3-20); slip correction factor, defined by Eq. (10-53); constants
in Egs. (9-10) and (12-13)
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Nomenclature

drag coefficient = 2F,/pUg? A, : = 2F/npUg*a* for sphere; = 4Ap gd,/3pU? for
fluid particle at its terminal velocity

drag coefficient corresponding to skin friction alone

drag coeflicient for free-molecule flow

inviscid drag coefficient given by Eq. (10-61)

drag coefficient under steady conditions corresponding to the instantaneous
Reynolds number, Re;

drag coefficient for incompressible flow (Ma — 0) at the same Re

drag coefficient corresponding to pressure distribution (form drag) alone

drag coefficient given by Stokes law, =24/Re

coefficients of pressure drag, drag due to deviatoric normal stress, and drag due to
shear stress

drag coefficient in unbounded fluid

drag coefficient for sphere subject to secondary motion; drag coefficient for
cylinder defined by Eq. (6-23)

capacitance

lift coefficient, =2F| /na?pUg? for sphere

normal drag coefficient for circular motion, Eq. (11-73)

orbit constant

constant in Eq. (9-43) and Table 9.4

heat capacity at constant pressure of continuous, dispersed phase

concentration in continuous phase; numerical constant in Table 3.1; maximum
particle dimension; speed of sound in same medium

mean resistance, Eq. (4-6)

principal translational resistances, Eq. (4-4) (¢, is axial resistance)

translational resistance of sphere in creeping flow = 6na

concentration in dispersed phase; bulk concentration of solute in dispersed phase
average concentration in dispersed phase

initial concentration in dispersed phase

concentration in continuous phase at surface of particle

constants defined by Eq. (10-57)

concentration in continuous phase remote from particle

degree of circularity, defined by Eq. (2-6)

operational circularity, defined by Eq. (2-9)

diameter of containing vessel or tube; hydraulic diameter of duct

inner and outer diameters of annular section

length and width of cross section of rectangular duct

molecular diffusivity in continuous, dispersed phase

characteristic dimension of particle; diameter of sphere, cylinder, or disk; equa-
torial diameter of spheroid

diameter of sphere with same projected area as particle in its orientation of
maximum stability on a horizontal surface, = \/ZAp/n

maximum bubble width

diameter of volume-equivalent sphere, = (6V/x)'/®

maximum stable volume-equivalent diameter

equilibrium diameter of bubble

orifice diameter

diameter of solid particles in fluidized bed

aspect ratio, = b/a for spheroid or L/d for cylinder

aspect ratio averaged over shape oscillations

operator defined by Eq. (1-37)

Eotvos number, = g Apd*/c or gAp d.?/o
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Eop
Eo’

Eo*

Eo

ac

Fry

A
fu
Tus
Jers for

In

fvs
G, G,
Gr,, Gr,,

9. 8
9(0w)

Eotvos number based on diameter of duct, = g Ap D?*/c

modified Eotvos number, based on difference between surface tension of pure
fluids and at equilibrium with surface active contaminant

modified Eotvos number, based on difference between surface tension of pure
fluids and minimum value at which surface film collapses

acceleration Eotvos number, = U Apd2/c

flatness ratio, Eq. (2-3)

elongation ratio, Eq. (2-4)

fractional approach to equilibrium (“extraction efficiency”), = (¢, —T,)/(¢p0 — Heo,)
net drag force (scalar, vector)

component of drag force in i-direction

drag component parallel to velocity component U, for orthotropic particle (see
Fig. 4.11)

drag component normal to velocity component U, for orthotropic particle (see
Fig. 4.11)

drag force in unbounded fluid

net force on particle in type 2 accelerating motion (see Ch. 11), excluding steady
drag, history, and added mass

net lift force

value of extraction efficiency, F, for mobile portion of particle

value of extraction efficiency, F, for stagnant portion of particle

drag force in Stokes flow, = 6nauUy for sphere

Froude number, = UT\/;;/K;J?]Z)_

frequency of oscillation of particle or fluid; fraction defined by Eq. (10-63);
frequency of formation of bubbles or drops at orifice

(fw + /2

fraction of particle surface with buoyancy directed outwards at an angle less than
45° to the vertical

area of contact between mobile and stagnant parts of spherical fluid particle,
divided by surface area of particle, 4na®

fraction of particle surface occupied by stagnant cap

frequency of formation at constant flow, constant pressure

natural frequency of shape oscillation, Eq. (7-30)

stagnant fraction of particle volume

frequency of wake shedding

shear rate, Eq. (10-30); velocity gradient in continuous phase

functions defined in Table 11.2

Grashof number (either Gr, or Gr,,)

thermal and composition Grashof numbers, defined by Egs. (10-13) and (10-14)
gravitational acceleration (scalar, vector)

function defined by Eq. (8-21)

distribution coefficient, Eq. (1-39); dimensionless group defined by Eq. (7-7);
distance below free surface

functions defined in Table 11.2

heat transfer coefficient

coordinate directed vertically upwards

heat transfer coefficient for particle in stagnant medium

functions defined in Table 11.2

dimensionless moment of inertia defined by Eq. (6-11)

relative intensity of turbulence defined by Eq. (10-43)
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Nomenclature

value of I required to induce critical transition at given Reynolds number, Re
imaginary part of complex error function, Table 11.1

orthogonal unit vectors; i generally in direction of particle motion

dimensionless group defined by Eq. (7-8)

factor for spheroids using equatorial diameter as characteristic length, Eq. (4-61);
velocity correction factor defined by Eq. (6-29); K, Ky, or K, in creeping flow;
orifice constant, Eq. (12-14)

factor for spheroids using L’ as characteristic length, Eq. (4-68); constant defined
by Eq. (9-13); dimensionless orifice constant, Eq. (12-16)

terminal velocity of particle divided by terminal velocity of sphere of diameter d,
terminal velocity of particle divided by terminal velocity of volume-equivalent
sphere

drag factor defined by Eq. (9-6)

Sherwood number factor defined by Eq. (9-22)

velocity ratio defined by Eq. (9-25)

mass transfer factor defined by Eq,. (9-21)

thermal conductivity of continuous, dispersed phase

velocity ratio defined by Eq. (9-7)

viscosity ratio defined by Eq. (9-8)

Knudsen number, = 1/d

time-average product of surface area and overall transfer coefficient based on
dispersed phase concentrations

instantaneous or steady external mass transfer coefficient; volumetric shape
factor = V/d,*; ratio of specific heats, = C,/heat capacity at constant volume
wave number, =27/A

time-average external mass transfer coefficient

volumetric shape factor of isometric particle of similar form

time-average internal mass transfer coefficient

mass transfer coefficient for particle in a stagnant medium

time-average product of interfacial area and external, internal mass transfer
coefficient

mass transfer product for front surface

mass transfer product for rear surface

reference length; characteristic dimension of particle; length of cylinder, slender
body, or slug

characteristic length defined by Eq. (4-67)

characteristic length defined by Eq. (6-32)

height of closed cylindrical column

length of jet from orifice to point of break up

scale of turbulence

wake length measured from rear of particle

length of particle; side of parallelepiped or cube; shortest distance from center of
particle to wall

characteristic length defined by Eq. (10-24)

Morton number, =gu*Ap/p*c?

acceleration modulus, =(d/Ug?)(dUy/dt)

displacement modulus, =x/d

Mach number, =characteristic velocity/c

constant in Table 3.1; mass transfer flux; group defined by Eq. (12-45)

mass transfer flux in absence of interfacial motion

group defined by Eq. (12-45)

group defined by Eq. (11-64); dimensionless velocity gradient, =r,Gpu/o
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Pups (Pup)y
121

P P’

Py

pS

pV

dimensionless amplitude defined by Eq. (11-53)

capacitance number defined by Eq. (12-17)

critical value of N for bubble or drop breakup

dimensionless diameter group, CpRe;? = 4g Ap d®/3pv? for sphere, 4g Ap d,3/3pv?
for fluid particle at terminal velocity

dimensionless history group defined by Eq. (11-57)

dimensionless thermal group defined by Eq. (10-29)

dimensionless terminal velocity group, Re/Cp, = 3pU.*/4g Ap v
value of Ny for sphere subject to secondary motion

dimensionless frequency defined by Eq. (11-52)

Nusselt number, =hL/K,

Nu for continuum flow (Kn — 0) at same Re and Pr

Nu corresponding to critical transition, Eq. (10-48)

Nu in free molecule limit (Kn — o) at given Ma

local Nusselt number

Nu in absence of turbulence at same Re

integer; coordinate normal to particle surface; constant defined by Eq. (5-40);
index in Eq. (12-32)

perimeter of projected- area-equivalent sphere

perimeter of an axisymmetric body projected normal to the axis
projected perimeter of particle

Peclet number in continuous phase, = dU/2, LU/% or d,U/%

Pe based on L/, =L'U/2

shear Peclet number, =RegSc

Peclet number in dispersed phase, =dU/2,

Prandtl number, =uC,/K,

pressure or modified pressure in continuous phase

mean ambient pressure

pressure in chamber for constant pressure bubble formation

partial pressure of noncondensable gas

hydrodynamic surface pressures in continuous, dispersed fluid

local pressure

modified pressure, dimensionless modified pressure

modified pressure in dispersed phase

pressure or modified pressure in continuous phase at particle surface
vapour pressure of liquid

reference pressure; modified pressure at front stagnation point; constant in Eq. (3-9)
constant in Eq. (3-10)

pressure or modified pressure remote from particle

function defined in Table 5.4; volumetric flow rate

time-mean volumetric flow rate

dimensionless flow rate defined by Eq. (12-3)

volumetric flow rate at onset of atomization

volumetric flow rate at onset of jet formation

volumetric flow rate for maximum jet length

distance to surface of axisymmetric particle, Fig. 1.1; ratio of form drag to skin
friction; dimensionless radial coordinate, =r/a; radius of cylindrical tube
real part of complex error function, Table 11.1

radius of curvature at nose or lowest point of particle

principal radii of curvature

dimensionless distance to particle surface, =2R/d, or R/L

Rayleigh number, =GrPr or Gr,Sc
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Nomenclature

Rayleigh number based on I’

value of Ra’ above which §-power relationship applies

particle Reynolds number, normally = Ud/v or Ud./v

Reynolds number based on L’; dimensionless acceleration = d(Re)/dt
critical Reynolds number

shear Reynolds number, = Gd?/v

instantaneous Reynolds number, = Ug;d/v

limiting Reynolds number for creeping flow

metacritical Reynolds number at which C, = 0.3 (Rey > Re,)

Reynolds number corresponding to minimum Cy,, Table 10.1

Reynolds number based on dispersed phase properties, = Ud/v, or Ud,/v,
Reynolds number corresponding to onset of separation

Reynolds number at terminal velocity = Ud/v

Reynolds number corresponding to Stokes terminal velocity, Eq. (11-34)
vibration Reynolds number, =4a’fd/v

Reynolds number based on Ly,

radial coordinate in spherical or cylindrical coordinates

settling factor, Eq. (4-2)

settling factor based on volume-equivalent sphere

Schmidt number in continuous, dispersed phase, =v/2, v,/%,

external Sherwood number, = kd/Z; area-free Sherwood number for external
resistance, = kd,/% resistance, = kd ./

Sherwood number based on L or I’

Sherwood number for external resistance based on volume-equivalent sphere,
=(kA/Ad/D, (kA/A)d/D

value of Sh at surface of contact between mobile and stagnant parts of particle
local Sherwood number

Sherwood number over mobile portion of interface

area-free Sherwood number for internal resistance, =dee/9p

Sherwood number for internal resistance based on volume-equivalent sphere,
=[(kA),/A)d./Z

Sherwood number in the presence of rotation

Sherwood number over stagnant portion of interface

Sherwood number for sphere at the same Re

Sherwood number with vibrations superimposed on translation
Sherwood number for diffusion into stagnant medium, =2 for sphere
Sherwood number in unbounded fluid

Sherwood number based on Li;,

Sherwood number for diffusion into stagnant medium, based on L’ or /'
Sherwood number for diffusion into stagnant medium, based on L,
Strouhal number, = fd/U, fb/Ur, or fyw/Ury

molecular speed ratio defined by Eq. (10-60); dummy time-coordinate
dimensionless time defined by Eq. (11-55)

temperature in continuous phase; dimensionless times defined by Eqs. (11-40)
and (12-56)

dimensionless temperature, =(7 — T )T, — T,)

value of dimensionless time at which droplet shatters

temperature in dispersed phase

surface temperature

temperature in continuous phase remote from particle

dimensionless group used by Tadaki and Maeda, =ReM® 3
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U, Up

UR~ UR
UR[

U,
Usphcrc
UT

Urs
UToc,
(UT)purc
Uw

Uo

s

. Uk

U
u
o
u
o

AR

time; particle thickness, i.e. minimum distance between two parallel planes
tangential to opposite surfaces
dimensionless time defined by Eq. (11-55)
dimensionless time defined by Eq. (5-7)
time available for disturbance to grow
coalescence time

duration of formation process

time required for disturbance to grow, =o~
time required for Sh to come within 100x%; of steady value

velocity of particle, normally relative to remote continuous phase, or of continuous
phase relative to particle (scalar, vector)

relative velocity giving same Sherwood number in an unbounded fluid
instantaneous and time-average continuous phase velocities

i-component of Uy

instantaneous and time-average particle velocity

i-component of U,

instantaneous and time-average velocity of particle relative to continuous phase
i-component of Uy

spreading velocity of surface tension-lowering material at interface

terminal velocity of equivalent diameter spherical particle

terminal velocity of particle

terminal velocity of spherical particle given by Stokes law, =gd? Ap/18u
terminal velocity in unbounded fluid

terminal velocity in surfactant-free system

maximum velocity of oscillating particle corresponding to frequency w
reference velocity; fluid velocity on axis of cylinder far from particle

time derivative of U, Ug, = dU/dt, dUg/dt

local fluid velocity vector

dimensionless velocity vector, =u/U,

undisturbed local fluid velocity; velocity of air stream or shock wave
fluctuating component of velocity

fluctuating velocity in continuous phase, = U; — U,

velocity in continuous, dispersed phase normal to surface

velocity of fluid through orifice

fluctuating velocity of particle, =U, — U,

fluctuating relative velocity, = Uy — Uy

r-component of u

velocity in continuous, dispersed phase tangential to surface

velocity in continuous phase parallel, normal to surface

Cartesian components of u

f-component of u

volume of particle

dimensionless volumes defined by Egs. (12-2) and (12-21)

volume of bubble formed at orifice under constant flow, constant pressure
conditions

chamber volume

drift volume

volume of indentation at rear of particle

sphere volume

volume of closed wake

dimensionless volumes contributed by successive stages of bubble formation

1
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Nomenclature

dimensionless volumes contributed by successive stages of bubble formation in a
fluidized bed

velocity vector representing deviation of continuous phase from uniform stream
equatorial surface velocity due to rotation

log,, Np, Table 5.3; log;, (C;,Re?)!3; ratio of instantaneous particle velocity to
terminal velocity, =U/Uy

complex error function, Table 11.1

dimensionless fluid and relative velocities defined by Eq. (11-56)

dimensionless particle velocity, Eq. (11-14) and Table 11.1

Weber number, = U,2d.p/o or ud.p/c

Weber number based on radius of spherical cap, = Ut?ap/c

log;, Re; maximum width of particle; component mass fraction

dimensionless mass fraction, =(w — w,)/(wg — W)

surface, remote component mass fraction

dimensionless boundary-layer coordinate parallel to surface, =2x/d, or x/L;
dimensionless displacement, Eq. (11-42); function of B and A,, Table 11.1
maximum value of dimensionless boundary-layer coordinate, X

Cartesian boundary layer coordinate parallel to surface; index defined by Eq. (6-2);
distance travelled by particle; distance along jet, Eq. (12-29)

dimensional, dimensionless Cartesian coordinate

ratio of terminal velocity to terminal velocity in Stokes flow, = U/Ug; function
of Band A, in Table 11.1; ratio of bubble volumes formed under constant pressure
and constant flow conditions

weighting factors for mass transfer at mobile and stagnant portions of an interface,
Eq. (3-91)

Cartesian boundary layer coordinate normal to surface; distance measured ver-
tically upwards from point 0 or lowest point on particle surface

dimensional, dimensionless Cartesian coordinate

total degree of circulation, Eq. (3-25); distance of particle from end of closed
column; complex function in Table 11.1, =(X + iY)\/r

dimensional, dimensionless Cartesian coordinate

thermal diffusivity, =K,/pC,; fraction of particle surface area aft of maximum
perimeter in a plane normal to flow, =L /L’; angle between surface normal and
direction of gravity; function in Table 11.1; exponential growth rate of disturbance
dimensionless displacement from axis, =b/R; phase shift, Eq. (11-50); function
in Table 11.1; constant in Eq. (12-32)

thermal and composition compressibility coefficients, Eqgs. (10-10) and (10-11)
vortex strength for circulating sphere divided by strength of corresponding Hill’s
vortex; retardation coefficient defined by Eq. (7-10)

density ratio, = p,/p; Euler’s constant, =0.5772157 . ..

value of density ratio above which functions « and f are complex

drag ratio, Eq. (4-1); skirt thickness

conductance factor, Eq. (4-56)

added mass coefficient, Egs. (11-22) and (11-30)

mean drag on spheroid in steady motion + drag on sphere of radius a at same Re
(based on d)

drag on spheroid in i direction in steady motion < drag on sphere of radius a at
same Re (based on d)

mean drag ratio based on volume-equivalent sphere

drag ratio (i-direction drag) based on volume-equivalent sphere

history coefficient, Egs. (11-22) and (11-30)

drag ratio based on projected perimeter-equivalent sphere
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Ac
Af
AP*
AV
Ap

S = /N
e

/‘CI‘

/*m

J

1
,

ﬂe
e

/’lW
v, v,

0: Py
Py
/)5

factor introduced by O’Brien, Eq. (4-38)

frequency difference, =(fy, — fx)/2

excess pressure drop due to particle

factor introduced by O’Brien, Eq. (4-39)

absolute value of density difference between particle and continuous phase,
=lpp =l

absolute value of surface to bulk density difference, =
surface or interfacial tension difference

thickness of fictitious mass transfer film, Eq. (4-64); thickness of disk; cell depth;
length scale defined by Eq. (11-8)

penetration depth, =/n%1

parameter in Table 3.1; permittivity; ratio of amplitude of arca oscillation to
minimum area; effective height of surface roughness elements; dimensionless
group defined by Eq. (11-66)

dimensionless vorticity, = {a/U,

vorticity (scalar, vector)

vorticity at particle surface

spheroidal angular coordinate; amplitude ratio, Eq. (11-50)

angular coordinate, normally measured away from front stagnation point; angle
between axis of symmetry and direction of motion; angle defined in Fig. 4.11;
angle of inclination of tube from vertical; coordinate of axis of rotating particle;
angle between direction of flow and major axis of particle deformed by shear field
contact angle

included angle for rear indented surface, Fig. 8.9

separation angle measured from front stagnation point

included wake angle for front surface, Figs. 8.1 and 8.9

angle from front stagnation point to leading edge of stagnant cap

viscosity ratio, = ,/u

angle between vertical and direction of motion; dimensionless group defined by
Eq. (7-18); diameter ratio, =d/D or d./D; molecular mean free path; wavelength
of disturbance

critical wavelength

“most dangerous wavelength”, corresponding to maximum o

eigenvalue in Kronig-Brink series, Eq. (3-82)

viscosity of continuous, dispersed phase

dimensionless viscosity defined by Eq. (12-4)

effective viscosity defined by Eq. (12-35)

continuous phase viscosity yielding the actual terminal velocity when calculated
from Stokes’ law, Eq. (9-9)

viscosity of water in Braida’s experiments, 9 x 10™% Ns/m?

kinematic viscosity of continuous, dispersed phase

dummy time variable, Table 11.1

density of continuous, dispersed phase

density of gas in fluidized bed

continuous phase density at particle surface; density of solid particles in fluidized
bed

density of continuous phase remote from particle

perimeter-equivalent factor defined by Eq. (2-12)

interfacial or surface tension; dimensionless time defined by Eq. (11-13)
accommodation coefficient for molecular collisions at particle surface

surface tension in absence of surface-active contaminants

thermal accommodation coefficient

Ps — pac!
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Nomenclature

dimensionless time (“Fourier number™). = %t/a?. %t/a*. or vt/a*; local shear stress
deviatoric normal stress at interface

shear stress at interface

Fourier number based on dispersed phase, =4 1/d,”

period of rotation; relaxation time

value of Fourier number at time 7,

dimensionless period of oscillation, =v/wa?

velocity potential

viscous dissipation function

dimensionless concentration in continuous phase, =(c¢ — ¢, )/(¢, — ¢,.) or (¢ — ¢.)/
(cpo/H — c..); angle of inclination of particle axis from vertical; spherical polar
coordinate of axis of rotating particle

dimensionless concentration in dispersed phase, =(c, — Hc,,)/(¢c,0 — Hc,,)

phase lag

initial phase angle for particle undergoing rotation

modified circularity defined by Eq. (4-28)

dimensionless stream function, = /U L?

Stokes stream function for continuous phase relative to particle; sphericity, = .4,/4
stream function for particle motion through stagnant fluid

Harkins’ correction factor, Fig. 12.4

operational sphericity, Eq. (2-8)

stream function in dispersed phase

working sphericity, Eq. (2-10)

angular velocity of rotating particle

angular frequency of oscillation



A
Acceleration modulus
definition of, 285
influence of, 296
Accelerated motion, 264, 285-318, 335, 346
Accommodation coefficient, 273
thermal, 278
Accumulation of surfactants, 36, 38, 195
Added mass
in arbitrarily accelerated motion, 316
during bubble formation, 324, 325
voefficient, 292, 296, 316, 317, 323, 325
conditions for neglect of, 275, 300-301, 309,
317
fluid spheres, 295, 304, 305
rigid spheres, 275, 287, 291, 296, 297
spheroids, 292-293
Adjusted sphere, 274-275
Aerodynamic heating, 277, 278
Aging, see Accumulation of surfactants
Aiding flow, 256-259
Amplitude
of imposed oscillatory flow, 309, 314
of natural oscillations of fluid particles, 188,
191, 197
of secondary motion of rigid particles, 103,
115, 148-149, 156
Amplitude ratio, 264-265, 307-308, 310-311,
313
Analogy between heat and mass transfer, 11, 12
Angular velocity, 259, 261
Annular channels, 238

Arbitrarily shaped particles
conductance, 90
drag at low Reynolds number, 87-88
motion at low Reynolds number, 70-71,
87-88
natural convection, 254-255
terminal velocity, 157-162
transfer at low Peclet number, 91
transfer with variable concentration, 93-94
Archimedes number, 113f, 206
Aspect ratio, see also Deformation
of bubbles and drops in contaminated liquids,
181-182
of bubbles and drops in pure liquids, 182-183
definition of, 17, 75, 80
of drops in air, 170, 183-184
of spheroids, 75, 143, 147, 294
Asymptotic expansions, see Matched asymptotic
expansions
Atomization, see Formation of drops
Attached eddy, see Wakes
Axisymmetric particles, 16-17
drag at low Reynolds number, 83-85
in free fall, 70-73
rotation, 260, 263
in shear field, 263

B
Basset history term, see History effects
Bemnoulli’s -equation, 7, 338
Best number, 113
Biot number, 62, 94

369




370

Bodies of revolution, see Axisymmetric parti-
cles
Boiling heat transfer, 236, 337
Bond criterion, see Surface-active impurities
Bond number, 26f
Boundary conditions, 3, 4, 9, 30-31
concentration, 10, 12, 13, 47, 52, 88, 117
stress, 5, 31, 39, 42, 44, 286
temperature, 11, 12
velocity, 4, 31, 98, 222, 252, 286
Boundary layer approximation, 9-10, see also
Thin concentration boundary layer
application to natural convection, 252, 255,
258
for fluid spheres, 130-134, 135136
for rigid spheres, 50, 99, 120f
Boundary layer separation
on arbitrarily shaped particles, 162
on cylinders, 154
effect of fluid compressibility on, 275
effect of freestream turbulence on, 262, 268
effect of rotation on, 262, 263
effect of surface roughness on, 245
effect of surfactants on, 135, 175
on fluid particles, 126, 132, 134,175, 185,
210
in natural and mixed convection, 251, 257
on rigid spheres, 99, 100, 102, 107-109, 222,
245, 263
on spheroids, 143
Boundary layer stripping, 346
Boundary layers
concentration, 11, 13, 92, 246
interaction with shock waves, 275
internal, 132, 205
momentum, 9-10
temperature, 10, 246
thickness, 99, 100, 254, 272
transition, 109, 120, 245, 262, 266, 316
turbulent, 109, 121, 245, 269
Boussinesq approximation, 249
Breakup of bubbles, 339-347
by impingement, 347
maximum stable size, 341-342, 344
in oscillating flow fields, 314
by Rayleigh-Taylor instability, 339-342
by resonance, 188, 342
in stagnant media, 339-342
in turbulent flow fields, 269, 344-345
by velocity gradients, 261, 342-344
Breakup of drops, 339-347
in air, 171, 341-342
in air blasts, 346

Index

by collision, 346-347
by electric fields, 346
falling in gases, 171, 203, 341-342
by impingement, 347
maximum stable size, 341-342, 344
by Rayleigh~Taylor instability, 339-342
by resonance, 188, 342
in stagnant media, 171, 203, 339-342
in turbulent flow fields, 269, 342, 344-345
by velocity gradients, 261, 342-344
Breakup of liquid threads, 333
Brownian motion, 70, 71, 272
Buoyancy, 255, 312, 324, 333, see also Natural
convection

C
Capacitance, 88-89
Capacitance number, 329
Capillary pressure, see Surface tension pressure
increment
Cavitation, 337, 338
Chamber volume, effect on bubble formation,
322, 329, 330
Characteristic lengths, 92, 162, 163, 254
Circularity, 20
operational, 21
modified, 80
Cluster of particles, 164
Compressibility effects, 271-272, 275-278, 338
on drag, 275-278
on heat transfer, 279
Concentration contours, 118, 137, 150-151
Conductance
for arbitrary axisymmetric shapes, 90
definition, 89
for particles of various shapes, 89
for slender bodies, 90
Conductance factor, 90
Cones
compressibility effects, 275
in creeping flow, 74, 83
free fall at higher Reynolds number, 165
shape classification, 17
Contact angle, 22, 324, 338
Contamination, see Surface-active impurities
Continuity equation
overall, 3, 4,9, 13, 14, 97, 250
species, 10, 12, 47, 52, 88, 116, 250
Continuous phase, definition of, 2
Coriolis forces, 263
Creeping flow, 8-9
accelerating fluid sphere, 295
disk released from rest, 294




Index

drag on accelerating rigid sphere, 287-291
natural convection, 256-257
noncontinuum flow, 273
particle in oscillating fluid, 286-287, 307-309
particle orientation in, 18
particle rotation and fluid shear, 259-261
relevance at nonzero Reynolds numbers, 88,
297, 318
rigid axisymmetric particles, 73, 83-85
rigid spheres released from rest, 288-292
rigid spheroids released from rest, 292-294
slender bodies, 82
spheres in steady motion, 30-35, 47-51
spheroids in steady motion, 75-77
wall effects, 222, 223-226, 231-232
Critical range of flow, 110, 114, 223, 267, 268,
316
Critical transition
effect of acceleration on, 316
effect of freestream turbulence, 266-267
effect of rotation, 262-263
effect of surface roughness, 244-245, 262,
263
spheres, 109-110, 223
spheroids, 143
Crossflow, 256-258
Cubes, 17
compressibility effects, 278
drag at low Reynolds number, 87
noncontinuum effects, 275
orientation in free fall, 165
transfer, 89, 164
Curvilinear trajectories, 316
Cylinders, 17
axial resistance, 79-80, 83
compressibility effects on heat transfer,
278-279
drag, 74, 79-80, 87, 153-156, 160-161
in free fall or rise, 153-156
freestream turbulence effects, 269-271
natural convection, 258, 278
noncontinuum effects, 275, 278
rotation, 260, 264
roughness effects, 245
secondary motion, 154-156
in shear field, 260
time variation of concentration, 94
transfer, 89, 90, 93, 94, 156-157, 163, 164
treated as slender bodies, 82, 90

D
D’Alembert’s paradox, 8
Davies and Taylor equation, 205
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Deformation, 32, see also Aspect ratio, Shapes

of accelerating drops, 305

of air bubbles in water, 172

during bubble formation, 324

during drop formation, 331

onset of, 44, 125, 179-180, 305

due to shear field, 263, 342-344

due to turbulence, 269

due to wall effects, 231, 233, 235, 240
of water drops in air, 170

Degree of circulation, 41
Density ratio

effect in accelerated motion, 285, 288-291,
293-295, 298, 309

effect on secondary motion of rigid particles,
115, 143, 154, 156

effect on terminal velocity and drag, 114-116,
156, 161, 162

Diameter

equilibrium, 337-338
equivalent, 18

hydraulic, 226, 236
hydraulic equivalent, 77, 79
image-shearing, 18
projected area, 18, 21, 159
statistical intercept, 18, 21

Diffusion equation, see Continuity equation,

species

Dilation, see Oscillation of bubbles and drops
Dimple, see Indentation on base of bubbles and

drops

Disks, 17

accelerated motion of, 294

drag, 74, 76, 80, 145-148, 160

free fall, 148-149

motion at low Reynolds number, 74

motion at higher Reynolds number, 143-149
rotation, 260

secondary motion, 143, 148-149

transfer, 91, 152-153, 163

wakes, 143-144

Disperseq phase, definition of, 2
Displacement modulus, 285, 297
Drag, see “also Drag coefficient, Form drag,

Skin friction
in accelerated motion, 287, 296, 312, 314,
315-316
calculation from stream function, 73-74
during bubble formation, 324, 326
during drop formation, 333

Drag coefficient

in accelerated motion, 305, 315, 318
for air bubbles in water, 171
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Drag coefficient (continued)
compressibility effects, 275-278
for curvilinear trajectory, 316
for cylinders, 154-156
for disks, 145-147
for fluid spheres, 33, 130-134
free convection effects, 256-258
free-molecule, 276
inviscid, 277
for rigid spheres, 35, 43, 99, 103, 110-113
for rigid spheroids, 78, 146-147
shear and rotation influence, 260-263
spherical-cap fluid particles, 206
turbulence effects, 266-268
wall effects, 226-227
water drops in air, 170-171, 341-342
Drag factor (wall effects), 223
Drag ratio (nonspherical particles)
cylinders at low Reynolds number, 79-81
definition, 69
orthotropic particles at low Reynolds number,
85-87
spherically isotropic particles at low Reynolds
number, 87
spheroids, 76-77, 147-148, 292
Drift, 31, 35, 42, 74f

E

Eddies, see Wakes, Turbulent flow

Ellipsoidal rigid particles, 75, 82, see also
Spheroids

Ellipsoid of revolution, see Spheroids

Ellipsoidal fluid particles, 23-26, 169-199,
232-233, 240

Ellipsoidal-cap bubbles, see Spheroidal-cap fluid
particles

Elongation ratio, 19

Enclosed vertical tubes, 239-240

End effects, 225

Energy dissipation, 11, 132, 189, see also
Aerodynamic heating

Energy equation, 3, 11, 12, 303

Energy spectrum of turbulence, 268, 269,
344-345

Entrainment, see Drift

Eotvos number

definition, 26
use in correlating shapes of fluid particles, 181

Equivalent sphere, 18, 69, 158

Error distribution solutions, see
method

Euler equation, 7

Galerkin’s

Index

External resistance to transfer, see also the
individual shape
effect of surface-active impurities, 38, 63-66,
192, 194-196, 214, 216
ellipsoidal fluid particles, 192-197
Extraction efficiency, 54

F
Fall from rest, see Initial motion
Falling sphere viscometry, 223, 228
Fibres, 74, see also Slender bodies
Flatness ratio, 19
Flattening, see Deformation
Floating bubbles and drops, 22
Flow visualization
of boundary layer separation, 109, 266f
evaluation of, 264
for flow past spheres, 103-105, 109, 222, 261
for flow past spheroids and disks, 143
of forming bubbles and drops, 323, 332
hydrogen bubble technique, 212, 339
of internal circulation, 36-38, 189, 210
mixed free and forced convection, 258
of wake motion, 103, 109, 184-185, 211, 212
Fluctuations, see Oscillations
Fluidized beds
breakup of bubbles in, 339, 346
bubble formation and initial motion, 305f,
329-330
bubble properties in, 203, 216-218
slug properties in, 236, 237f
Fluid particles, definition of, 2
Fore-and-aft symmetry
of flow fields, 8, 30, 31, 40, 42, 43, 100, 222
of fluid particles, 23, 26, 170
of rigid particles, 17, 72, 83, 164
Form drag, 99
for fluid particles, 33, 130
for rigid spheres at low Reynolds number, 35
for rigid spheres at higher Reynolds number,
103, 108, 110
for rigid spheroids, 77, 78, 146-147, 293
Formation of bubbles, 321-330, 334-339
chamber volume, effect of, 322, 329
at circular orifices, 322-330, 334-337
coalescence during, 327-328, 329
constant flow conditions, 322, 324-328, 332
constant frequency, 325, 327, 330
constant pressure conditions, 322, 328
constant volume, 325
by electrolysis, 337, 339
by entrainment, 339
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in flowing fluid, 334
in fluidized beds, 329-330
at inclined orifices, 334
intermediate conditions, 325, 329
in liquid metals, 327
mass transfer during, 335-337
models for, 323-330
models for transfer during, 335-337
at noncircular orifices, 334
by phase change, 337-338
by Rayleigh-Taylor instability, 338
Formation of drops, 321-322, 330-339
atomization, 321-322, 331
at circular orifices, 332-337
coalescence during, 334
in flowing fluid, 334
at inclined orifices, 334
internal circulation during, 335, 336
by jet disintegration, 333-334
mass transfer during, 335-337
models for, 331-333
models for transfer during, 335-337
at noncircular orifices, 334
by phase change, 337-338
by Rayleigh-Taylor instability, 338
Fourier number, 52, 94
Fractional approach to equilibrium, 54, 191
Free convection, see Natural convection
Free-molecule regime, 272-276, 278-279
Freestream turbulence, see also Turbulent flow
effect on critical transition, 110, 114, 262,
266-267
effect on heat and mass transfer, 120, 162,
269-271
effect on lift in Magnus effect, 262
effect on particle motion and drag, 262,
264-269, 306, 315, 318
Frequency
of bubble formation, 325, 327, 330
of eddy shedding, 106-108, 185, 213, 305,
311, 342
of imposed oscillations, 309-313, 314
natural, 187-188, 197, 305, 314, 342
of secondary motion oscillations, 150, 156,
187-188, 197
Fresh surface model, 197, 199, 335

G
Galerkin’s method, 125, 130, 133-134, 135
Galileo number, 113f
Generation of fluid particles, see Formation of
bubbles, Formation of drops
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Glide-tumble regime, 149
Guard heating, 122-123

H
Hadamard-Rybczynski ~ solution  for
spheres, 30-33, 38, 47, 50, 58, 137
Hailstones, 114, 143, 147, 165, 245f
Harkins correction factor, 325, 331-332, 333
Heat transfer coefficient, see Mass transfer
coefficient, Analogy between heat and mass
transfer
History effects
in arbitrarily accelerated motion, 316
during bubble formation, 324
coefficient, 292, 296, 316, 317
conditions for neglect of, 265-266, 275,
300-301, 311, 316, 317
spheres, 275, 287-291, 296, 297
spheroids, 292-294
Hydraulic equivalent sphere, 77
Hydrostatic pressure, 22, 180, 250
Hypersonic velocities, 276

fluid

I
Immobile interface, see Surface-active impurities
Impulsive motion, 98, 286
Inclined tubes, 239
Indentation
on base of bubbles and drops, 26, 204, 208,
215, 216, 305
on leading surface of bubbles and drops, 339
Infinite cylinders, see Cylinders
Initial motion, 286-295
disks, 294
drops, 295, 305
fluid spheres, 295, 304-305
particles in gases, 302-304
particles in liquids, 298-300
rigid spheres, 286-292
rigid spheroids, 292-294
spherical-cap bubbles, 305-306
two-dimensional bubbles, 305
Instability, see also Breakup of bubbles,
Breakup of drops
of accelerating drops, 346
growth rate of disturbances, 333, 340-341]
Helmholtz type in fluid skirts, 209
most dangerous wavelength, 333
Rayleigh type, 330, 333, 344
Rayleigh-Taylor type, 338, 339-342
of wakes, 103, 143
Intensity of turbulence, 162, 164, 266-271, 312
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Interfacial barriers to mass transfer, 248-249
Interfacial convection, 246-248
Interfacial resistance, see Interfacial barriers to
mass transfer
Interfacial tension, 5
determination of, 22, 325
importance in bubble and drop formation, 325,
327, 333
importance in stabilizing fluid particles, 339,
344
Interfacial turbulence, 247-248
Intemnal circulation
asymmetry, 35, 37-38, 127, 130, 134
in deformed fluid particles, 171, 209-210
effect of surface active impurities on, 36-41,
128, 171, 175, 189
effect of viscosity ratio on, 41, 133, 171
effect on boundary layer separation and wake
formation, 126
effect on resistance to transfer, 192, 194,
197-198
in fluid spheres, 36, 127-129, 133
in forming bubbles and drops, 332, 335, 336
onset of, 41
Internal resistance to transfer, see also the indi-
vidual shape
effect of internal circulation, 197-198
effect of surface active impurities, 38, 63-66,
189-190, 198
oscillation effect, 190, 198-199
Irregular particles, see Arbitrarily shaped parti-
cles
Irrotational flow, see Potential flow
Isometric particles, 17, 161-162, 165

J
Jets
breakup, 330-331, 333-334
formation, 322, 324, 330-331, 333-334
length, 330, 331, 334

K
Kinetic theory of gases, 272, 277-278
Knudsen number, 271
Kronig—Brink solution, 58, 59, 60, 62, 65-66,
137, 197

L
Laplace’s equation, 7, 88
Laser—Doppler anemometry, 264
Lens-shaped particles, 74
Levitation, 312, 313, 339

Index

Lift, 229, 259f, 261, 263, 301, 316, 317

Lift coefficient, 262, 316

Liquid metals, bubbles in, 38,203, 216-218, 327

Local transfer rates, see Nusselt number, Sher-
wood number

M
Mach number, 271
Magnus etfect, 261-262
Marangoni effect, 64, 246-249
Mass transfer
during formation and release of fluid particles,
335-337
with stagnant continuous phase, 47, 88-91
Mass transfer coefficient
definition for fluid particles, 191-192
for rigid spheres in free fall or rise, 124-125
for stagnant external phase, 47, 89-91
Mass transfer factor, 135-136, 157, 195, 229,
240
Matched asymptotic expansions
drag at low Reynolds number by, 44-45, 78,
260
transfer at low Peclet number by, 48, 93
Maximum stable size of fluid particles, see
Breakup of bubbles and drops
Migration of particles, 229, 259f, 260, 338
Modified pressure, 4, 9, 31, 42, 102
Molecular speed ratio, 277
Moment of inertia, dimensionless, 148149
Morton number, 26

N
Natural convection, 12, 249-259
Natural frequency of fluid particles, 187-188,
197, 305, 314, 342
Navier-Stokes equation, 3, 9
numerical solutions, 46,97-99, 180, 303-304
simplified or integral forms, 130, 249
uncoupling from energy and continuity equa-
tions, 12
Needle-shaped particles, 74, 82, 90, see also
Slender bodies
Newman solution, 55, 58, 59, 60, 62, 65-66
Newton’s law regime, 108-109, 113, 142, 147,
156, 162, 164, 309
Noncontinuum effects, 271-275, 278-279
corrections, 170
on drag, 272-275
on heat transfer, 278-279
Normal drag coefficient, 316
No-slip condition, 5, 14, 286
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Nozzles, see Formation of bubbles, Formation of
drops
Nucleation, 337-338
Numerical solutions
for flow past cylinders, 156-157
for flow past fluid spheres, 126
for flow past rigid spheres, 46, 97-99, 100,
103, 121, 301, 303-304
including transfer calculation, 91, 121, 135,
156-157, 303-304
Nusselt number, 12, see also Sherwood number
for accelerating spheres, 304
influence of free convection, 257
local, 119-121, 269-270
simultaneous heat and mass transfer, 255,
258-259
for sphere subject to compressibility effects,
279
for sphere subject to noncontinuum effects,
278-279

(0]
Oblate spheroids, see also Spheroids
accelerated motion, 292-294
definition, 17
drag, 76-79, 80, 146-148, 150
free fall, 150
representation of fluid particles as, 169, 180
secondary motion, 150
terminal velocity, 150
transfer, 89, 92, 93, 150-153, 192-193
use to approximate complex shapes, 74,
164-165, 179
Octahedra, 165
Opposing flow. 256-259
Orientation
cylinders in free fall, 155
effect on motion of nonspherical particles,
70-71, 73, 79, 87
effect on natural convection, 256
preferred, 87, 165
Orifice, see Formation of bubbles, Formation of
drops
Orifice constant, 323
Orthotropic particles
definition, 17
motion of, 70-71
drag at low Reynolds number, 85-87
Oscillations, 114-115, 148-150, 154-156, 171,
179, see also Oscillatory motion, Secondary
motion, Vibration associated with secon-
dary motion
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associated with wake shedding, 103, 109, 110,
143
of mass transfer rates, 119
Oscillation of bubbles and drops
due to release after formation, 194, 305, 335
effect on external resistance to transfer, 192,
196-197
effect on internal resistance to transfer, 190,
198-199
effect on transfer rates during formation, 335
onset of, 175, 176, 185-186, 188, 189
Oscillatory motion
bubble rise in, 313-314
drag in, 286-288, 306, 309-311
effect on transfer rates, 312-313, 314
motion of particle in, 306-312
reduction of terminal velocity,
313-314
Oseen approximation, 9, 41-46
drag coefficient, 43, 112
extension to higher order, 44-46
with particle rotation, 263
for spheroids and disks, 77-78, 145
stream function, 42
surface vorticity, 42, 51
wall effects, 226

307-312,

P
Parallelepipeds, see also Square bars, 17, 79, 83,
85-87, 94
Particle, definition of, 1
Particle rotation, see Rotation
Particle shape factors, see Shape factors
Peclet number, 10
Pendant drops, 22
Penetration theory, 213
Perimeter-equivalent factor, 22, 83, 85, 90
Phase shift, 264-265, 307-308, 310, 313
Plane bubbles, see Two-dimensional bubbles
Plasma jets, 277, 316
Point force approximation technique, see Slender
bodies
Potential flow, 6, 7, 305
pressure distribution, 8, 99, 129, 181, 207
past spheres, 8, 33, 132, 287, 305
past spheroids, 181, 189, 192, 205
surface velocity, 8, 135, 212
transfer, 135, 137, 194, 213
Prandt]l number, 12
Pressure, see Modified pressure, Surface pres-
sure distribution
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Pressure drop for particle moving through tube,
228-229
Pressure gradient drag, 306, 309, 315, 317
Principal axes of translation, 70-71
Principal translational resistances, 71, 72, 75,
80, 87
Prisms, 164, 165
Prolate spheroids, see also Spheroids
accelerated motion of, 292-294
definition, 17
drag, 76-79
time variation of concentration, 94
transfer, 89, 92, 93, 150
treated as slender bodies, 82
Pulsations, see Oscillatory motion, Vibration
Pure systems
internal circulation, 38, 41, 189
secondary motion, 188
shapes of fluid particles in, 182-183, 189
terminal velocity and drag, 38, 41, 134, 171,
176-178
transfer, 51, 62, 137, 192, 194-196
wakes, 185

R
Raindrops, 126, 127, 134, 170, 346, see also
Water drops in air
Random wobbling, see Wobbling motion
Rarefied gases, 272, 279
Rayleigh instability, see Instability, Rayleigh
type
Rayleigh number, 251
Rectangular parallelepipeds, see Parallelepipeds
Relative roughness, 244
Relaxation time, 266, 343
Release, see also Formation of bubbles, Forma-
tion of drops
effect on secondary motion, 188
effect on transfer, 194, 197, 335, 337
Resonance, 188, 311, 342
Retardation coefficient, 38
Reversibility
of creeping flow solutions, 9, 42
of overall transfer, 88
Reynolds number, 26
critical, 110, 143, 266-267, 316
internal, 30, 130, 205, 295
lower critical, 103
metacritical, 267
rotational, 264
shear, 259
Rossby number, 262f

Index

Rotation, see also Tumbling motion, Secondary
motion
effect on transfer, 263-264
of particles in flow field, 70, 156, 164,
259-264, 315
tube rotation, 239
Roughness
effect on flow and drag, 244-245, 262
effect on heat and mass transfer, 164, 245-246

S
Scale of turbulence, 264, 266, 312
Schmidt number, 11
Screw motion, 259, 262-264
Secondary motion
accelerating spheres, 301
air bubbles in water, 172-173
cylinders in free fall, 154-156
disks in free fall, 143, 148-149
effect of rotation on, 263
effect on drag, 108, 115, 188
effect on terminal velocity, 115, 188
ellipsoidal bubbles and drops, 185-188
oblate spheroids in free fall, 150
in oscillating fluid, 311
spheres in free fall, 114-116
spherical-cap bubbles, 211-212
wall effects on, 233
Separation, see Boundary layer separation
Separation angle, 99, 103, 109, 117, 119-121,
126-127
Sessile drops and bubbles, 22
Settling factor, 69, 79
Settling velocity, see Terminal velocity
Shapes, 16-22, see also Deformation, Aspect
ratio classification
freely moving fluid particles, 26-28, 179—183,
235,237
static bubbles and drops, 22
water drops in air, 170, 183-184
Shape factors, 17-22, 83
Shape oscillations, see Oscillation of bubbles and
drops
Shear field, 260-261, 342-344
Sherwood number
cylinders at low Reynolds and Peclet numbers,
93
definition, 12, 191-192
ellipsoidal fluid particles, 191-194
fluid spheres, 50-51, 135, 137
local, 49-50, 93, 117-121, 150-151
natural convection, 252-259



Index

in oscillating fluid, 312-313
rigid spheres at iow Reynolds number, 47-53,
117
rigid spheres at higher Reynolds number,
117-124
simultaneous heat and mass transfer, 255
sphere subject to rotation, 263-264
wall effects, 229-231
Shock waves, 275, 346
Simultaneous heat and mass transfer, 255,
258-259
Sinusoidal fluid motion, 264, 286, 306-310, 312
Skin friction, 99
for fluid particles, 33, 130
for rigid spheroids, 77, 78, 146-147, 293
for spheres at low Reynolds number, 33f, 35
for spheres at higher Reynolds number, 103,
109, 110
Skirts, 208-209
definition of, 26
formation, 204, 208
influence on transfer, 216
influence on wakes, 210
length, 209
occurrence, 27, 208
thickness, 208-209
wall effects, 234-235
Slender bodies, 74, 80, 82, 90, see also Cylinders
Slip flow regime, 116, 272-275, 278
Slug flow, 26, 236-239
Spectral distribution, see Energy spectrum of
turbulence
Spheres
accelerated motion, 286-291, 295-304,
306-316
compressibility effects, 275-278, 279
flow at low Reynolds number, 30-66
flow at higher Reynolds number, 97-116,
125-135
freestream turbulence effects, 265-271
natural convection, 251-254, 255, 257-258,
278
noncontinuum effects, 271-274, 278-279
numerical solutions for, 46, 97-99, 121, 301,
303-304
rotation, 260-264
roughness effects, 244-245
in shear field, 260-262
steady-state transfer with stagnant continuous
phase, 47, 89
transfer at low Reynolds number, 46-66, 117
transfer at higher Reynolds number, 117-125,
135-137, 163, 164

377

transfer with unsteady external resistance,
51-53, 137
transfer with variable particle concentration,
53-63, 94, 137
wall effects, 221-228, 229-231, 231-232,
240
Spherical-cap bubbles and drops, 26, 203-219,
234-236, 240
external flow field, 212
initial motion of, 305-306
internal circulation, 209-210
skirt formation, 204, 208-209
surface pressure distribution, 207
terminal velocity, 204207
transfer, 213-216
wakes and wake angles, 204, 210-212
wall effects, 234-236, 240
Spherical cap rigid particles, 74, 210-211
Spherical fluid particles, see Spheres
Spherically isotropic particles
definition, 17
motion at low Reynolds number, 70
drag at low Reynolds number, 87
Sphericity, 20, 80, 83
as correlating parameter for terminal vel-
ocities, 87, 158-159, 161-162
operational, 21
visual, 87
working, 21
Spheroidal-cap fluid particles, 26, 203-219
Spheroids, 17, see also Oblate spheroids, Prolate
spheroids
accelerated motion of, 292-294
drag at low Reynolds number, 74-79, 83,

85
noncontinuum effects, 275

Oseen approximation for, 77-78
ratio of form drag to skin friction, 78, 147
in shear field, 260
streamlines and concentration contours,
143-144, 150-151
transfer, 91-93, 150-153, 163
wake formation and character, 143—144
Spin, see Rotation, Top spin
Spiral trajectories
of fluid particles, 172, 188, 189, 195
of rigid particles, 70, 114, 315, 317
Splitting, see Breakup of bubbles and drops
Square bars, 80f, 85-87, 164
Stagnant cap, 39, 64-66, 127f
Standard drag curve, 110-113, 125, 169f, 171,
272, 277, 315
Static bubbles and drops, 22
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Statistical projected length, 20-21
Stokes flow, see Creeping flow
Stokes’s law, see Terminal velocity
Stokes number, 264, 307f
Stream function
axisymmetric creeping flow, 9
definition, 6
fluid spheres in creeping flow, 30-31
Oseen approximation for rigid spheres, 42
rigid spheres by matched expansions, 45, 51
rigid spheres in oscillatory motion, 286-287
Streamlines
around accelerating spheres, 302
definition, 6
for flow past rigid spheres, 34, 100, 118
for flow past spheroids, 143144, 150-151
for fluid spheres, 31-32, 128
for spherical-cap and spheroidal-cap bubbles,
210, 212
Strouhal number, 106-107, 149, 173, 185, 213
Supercritical flow range, 110, 116, 223, 245,
263, 267-268
Supersonic velocities, 275-276
Support interference, 112, 120, 275
Surface-active impurities, 38-41, 134135, see
also Marangoni effect
effect on break up of bubbles and drops, 344
effect on external resistance to transfer, 38,
63-66, 190-195, 214, 216
effect on internal circulation of fluid spheres,
35-41, 134-135
effect on internal circulation of deformed fluid
particles, 171, 175, 189, 209-210
effect on internal resistance to transfer, 63-66
effect on shape of fluid particles, 33, 40
effect on surface velocities, 128, 175
effect on terminal velocity of fluid spheres,
35-36, 38-41, 135
effect on terminal velocity of deformed fluid
particles, 171, 174-175, 178, 179, 238, 305
effect on transfer during formation, 337
effect on wakes and vortex shedding, 175,
184188
interfacial barriers to mass transfer, 248-249
Surface area of drops in air, 183
Surface pressure distribution
on fluid particles, 129-130, 180-181, 205, 207
potential flow, 8, 99, 181, 207
on rigid spheres, 42, 44, 99, 100, 102
108-110
Surface roughness, see Roughness
Surface shear stress, see Skin friction

s
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Surface stretch model, 197, 199, 335
Surface tension, see Interfacial tension
Surface tension pressure increment, 5, 22, 3.
180, 322
Surface velocity, 8, 64, 128, 132, 135. 136
Surface viscosity, 5, 36, 249
Surface vorticity distribution
for spheres, 33, 34, 42, 46, 49, 99, 100-106,
127
use in calculating skin friction drag, 99
use in calculating transfer rates, 13, 49, 51,
122
Surfactants, see Surface-active impurities

T
Temperature gradients, 276, 277, 278
Terminal velocity
air bubbles in water, 40, 171-172
arbitrarily shaped particles at higher Reynolds
number, 157-162
bubbles and drops in pure systems, 28, 33,
176-178
contaminated bubbles and drops, 26, 173-177,
179
drops in gases, 178-179
effect of density ratio for rigid particles,
115-116, 156, 162
freestream turbulence effects, 266
Hadamard-Rybczynsky value, 33
oblate spheroids, 148, 150
nonspherical particles at
number, 73, 87
randomly orientated particles at low Reynolds
number, 73
rigid particles in oscillating fluid, 307-312
slugs, 236-239
spheres, 33-36, 113-116, 296
spherical-cap bubbles and drops, 26, 204-207
Stokes’s law value, 35, 41, 307
wall effects, 223-228, 233-236
water drops in air, 169-170, 179
Tetrahedra, 165
Thermal number, 257
Thin concentration boundary layer approach, 12
applied to fluid spheres, 50-51, 135, 240
applied to rigid spheres, 48-49, 122, 230
applied to spheroids, 91-92
applied to slugs, 241
Top spin, 259-262, 264
Toroidal bubbles, 306
Toroidal rigid particles, 74

low Reynolds
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Trajectories of accelerating particles, 289-292,
293,297, 298,300, 303,311, 315,316-318
Transition regime (between slip and free-
molecule flows), 272-274, 278
Transonic velocities, 275
Tumbling motion, 72, 149, 156, 277
Turbulent flow, see also Freestream turbulence,
Intensity of turbulence
breakup of bubbles and drops in, 342, 344—
345
in natural convection, 258
Two-dimensional bubbles
in fluidized beds and liquid metals, 216
initial motion of, 305
slugs, 238
terminal velocity, 207
wakes and wake angle, 204, 212
Two-dimensional shapes, 163

U
Underwater explosion bubbles, 203, 314, 338
Unsteady motion, see Accelerated motion, Oscil-
lations, Oscillatory motion, Formation of
bubbles, Formation of drops

A%
Velocity correction factor, 158, 161
Velocity gradients, see also Shear
effect on break-up of bubbles and drops,
342-344
Velocity potential, 7
Velocity ratie, 223, 230
Vibration, see also Oscillations of bubbles and
drops, Oscillatory motion
analogy to fluid particle oscillation, 187-188
effect on resistance to transfer, 190—191
Virtual mass, see Added mass
Viscosity ratio influence
on accelerated motion, 295
oninternal circulation, 41, 127, 133, 189, 231
on ratio of form drag to skin friction, 130
on secondary motion, 185-186
on shape of fluid particles, 26-28, 183
on terminal velocity, 26-28, 33, 173-174
on transfer, 47, 51, 53, 54
on wakes, 127, 185
Viscous dissipation, see Aerodynamic heating,
Energy dissipation
Volumetric shape factor
as correlating parameter for terminal velocity
and drag, 80, 159-161
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definition, 18
values for specific shapes, 159
Vortex, see Internal circulation, Vortex shedding
Vortex balls, 107
Vortex shedding, see Wake shedding
Vorticity, 6, see also Surface vorticity distribu-
tion
contours for flow past spheres, 100-101,
128-129
generation and diffusion, 103,
287-288, 305-306

132, 185,

w
Wakes, see also Wake shedding
accelerating spheres, 301, 305
air bubbles in water, 172
angle for large bubbles, 204, 206
attached recirculatory, 102-103, 119, 210~
211, 222, 258
concentration type, 117, 121
contribution to overall transfer rate, 119, 122f,
162-163, 213-216, 258
cylinders, 154
dimensions, 46, 100, 103, 127, 143-144, 268
effect of imposed oscillations, 311
ellipsoidal bubbles and drops, 184-185
fluid spheres, 126-127
forming bubbles, 324
instability, 103
onset for spheres, 46, 102, 126
particles in a shear field, 261
particles subject to rotation, 261, 263
periodicity, 108, 185
rigid spheres, 100-110
spheroids, 143
shape and structure, 103,
210-211, 262
at supersonic and hypersonic velocities, 276
volume, 103, 143, 175, 184-185, 210-211,
235, 258
wall effects, 109, 222, 233, 234-235
Wake shedding
air bubbles in water, 173
cylinders, 154
frequency, 106-108, 115, 185, 213, 311
inducement of secondary motion, 110, 115,
187188, 210-211, 301, 305
influence of mode of injection on, 338
influence on transfer, 119-121, 189, 213-214
onset, 103, 175, 184-185, 210, 222, 268, 305
Wall effects, 221-241
on accelerating particles, 288

154, 185-186,
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Wall effects (continued)
on fluid particles, 26, 175, 181, 231-241
on rigid particles, 109, 147f, 222-231
on transfer rates, 162, 229-231, 240-241
Water drops in air, 169-171, 179, 188, 315, 346,
see also Raindrops
Weeping from orifices, 329

Index

Wetting, 322, 325, 331
Wobbling motion, 26, 70, 188, 342

z
Zig-zag trajectories
fluid particles, 172, 185, 188, 189, 195, 305
rigid particles, 114, 311
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